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Infection Time in Multistable Gene Networks. A Backward

Stochastic Variational Inequality with Nonconvex

Switch-Dependent Reflection Approach

Dan Goreac∗† Eduard Rotenstein‡§

July 27, 2016

Abstract

We investigate a mathematical model associated to the infection time in multistable gene
networks. The mathematical processes are of hybrid switch type. The switch is governed by
pure jump modes and linked to DNA bindings. The differential component follows backward
stochastic dynamics reflected in some mode-dependent nonconvex domains. First, we study the
existence of solutions to the resulting stochastic variational inclusions, by reducing the model
to a family of ordinary variational inclusions with generalized reflection in semiconvex domains.
Second, by considering control-dependent drivers, we hint to some model-selection approach
by embedding the controlled backward stochastic variational inclusion in a family of regular
measures. Regularity and structural properties of these sets are given.

Keywords : backward stochastic variational inclusion, nonconvex domains, piecewise deter-
ministic Markov processes (PDMP), occupation measures

AMS 2010 subject classification : 60H10, 60G55, 60J75, 92C42, 93E03

1 Introduction

The aim of this paper is to study some mathematical properties leading to the detection of infection
time in a specific class of stochastic gene networks. The mathematical apparatus is based on
a particular class of piecewise deterministic Markov processes (PDMP, first introduced in [21]).
The basic example one has in mind is a bistable (multistable) system consisting in a temperate
virus and a host. The pathogen is assumed to undergo a lysogenic cycle prior to its release by
lysis. We are interested in the detection of the latest infection time of such pathogens. Namely,
observing the state of the provirus at some terminal time T, we wish to characterize the trajectory
(or trajectories) leading to this state. The dynamics are modeled by a piecewise deterministic
(controlled) behavior of switch type. The switches are indicated by DNA bindings in specific sites.
The lysis region(s) are DNA binding-dependent and are characterized by domains around (stable)
critical concentrations. As long as the system is in the lysogenic cycle, these lytic regions are
avoided. The randomness is governed by DNA bindings modeled by a pure-jump process. This
leads to a problem with switched PDMP dynamics given as a backward stochastic variational
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inclusion reflected in a nonconvex domain (the exterior of balls, for example). The reflection is
assumed to be oblique in the direction of best reachable product concentration and the domains
of exclusion may depend on the state of the underlying jump process. For the biological and/or
mathematical details of gene networks, the reader is referred to [17], [32], [20], [19], [28].

Our switch process can be described by a couple (Γ·, Y·), where the first component is a pure-
jump process (mode) and, to simplify the framework, it is assumed to take values in some finite
set E. The mode process is governed by a jump rate λ and a transition measure Q depending on
the current mode. In the classical, forward formulation, the second component describes a vector
of product concentrations and evolves along a mode-dependent flow (say f). This piecewise deter-
ministic dynamics may also depend on an exogenous control parameter (catalyzer, temperature).
In our framework, Y still follows a piecewise-deterministic trajectory, but it is given with respect
to its final (random) value at time T > 0. Moreover, the trajectory is reflected along an oblique
direction H such that it remains in a domain dictated by Γ (say OΓ). If one denotes by q the
random measure associated to the mode, we deal with a backward stochastic variational inclusion
(BSVI, for short) of type
−dY T,ξ

t +H(t, Y T,ξ
t )∂−ϕOΓt−

(Y T,ξ
t )dt 3

∫
E
f(t, γ,Γt−, Y

T,ξ
t− , ZT,ξt (γ) , ut)λ(Γt−)Q(Γt−, dγ)dt

−
∫
E
ZT,ξt (γ) q (dtdγ) ,

Y T,ξ
t = ξ.

The exact definition of solution and the assumptions will be made clear in the following sections.

Backward stochastic differential equations (BSDE, for short) have been introduced in [8] in
order to describe the adjoint process in the stochastic version of Pontryagin maximum principle.
The concept has been generalized to a Brownian, nonlinear framework by the seminal paper [38].
The authors prove existence and uniqueness for the solution in a Lipschitz setting. The notion
has been extended to treat normally reflected Brownian dynamics in [39]. This led to the notion
of backward stochastic differential inclusions (BSVI). The method adapts to a backward setting
the penalization approach introduced for forward inclusions in [1]. Further developments for a
Hilbert setting are given in [40]. Oblique reflection with respect to convex domains arises naturally
in the study of optimal switching problems and has been considered in [33], etc. The authors of
[25] consider a BSVI governed by Brownian motion and oblique subgradients (in Clarke’s sense)
on convex domains. They distinguish two cases. In the case of time-dependent oblique direction,
they show the existence and uniqueness of a strong solution. Whenever the oblique direction
depends also on the incidence point, one produces weak solutions for the equation. The method
relies on suitable estimates on the penalized equations. In the obliquely reflected framework on
nonconvex domains, the recent paper [41] considers (forward) stochastic variational inequalities
using Fréchet-type subdifferentials. In order to tackle the nonconvex setup, the authors extended
the approximation method from convex to semiconvex settings. In particular, this allows one to
deal with a large class of domains written as the difference of convex sets.

The case of BSDE driven by discontinuous processes has been considered in [5], [43], [44], [13],
etc., while the pure-jump case is studied in [14]. In the case of marked point processes, BSDE
have been considered in [15]. A different approach relying on iterative solving of ODE (resp. SDE)
between consecutive jumps is given in [16] (resp. [35]).

This paper deals with two problems in connection to the theory of backward stochastic vari-
ational inclusions for switched PDMP. To our best knowledge, it is the first result on backward
stochastic dynamics in which the reflection is given with respect to nonconvex sets. Moreover,
our approach allows one to deal with families of sets indexed by the mode and, therefore, having a
special structure of time-dependence. First, we give a result on the existence of the solution and the
connection with a well-chosen system of ordinary differential reflection problems. This approach
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generalizes to this specific, reflected framework, the recent results of [16]. This reduction has the
advantage of allowing to deal with switch-dependent domains and generalized reflection. Second,
we envisage an occupation measure embedding approach when the driver f depends on some (pre-
dictable) exogenous control. The controlled trajectories corresponding to a given terminal datum
are seen as elements of a convenient space of measures. This space is shown to be regular enough
(convex, compact) and be given by a convenient inclusion. Support conditions relying these sets
to Fréchet subdifferential are also given. This approach can be employed in order to select the
parameters best fitting a desired runtime behavior under given terminal restrictions.

The paper is organized as follows. In Section 2 we introduce the motivating example of multi-
stable gene networks. We recall the biological description of Hasty’s model [32]. We briefly explain
how a switch PDMP is associated to such models and distinguish between the stability domains.
We explain why nonconvex (lysogeny) domains naturally appear in these models. Section 3 gathers
the results on BSVI. We begin with introducing the construction of the pure-jump mode and the
standing assumptions in 3.1. In Subsection 3.2 we study the BSVI with respect to the random mea-
sure associated to the mode. We introduce some notations making clear the stochastic structure
of several concepts : final data, predictable and càdlàg adapted processes as well as the generator
and the compensator of the initial random measure. The notations follow the ordinary differential
approach from [16]. The first result (Proposition 7) links the BSVI to a class of iterative ordinary
differential inclusions with generalized reflection in semiconvex domains. Next, this system is shown
to be solvable in Theorem 10, thus providing the solution of the initial BSVI. Section 4 provides
some elements of optimal design. We begin with presenting a case study and emphasizing the main
drawbacks for different control parameters in Subsection 4.1. Next, we show how the controlled
backward dynamics can be embedded in a suitable space of measures. We begin with embedding
the penalized gradient solutions (in Proposition 11) and deduce the properties for the limit set
(Theorem 12). Section 5 gathers all the proofs of our assertions.

2 A Motivating Example

It is well-known that, in prokaryotes, genes are switched between different states (e.g. on/off) by
interactions between specific proteins which intervene at the level of regulation and specific DNA
sequences. To better understand the mathematical model we are going to present hereafter, let
us concentrate on a basic network presenting bistability of protein concentration and derived from
bacteriophage lambda. We consider the repressor expression as described in [32] by the system of
biochemical reactions 2X1

K1

� X2, D (+X2)
K2

� DX2, D (+X2)
K3

� DX∗2 ,

DX2 (+X2)
K4

� DX2X2, DX2 + P
Kt→ DX2 + P +RX1, X1

Kd→ .

Biological Description. The authors of [32] propose a genetic applet consisting in a mutant
system in which two operator sites (OR2 and OR3) are present. The gene cI expresses repressor
(CI), which dimerizes and binds to the DNA as a transcription factor in one of the two available
sites. The site OR2 leads to enhanced transcription, while OR3 represses transcription. Using the
notations in [32], we let X1 stand for the repressor, X2 for the dimer, D for the DNA promoter
site, DX2 for the binding to the OR2 site, DX∗2 for the binding to the OR3 site and DX2X2 for
the binding to both sites. We also denote by P the RNA polymerase concentration and by R the
number of proteins per mRNA transcript. Therefore, the system consists in a ”four” tandem DNA
sites and the recognition of lytic/lysogenic patterns follows by identifying the regulatory repressor
cI (here described by its X1 concentration). The phage can switch between two states : lysogenic
(when the repressor is synthesized), respectively lytic which is initiated by DNA damage leading
to transcription of cI being turned off. The capital letters Ki, 1 ≤ i ≤ 4 for the reversible reactions
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correspond to couples of direct/reverse speed functions ki, k−i, while Kt and Kd only to direct speed
functions kt and kd.

Mathematical Model. Our simplifying mathematical approach considers a two-scale model
(see, for instance [19]). We assume the binding operations to be given by a priori statistical estimates
which lead to a Markov pure-jump process Γ describing

D
K2

� DX2, D
K3

� DX∗2 , DX2

K4

� DX2X2.

The remaining equations will give the continuous flow.
The Jump. The state space of this component is obviously discrete consisting of standard

vectors basis of R4 (E = {e1, e2, e3, e4} 1). Switching between these states is given at random times
generated according to the propensity function computed starting from the current state (e.g. [26]).
For example, at state e1 (corresponding to unoccupied DNA D), the possible reactions are given
by

D
k2→ DX2, D

k3→ DX∗2 ,

which leads to a total propensity λ (e1) := k2 + k3 and the postjump position is given, again as in
[26], by

Q (e1, de) =
k2

λ (e1)
δe2 (de) +

k3

λ (e1)
δe3 (de) .

Here, δ stands for the standard Dirac mass. Similar assertions hold true for the remaining reactions.
The Continuous Flow. While in lysogenic state (note that the dimer intervenes at binding

level), repressor and dimer concentrations are given by an ordinary differential equation (ODE)
dX1

dt
= f1 (Γt, X) := −2k1X

2
1 − kdX1 + 2k−1X2 +R1Γt=e2,|X| large enough,

dX2

dt
= f2 (Γt, X) := k1X

2
1 − k−1X2.

In lytic state, transcription of cI repressor is turned off.
Lysogenic Domain(s). In an attempt to distinguish between symbiotic (lysogenic) behavior

and the excision of the virus, it is, therefore, natural to set the lysogenic domain O to be the exterior
of some regions ”around (0, 0) ” (or other stable points). A careful look at our model shows that the
need of dimer is not the same at all DNA states. Indeed, while in state e2 (occupation of the pro-

moter site), the system is equally likely to free the dimer (in D (+X2)
k−1← DX2) or to consume it (in

DX2 (+X2)
k4→ DX2X2). Then, we get a lysogenic domain O2 =

{
(x1, x2) ∈ [0, ρmax] : x2

1 + x2
2 ≥ r

}
such as in Fig 1.1. However, as the state is free DNA (e1), all reactions need dimer binding. It is
then natural to consider a domain of type O1 =

{
(x1, x2) ∈ [0, ρmax] : x2

1 + 1
4x

2
2 ≥ r

}
(see Fig. 1.2).

Fig. 1.1 Lysogenic/Lytic
Domains for e2

Fig. 1.2 Lysogenic/Lytic
Domains for e1

1In Section 4, in order to avoid confusion with the trajectories of the marked point process, the elements of E will
simply be given by their index 1, 2, 3, 4. The lysogeny sets O can also have ei or i as an index.
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Similar constructions are possible for O3 and O4. To simplify arguments, we assume hereafter the
simplest form i.e. O3 = O4 = O2.

Reverse Engineering : Backward Dynamics and Reflection Directions. The reversible
biochemical equations allows to “guess” the constants by the so-called “law of mass action” going
back to the considerations of [31]. These hints are valid at equilibrium when the state is invariant.
The actual values of these constants are usually taken from different tables available in the literature
and using various normalizations (see, for example, [20]). As consequence, even in the simplest
model, different parameters lead to different behaviors (slow unstable, fast unstable, stable, etc. ).
Instead of switching between different parameters and finding those that ”fit” a targeted behavior,
we propose a reverse validation procedure as follows : based on the observation of the system at
some time T (given in an absolute time framework), one solves the backward equation with fixed
parameters until the process passes too much time on the frontier of the lysogenic domain. At this
time, it is reasonable to think that the symbiotic model is no longer valid (the trajectory is kept
within the lysogenic domain only because of the reflection penalty) and another model (independent
of the infection) should be considered. It is, therefore, the time at which the independent bacterium
becomes a host for the lambda virus (infection time). As a by-product, in continuous switching
model (see [20] for examples), the presence of a non-zero predictable projection implies that the
parameters are not fitted.

Assume, for the time being that, at some time T > 0, the phage lambda has been functioning
on a lysogenic pathway starting at some time t0. Then, the trajectory has been reflected such that
to remain in the lysogenic domains Oi. While many type of reflection can be considered, we will
assume here that the virus is driven by the best reachable stable state as follows. If the current
DNA state is 3, the only reachable DNA state is 1. In this case, the only stable point of the ODE
(for both the current state γ = 3 and reachable state γ = 1) is (0, 0) and we will consider normal
reflection to O3. Similar type of reflection is considered for O4. If the current DNA state is 2, then

there exists another critical point
(
R
kd
, k1R2

k−1k2
d

)
and the reflection is done using as axis the line joining

this critical point to the incidence point (see Fig 2.). If the DNA state is set to 1, binding to the
promoter site is envisaged and the reflection is done as before.

Fig 2. Oblique reflection
along best reachable state

Reverse-engeneering from time T in order to detect the time of infection leads to the attempt
of solving a backward differential equation adapted to the underlying DNA (Markov) mechanism
and reflected in the nonconvex domains Oi. We emphasize that, in our framework, the domains are
allowed to vary in time (at time t they depend on the mode Γt− ).

Control. In our phage model, the hybrid mechanism is essentially governed by the reaction
speeds k. Nevertheless, these speeds can be altered in various ways. To give a simple example,
the reaction constants in [17] vary in simulations with the choice of the product half time denoted
Tp (1h, 2h, 4h, etc.) and the stability of the regime (e.g. 4 ln 2

Tp for slow-unstable, 40 ln 2
Tp for fast-

unstable, etc.). Therefore, designing the best model amounts to considering that our differential
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mechanism is governed by an exogenous control parameter that can be associated to temperature
and/or catalysts conditions. Then, the construction of the differential component is given by a
driver depending on a predictable control process u.

3 The Backward Stochastic Variational Inclusion

3.1 Preliminaries and Technical Assumption

3.1.1 Markov Jump Processes

We briefly recall the construction of a particular class of Markov pure jump, non explosive processes
on a space Ω and taking their values in a metric space (E,B (E)) . For the explicit construction
of Ω (using the Hilbert cube), the reader is referred to [22, Section 23]. Here, B (E) denotes the
Borel σ-field of E. The elements of the space E are referred to as modes. These elements can be
found in [22] in the particular case of piecewise deterministic Markov processes; see also [10]. In
all generality, E ⊂ Rm′ , for some m′ ≥ 1. The process is completely described by a couple (λ,Q)
constituting on:

(i) a Lipschitz continuous jump rate λ : E −→ R+ such that supθ∈E |λ (θ)| ≤ c0 and
(ii) a transition measureQ : E −→ P (E), where P (E) stands for the set of probability measures

on (E,B (E)) such that:
(ii1) Q (γ, {γ}) = 0;

(ii2) for each bounded, uniformly continuous h, there exists a continuous ηh : R −→ R+,

such that ηh (0) = 0 and
∣∣∫
Eh (θ)Q (γ, dθ)−

∫
Eh (θ)Q (γ′, dθ)

∣∣ ≤ ηh(|γ − γ′|).
(The distance |γ − γ′| is the usual Euclidian one on Rm.)

Given an initial mode γ0 ∈ E, the first jump time has a conditional law Pγ0 (T1 ≥ t) = exp (−tλ (γ0)) .
The process Γt := γ0, on t < T 1. The post-jump location γ1 has Q (γ0, ·) as conditional distribution.
Next, we select the inter-jump time T2−T1 such that Pγ0 (T2 − T1 ≥ t /T1, γ1) = exp (−tλ (γ1)) and
let us set Γt := γ1, if t ∈ [T1, T2) . The post-jump location γ2 satisfies Pγ0 (γ2 ∈ A / T2, T1, γ1) =
Q (γ1, A) , for all Borel set A ⊂ E. And so on. Similar construction can be given for a non-zero
initial starting time (i.e. a pair (t, γ0)).

We look at the process Γ under Pγ0 and denote by F0 the filtration
(
F[0,t] := σ {Γr : r ∈ [0, t]}

)
t≥0

.

The predictable σ-algebra will be denoted by P0 and the progressive σ-algebra by Prog0. As usual,
we introduce the random measure q on Ω× [0,∞]× E by setting

q (ω,A) =
∑
k≥1

1(Tk(ω),ΓTk(ω)(ω))∈A, for all ω ∈ Ω, A ∈ B ([0,∞])× B (E) .

The compensator of q is q̂ (ds, ) dθ := λ (Γs−)Q (Γs−, dθ) ds and the compensated martingale mea-
sure is given by

q̃ (dsdθ) := q (dsdθ)− λ (Γs−)Q (Γs−, dθ) ds.

Following the general theory of integration with respect to random measures (see, for example [34]),
we denote by Lr

(
q;RN

)
the space of all P0 ⊗ B (E) - measurable, RN−valued functions Hs (ω, θ)

on Ω× R+ × E such that

Eγ0

[∫ T

0

∫
E
|Hs (θ)|r q (dsdθ)

]
= Eγ0

[∫ T

0

∫
E
|Hs (θ)|r λ (Γs−)Q (Γs−, dθ) ds

]
<∞, for all T <∞.

Here, N ∈ N∗ and r ≥ 1 is a real parameter. By abuse of notation, whenever no confusion is at
risk, the family of processes satisfying the above condition for a fixed T > 0 will still be denoted
by Lr

(
q;RM

)
.
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To keep arguments simple, we will be dealing with a finite set of modes E = {1, 2, ..., p} , for
some p ≥ 2. Moreover, at some point we will assume that the observations on the DNA are only
made up to time TM for some M ∈ N∗. Then, we will need to modify q to take into account this
condition as well as a terminal time T > 0 (see Subsection 3.2.1).

3.1.2 Technical Assumptions

We begin with recalling some useful notions (semiconvexity, Fréchet subdifferential) and the link
between these concepts. We also give the standing assumptions on our driver.

Definition 1 Given a non-negative real constant β ≥ 0, the non-empty set O ⊂ Rm is called β-
semiconvex if, for every x ∈ Bd (O), there exists x̂ ∈ Rm\{0} such that 〈x̂, y − x〉 ≤ β |x̂| |y − x|2,
for all y ∈ O. (Here Bd(O) denotes the boundary of O.)

Remark 2 A non-empty, closed subset O ⊂ Rm is β-semiconvex if and only if it satisfies, the
so-called “uniform exterior ball condition” (for short, 1/2β-UEBC) i.e. if, for every x ∈ Bd (O),
the normal (exterior) cone NO (x) 6= {0} and, for every u ∈ NO (x) for which |u| = 1/2β, one has
dO (x+ u) = 1/2β. As usual, dO denotes the distance function to the set O. For further details on
the subject, the reader is referred to [41].

For a given closed set O ⊂ Rm and for ε > 0, we denote by

B(O, ε) := {x ∈ Rm : dO (x) < ε} its (open) ε-neighborhood and

B(O, ε) := {x ∈ Rm : dO (x) ≤ ε} its (closed) ε-neighborhood.

Let us consider a function ϕO : Rm → (−∞,+∞] such that Dom (ϕO) := {y ∈ Rm : ϕ (y) < +∞} .
For the function ϕO we assume that Dom (ϕO) = O. We recall that the Fréchet subdifferential of
ϕO at x ∈ Rm is given by

∂−ϕO (x) :=


{
x∗ ∈ Rm : lim inf

y→x;y 6=x

ϕO (y)− ϕO (x)− 〈x∗, y − x〉
|y − x|

≥ 0

}
, if x ∈ O,

φ, if x /∈ O.

As before, we let Dom (∂−ϕO) := {x ∈ Rm : ∂−ϕO (x) 6= ∅}.

Remark 3 In the particular case of the convexity indicator function of some closed set O (i.e.
ϕ (x) := IO (x) = 0, if x ∈ O and +∞, otherwise), ϕ is a lower semicontinuous function and its
subdifferential operator is ∂−IO (x) = NO(x), for all x ∈ O.

The reader is invited to note that the domains appearing in our example (cf. Fig. 1) are not
convex. Nevertheless, they enjoy some smoothness properties as follows.

Definition 4 Given two non-negative real constants ρ, β ≥ 0 a function ϕ : Rm → (−∞,+∞] is
called (ρ, β)-semiconvex if

(i) int (Dom (ϕ)) = Dom (ϕ) is β-semiconvex,
(ii) Dom (∂−ϕ) 6= ∅ and, for every (x, x∗) ∈ ∂−ϕ and y ∈ Rm, one has

〈x∗, y − x〉+ ϕ (x) ≤ ϕ (y) + (ρ+ β |x∗|) |y − x|2 .

Given two non-negative real constants ρ, β ≥ 0, we consider a family of mode-indexed, (ρ, β)-
semiconvex functions ϕOγ : Rm → (−∞,+∞] and assume

(AO) Dom
(
ϕOγ

)
= Oγ is bounded,
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for all γ ∈ E. The oblique direction will be given by a continuous symmetric matrix-valued function
H : R+ × Rm −→ S+

m satisfying

(AH)

 i) |H (t, y)−H (t, y′)|+ | (H (t, y))−1 − (H (t, y′))−1 | ≤ cH |y − y′|,

ii)
1

cH
|u|2 ≤ 〈H (t, y)u, u〉 ≤ cH |u|2 , for all u ∈ Rm,

for some cH > 0 and all t ∈ R+, (y, y′) ∈ R2m. Here, S+
m stands for the family of symmetric,

positive-definite real-valued matrix of m×m type. One easily checks that the inverse of H equally
satisfies (AH -ii).

We consider that the driver function f : R+×E×E×Rm×Rm −→ Rm is globally continuous,
bounded and there exists some constant cf > 0 such that

(AF ) |f
(
t, γ, γ′, y, z

)
− f

(
t, γ, γ′, y′, z′

)
| ≤ cf

(
|y − y′|+ |z − z′|

)
,

for all (t, γ, γ′, y, , y′, z, z′) ∈ R+ × E × E × R4m.

Remark 5 The method can be applied to more general drivers (e.g. random, linear growth). How-
ever, since all the domain of interest are bounded and we are primarily interested in drivers as-
sociated to our biological model (without z component), we have chosen to limit ourselves to this
assumption.

3.2 The Main Results on BSVI

In connection to our model, for some fixed terminal time T > 0, we consider the following backward
stochastic variational inclusion with mode-dependent reflection :

(1)


−dY T,ξ

t +H(t, Y T,ξ
t )∂−ϕOΓt−

(Y T,ξ
t )dt 3

∫
E
f(t, γ,Γt−, Y

T,ξ
t− , ZT,ξt (γ))q̂ (dt, dγ)

−
∫
E
ZT,ξt (γ) q (dtdγ) ,

Y T,ξ
T = ξ ∈ L0 (Ω,FT ,Pγ0 ;Rm) ,

Pγ0−almost everywhere. We consider an additional cemetery state ∆ ∈ Rm acting as an indicator
of the infection time. As we will see afterwards, this equation can be linked to a system of reflected
ordinary differential equations. With this in mind, the coherence of our solution will have to be
ensured at jumping times. In other words, one would need the solution Y T,ξ

t to belong to OΓt− and
will check this condition at switching times. Should this condition fail to hold, the trajectory will
be sent to ∆ (lysogenic pathway is not coherent with the model prior to this time) and remains at
∆ for any time before.

The definition of a solution is given, as usual, by a triplet
(
Y T,ξ, ZT,ξ,KT,ξ

)
in which the latter

components take into account the adaptness, respectively a feedback correction for Y T,ξ.
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Definition 6 A solution of (1) consists of a triplet (Y T,ξ
t , ZT,ξt ,KT,ξ

t ) such that:

(i) 1. The process Y T,ξ
· is càdlàg and continuous except, maybe, at switching times.

2. For Pγ0 × Leb -almost all (ω, t) such that Tn (ω) ≤ t < Tn+1 (ω) , Y T,ξ
t ∈ OΓTn

.

3. If Y T,ξ
Tn

(ω) /∈ OΓTn−1
, then Y T,ξ

s (ω) = ∆, for almost all s < Tn (ω) .

(ii) 1. The process ZT,ξ· (·) is Rm-valued, F−predictable and

2. Eγ0

[∫ T

0

∫
E
|ZT,ξt (γ) |q̂ (dt, dγ)

]
<∞.

(iii) 1. The process KT,ξ
· is F−adapted and

∫ T

0
|KT,ξ

t |2dt <∞, Pγ0-almost everywhere.

2. For Pγ0 × Leb -almost all (ω, t) such that Tn (ω) ≤ t < Tn+1 (ω) , one has

(KT,ξ
t (ω) , Y T,ξ

t (ω)) ∈ (∂−ϕOΓTn(ω)(ω)
(Y T,ξ
t (ω))× Rm) ∪ {(0,∆)} .

(iv) One has, Pγ0 × Leb -almost everywhere,

Y T,ξ
t +

∫ T

t
H(Y T,ξ

s )KT,ξ
s ds+

∑
n≥0, t<Tn≤T

ZT,ξTn
(ΓTn)

= ξ +

∫ T

t

∫
E
f(s, γ, Y T,ξ

s , ZT,ξs )λ (Γs)Q (Γs, dγ) ds.

Moreover, unless stated otherwise, we will assume that the mode process jumps at most M > 0
times prior to T > 0, i.e.

(AM ) Pγ0 (TM+1 =∞) = 1.

This assumption is not a heavy restriction. Indeed, passing to an infinite number of jumps is got
by a localization procedure (see [16, Proof of Theorem 3]) and using the special form of our random
measure. For this reason, we prefer to concentrate on the specificity of our reflection setting.

3.2.1 Measurability Issues, Driver and Compensator

Before giving the reduction of our equation to a system of ODE, we need to introduce some
notations making clear the stochastic structure of several concepts : final data, predictable and
càdlàg adapted processes as well as the driver and the compensator of the initial random measure.
The notations in this subsection follow the ordinary differential approach from [16]. Since we
are only interested in what happens on [0, T ] , we introduce a cemetery state (∞, γ) which will
incorporate all the information after T ∧ TM . It is clear that the conditional law of Tn+1 given
(Tn,ΓTn) is now composed by an exponential part on [Tn ∧ T, T ] and an atom at ∞. Similarly, the
conditional law of ΓTn+1 given (Tn+1, Tn,ΓTn) is the Dirac mass at γ if Tn+1 =∞ and given by Q
otherwise. Finally, under the assumption AM , after TM , the marked point process is concentrated
at the cemetery state.

We set ET : = ([0, T ]× E) ∪ {(∞, γ)}. For every n ≥ 1, we let ET,n ⊂
(
ET
)n+1

be the set of
all marks of type e = ((t0, γ0) , ..., (tn, γn)) where

(2)


t0 = 0, (ti)0≤i≤n is non-decreasing;

for every 0 ≤ i ≤ n− 1, if ti ≤ T, then ti < ti+1;
for every 0 ≤ i ≤ n− 1, if ti > T, then (ti, γi) = (∞, γ) ,

and endow it with the family of all Borel sets Bn. For these sequences, the maximal time is denoted
by |e| := tn. Moreover, by abuse of notation, we set γ|e| := γn. Whenever T ≥ t > |e| , we set

(3) e⊕ (t, γ) := ((t0, γ0) , ..., (tn, γn) , (t, γ)) ∈ ET,n+1.
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By defining

(4) en := ((0, γ0) , (T1,ΓT1) , ..., (Tn,ΓTn)) ,

we get an ET,n−valued random variable, corresponding to our mode trajectories.
Let us now express the different notions (final condition, adapted process, predictable process,

etc.) with respect to this framework.
The final data ξ is FT−measurable and, thus, for every n ≥ 0, there exists a Bn/B (Rm)−measurable

function ET,n 3 e 7→ ξn (e) ∈ Rm such that:

(5)

{
If |e| =∞, then ξn (e) = 0.
Otherwise, on Tn (ω) ≤ T < Tn+1 (ω) , ξ (ω) = ξn (en (ω)) .

A càdlàg process Y continuous except, maybe, at switching times Tn is given by the
existence of a family of Bn ⊗ B ([0, T ]) /B (Rm)-measurable functions yn such that:

(6)


For all e ∈ ET,n, yn (e, ·) is continuous on [0, T ] and constant [0, T ∧ |e|] .
If |e| =∞, then yn (e, ·) = 0.
Otherwise, on Tn (ω) ≤ t < Tn+1 (ω) , yt (ω) = yn (en (ω) , t) , for all t ≤ T .

Similar, an Rm−valued F-predictable process Z defined on Ω × [0, T ] × E is given by the
existence of a family of Bn ⊗ B ([0, T ])⊗ B (E) /B (Rm)−measurable functions zn satisfying
(7){

If |e| =∞, then zn (e, ·, ·) = 0.
Otherwise, on Tn (ω) < t ≤ Tn+1 (ω) , zt (ω, γ) = zn (en (ω) , t, γ) , for all t ≤ T and γ ∈ E.

To deduce the form of the compensator, one takes into account (AM ) and simply writes:

(8)



If n ≤M − 1,

q̂ne (dt, dγ) := λ(γ|e|)Q(γ|e|, dγ)1|e|<∞,t∈[|e|,T ]Leb (dt) + δγ (dγ) δ∞ (dt) 1(|e|<∞,t>T )∪|e|=∞,

If n ≥M, then q̂ne (dt, dγ) = δγ (dγ) δ∞ (dt)

q̂ (ω, dt, dγ) :=
∑
n=0

q̂nen(ω) (dt, dγ) 1Tn(ω)<t≤Tn+1(ω)∧T .

.

Finally, given a predictable process z := (zn) , the driver is given by a family of Bn⊗B ([0, T ])⊗
B (E)⊗ B (Rm)⊗ B (Rm) /B (Rm)−measurable functions

f (zn)n : ET,n × [0, T ]× E × R2m −→ Rm

such that:

(9)


If |e| <∞ and n ≤M − 1, then, for all (e, t, γ, y, y′, w, w′) ∈ ET,n × [0, T ]× E × R4m,

|f (zn)n (e, t, γ, y, w)− f (z′,n)n (e, t, γ, y′, w′) |

≤ c
(
|y − y′|+ |w − w′|+

∑
γ′∈E |zn(e, t, γ′)− z′n (e, t, γ′)|Q(γ|e|, dγ

′)
)
.

Otherwise, f (zn)n (e, ·, ·, ·, ·) = 0.

In this case, we identify the driver as follows.
(10)
Whenever Tn < t ≤ Tn+1, we have f (t, γ,Γt−, y, ζ) = f (zn)n (en (ω) , t, γ, y, ζ (γ)− zn (en (ω) , t, γ)) .

Of course, the same considerations hold true if the driver f is allowed to depend on a control
parameter and the control process is predictable. In fact, more general drivers depending on ω
can be considered and the arguments remain identical. Finally, the assumption (AO) hints to the
fact that we are going to work with bounded y. We have also introduced a state ∆ to describe
a cemetery state for the second component. This state can be taken to be in Rm, far from the
domains in (AO) and (by eventually modifying its values), we assume f to be zero at y = ∆.
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3.2.2 A Scheme Based On Reflected Solutions for Ordinary Differential Equations

We consider a càdlàg process Y continuous except, maybe, at switching times Tn. Then, as ex-
plained before, this can be identified with a family (yn) . At jumping times Tn+1, the process Y is
something like

(11) YTn+1 = yn+1
(
en ⊕

(
Tn+1,ΓTn+1

)
, Tn+1

)
.

We construct, for every n ≥ 0,

(12) ŷn+1 (e, t, γ) := yn+1 (e⊕ (t, γ) , t) 1|e|<t

and YTn+1 can be obtained by simple integration of the previous quantity with respect to the
conditional law of

(
Tn+1,ΓTn+1

)
knowing FTn .

We introduce the following scheme. We let ξ be a final condition. We ”correct” ξ = (ξn) given
by (5) as to be in the admissible domains as follows:

ξnadm (e) := ξn (e) 1ξn(e)∈Oγ|e|
+ ∆1ξn(e)∈Ocγ|e|

.

It is obvious that, should the data not be in the target domain, there is no point in solving the
reflected BSDE. In this case, we simply set the solution to be a constant point ∆ designed to be a
flag signaling that infection cannot precede the current time.

We consider the family of (ordinary) differential inclusions

(13)



yM (eM (ω) , t) = ξMadm (eM (ω)) ,

For n ≤M − 1, ξn,+adm (en (ω)) :=

{
ξnadm (en (ω)) , if yn+1 (en+1 (ω) , 0) ∈ Oγ|en(ω)| ,

∆, otherwise,

−dyn (en (ω) , t) +H (t, yn (en (ω) , t)) ∂−ϕOγ|en(ω)|
(yn (en (ω) , t)) dt 3

+
∑
γ∈E

f(ŷn+1)n (en (ω) , s, γ, yn (en (ω) , s) ,−yn (en (ω) , s)) q̂nen(ω) (ds, {γ}) ,

yn (en (ω) , T ) = ξn,+adm (en (ω)) .

Let us assume, for the time being, that this system admits an unique solution. Since the assumptions
(AO, AF ) hold true, the existence and uniqueness of the solution for (13) reduce to a generic problem
for each constituent equation from (13). The exact proof of this claim concerning the component
equations will be given shortly after. The following result links the solvability of the initial reflected
problem and the (finite) system of (backward) ordinary differential equations (13).

Proposition 7 Let us assume that (AO, AH , AF and AM ) hold true. Then, the càdlàg process
Y = (yn) continuous, except at switching times, is a solution for (1) if and only if it satisfies the
system (13).

The proof is inspired by the non-reflected version in [16]. The elements of proof are provided in
Section 5. The basic idea is to employ the structure presented in the previous subsection. Indeed,
since Z only acts at jumping times, there is a simple relation linking zn to yn and ŷn+1. The
conclusion follows by plugging this z into the equation.

3.2.3 The Iterating Differential Inclusion

As we have seen in Proposition 7, the BSVI can be reduced to a family of ordinary differential
equations in which the starting data (given at final time) is given iteratively. Therefore, in this
subsection we turn our attention to the solvability of such reflected differential inclusions. To
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this purpose, let us freeze the regular domain O of a (ρ, β)-semiconvex function ϕO satisfying the
assumption (AO). The inclusion has the form:

(14)

 −dy (t) +H(t, y (t))∂−ϕO (y (t)) dt 3
∫
E
f (t, γ′, y (t)) ν (dt, dγ′) ,

y (T ) = η,

where ν stands for the compensator p̂. Throughout the remaining of the section and unless stated
otherwise, the function f : R+ × E × Rm −→ Rm is assumed to be globally continuous, bounded
and Lipschitz continuous in space, uniformly with respect to the time and γ ∈ E. Moreover, due
to the particular form of our p̂, the measure ν is assumed to be positive, and ν (dt, E) to have a
bounded Radon-Nikodym derivative with respect to the Lebesgue measure on [0, T ] .

Let us now give a precise definition of the notion of solution we are going to employ in connection
to the previous ordinary differential inclusion.

Definition 8 A solution of (14) consists of a couple (y, k) satisfying simultaneously the following:

(i) 1. The function y ∈ C ([0, T ] ;Rm) is continuous and for Leb -almost all t , y (t) ∈ O.
2. The application [0, T ] 3 t 7→ ϕO (y (t)) is integrable w.r.t. Lebesgue measure.

(ii) 1. The function k ∈ L2 ([0, T ] ;Rm) is square integrable w.r.t. Lebesgue measure.
2. For Leb−almost all t ∈ [0, T ], one has k (t) ∈ ∂−ϕO (y (t)) .

(iii) The equality y (t) +

∫ T

t
H (s, y (s)) k (s) ds = η +

∫ T

t

∫
E
f (s, γ′, y (s)) ν (ds, dγ′) ,

holds true, Leb−almost everywhere.

Remark 9 Condition (ii) is equivalent to asking that, for every, 0 ≤ s ≤ t ≤ T and every
Rm−valued, continuous function x ∈ C([0, T ] ;Rm), one has∫ t

s
〈x (r)− y (r) , k (r)〉 dr +

∫ t

s
ϕO (y (r)) dr

≤
∫ t

s
ϕO (x (r)) dr +

∫ t

s
|x (r)− y (r)|2 (ρ+ β |k (r)|) dr.

For further details, the reader is referred to [41].

The following result gives the existence and uniqueness of solutions to the deterministic equation
(14).

Theorem 10 We assume (AO) and (AH) to hold true (where Oγ is replaced with O). Then, for
every η ∈ O, there exists an unique couple of deterministic functions (y, k) ∈ C([0, T ] ;Rm) ×
L2 ([0, T ] ;Rm) which satisfies (14), in the sense of Definition 8.

The proof relies on the penalization of the multivalued operator ∂−ϕO. For our readers’ sake,
we give the main arguments in Section 5. The basic idea is to start with providing convenient
estimates on the approximating solutions. The estimates are much like those in [41, Theorems 7
and 8] and they provide local solutions. For our bounded framework, the solution and estimates
are global. To conclude, one passes to the limit on these penalized equations. Both the estimates
and the method employed to prove the result are of particular relevance for the next section.

4 Targeted Design

In the previous paragraphs, the jump mechanism has been constructed starting from given λ and
Q and with a given driver f. In our phage model, this hybrid mechanism is essentially governed by
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the reaction speeds k. Nevertheless, these speeds can be altered in various ways. To give a simple
example, the reaction constants in [17] in simulations vary with the choice of the product half time
denoted Tp (1h, 2h, 4h, etc.) and the stability of the regime (e.g. 4 ln 2

Tp for slow-unstable, 40 ln 2
Tp for

fast-unstable, etc.).

Therefore, we consider our differential mechanism to be governed by an exogenous control
parameter that can be associated to temperature and/or catalysts conditions. Then, the con-
struction of the differential component is given by a driver depending on a predictable control
process u. From now on, we let U be a compact metric space and assume that the driver function
f : R+ × E × E × Rm × Rm × U −→ Rm is globally continuous, bounded and there exists some
constant c > 0 such that

(A′F )
∣∣f(t, γ, γ′, y, z, u)− f(t, γ, γ′, y′, z′, u)

∣∣ ≤ c(|y − y′|+ |z − z′|),
for all (t, γ, γ′, y, y′, z, z′, u) ∈ R+ × E × E × R4m × U. To show the relevance of our approach, let
us turn our attention to a simple example.

4.1 A Simplified Workout Example

Starting from the initial system, we consider the linearized version of the deterministic dynamics
by leaving aside the quadratic term and introduce a control parameter u to govern transcription :

dX1

dt
= f1 (Γt, X, u) := −kdX1 + 2k−1X2 +Ru1Γt=e2 ,

dX2

dt
= f2 (Γt, X) := −k−1X2.

Boundedness of the Domain(s). We pick kd = 3, k−1 = k±3 = k±4 = 1, R = 1, u ∈ [0, 1] .
It is easy to see that, for all (x1, x2) ∈ [0, 1]2,

f1

(
γ,

(
1
x2

)
, u

)
≤ 0, f1

(
γ,

(
0
x2

)
, u

)
≥ 0, f2

(
γ,

(
x1

0

)
, u

)
= 0, f2

(
γ,

(
x1

1

)
, u

)
≤ 0.

It is, therefore, obvious that the set [0, 1]2 is forward-invariant. An alternative to these considera-
tions is to apply invariance results (given w.r.t. normal cones in [28], for instance).

To simplify the arguments, we assume that the lysogenic domains are mode-independent and
given by O :=

{
(x1, x2) ∈ [0, 1] : x2

1 + x2
2 ≥ 1/25

}
. We also consider normal reflection.

Minimal and Maximal Transcription. When u = 0, it is clear that the (unreflected) couple

repressor/dimer is given by Xt =

(
e3(T−t) e(T−t) − e3(T−t)

0 e(T−t)

)
XT . A simple glance at the eigen-

values leads to the conclusion that the dynamics are expansive in the sense that the distance to the
origin increases and exceeds |XT | . Hence, any solution which starts (at time T ) in O can never
get to the lysis region

{
(x1, x2) ∈ [0, 1] : x2

1 + x2
2 < 1/25

}
. However, according to our model, the

solution can exist only for as long as |Xt| ≤ 1. The reflection will keep the solution in O but the
time of infection in this case is obtained by observing the ”occupation” of the frontier |x1|∨|x2| = 1.
Moreover, except for deterministic final data, the BSDE has a non-zero Z. This is rather obvious,
since, for this choice of u, the system does not change the vector field at switches.

For u = 1, let us consider the case of (at most) two jumps starting from the DNA configuration
γ0 = 1. Our DNA model gives a transition matrix

Q =


0 1

2
1
2 0

1
2 0 0 1

2
1 0 0 0
0 1 0 0

 .
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It is, therefore, obvious that the law of Γ1 under P1 is given by 1
2δ2 + 1

2δ3. Solving the backward
equation on (T2, T ] from a deterministic final data η ∈ O gives (thanks to Proposition 7),
◦ ξ0 = ξ1 = ξ2 = η, y2 (e2, ·) = η, ξ1,+

adm = η.
◦ On Γ1 = 2, y1 (e1, t) is the solution of the reflected equation and, prior to t0, which is the hitting

time of B (0, 1/5), y1 (e1, t) =

( (
η1 − η2 − 1

3

)
e3(T−t) + η2e

T−t + 1
3

η2e
T−t

)
1t≥t0 .

◦ On Γ1 = 3, y1 (e1, t) =

(
(η1 − η2) e3(T−t) + η2e

T−t

η2e
T−t

)
.

◦ Finally, y0 (1, ·) has the same expression as y1 on Γ1 = 3.
For obvious reasons (the reflected solution being nonlinear), we do not compute this solution

explicitly but give the comparison between the reflected form and the one in which reflection does
not occur. The numerical approximation of y1 on Γ1 = 2 is illustrated in Fig. 3. Note that
transcription is at high level. Thinking backwards, the only possibility for the repressor not to
reach the interior of lytic domain is to be compensated by the dimer. For our choice of parameters,
the solution is kept (locally in time) on the boundary (until it can be pushed in the interior of the
lysogenic domain).
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Fig 3. Reflected and non-reflected solution for PRM (2)

Comments. In both cases, there are some drawbacks. In the first case (u = 0), the Z compo-
nent is non-zero and, hence, we do not actually get a continuously switching protein concentration.
In the second one, the reflected solution has a ”high concentration” on the boundary of the lytic
domain. This means that alert flags are triggered at host level which should, normally lead to
excision (instead of the equation we have solved backwards). These case studies show that an equi-
librium should be envisaged concerning transcription. In other words, we should pick ”the best” u
by convexifying the control space (at least by allowing u ∈ [0, 1]) and looking at the time and space
occupied by Z and/or Y on the frontier of the domain.

4.2 Occupation measures

Using the previous intuition, we are going to introduce the linear programming formulations in
connection to these problems. For more details on the subject and the link between the linear
formulations and the classical control problems in forward dynamics, the reader is referred to [24]
(deterministic setting), [6], [9], [36], [37], [42], [45] [12] (various stochastic settings), [23], [29] or [18]
(for the more general PDMP processes). To our best knowledge, although extensively employed in
forward problems, this is the first time one employs occupation measures in connection to backward
problems.
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To fully understand the considerations of this section, the reader is invited to take a look at
the proof of Theorem 10. The basic idea is the following. To solve the BSVI, one replaces ϕ with

inf-convolutions of type ϕε(x) := infy∈Rm
{

1
2ε |x− y|

2 + ϕ (y)
}
, for x ∈ Rm and ε > 0. To every

such penalized solution corresponding to a predictable control, one can associate a measure taking
into account all the components: time, accessible mode, occupation of the space (given by Y )
and corrective term (Z) as well as the control. A further variable takes into account the gradient.
These measures are shown (in the proof of Proposition 11) to satisfy convenient compactness criteria
and exhibit a support condition related to the subgradient. Itô’s formula provides a linear-type
restriction of these measures. Finally, to facilitate passage to the limit in penalizations, we give a
(support) condition related to the distance to the lysogeny domains.

The reader is invited to note that the solution Y T,ξ,u belongs to O := (∪γ∈EOγ)∪ {∆} . There-

fore, under the boundedness assumption on the domains, Y T,ξ,u
t ∈ B (0, C)∪{∆} , for some generic

constant C. This constant can be chosen independent of the penalization and is given by our data
(cf. Remark 15). Similar assertions hold true for the Z component. To see this, it is necessary to
look at (15) in the next section. Motivated by the approach in the forward setting (cf. [29]) as well
as the singular perturbations setting in [30], we introduce the following sets

E∆,t,T := [t, T ]× E2 × ((B (0, C)× Rm) ∪ (∆× {0}))× B (0, 2C + |∆|)
Θε (t, T, ξ) :=

µ ∈ P(B (0, C) ∪ {∆})× P(E∆,t,T × U),

∀φ ∈ C1,2
b ([t, T ]× Rm) ,

Eγ0 [φ (T, ξ)] =
∫
Rmφ (t, y)µ1 (dy)

+
∫
E∆,t,T 〈∇yφ (s, y1) , H (s, y1) y2〉µ2 (dsdγ′dγdy1dy2dz, U)

−
∫
E∆,t,T×U 〈∇yφ (s, y1) , f(s, γ′, γ, y1, z, u)λ (γ)Q (γ, {γ′})〉µ2 (dsdγ′dγdy1dy2dzdu)

+
∫
E∆,t,T (∂tφ (s, y1) + φ (s, y1 + z)− φ (y1))λ (γ)Q (γ, {γ′})µ2 (dsdγ′dγdy1dy2dz, U) ,

Supp
(
µ2
)
⊂

{
(s, γ′, γ, y1, y2, z, u) : ∀a ∈ Rm,
〈a− y1, y2〉+ ϕεOγ (y1) ≤ ϕεOγ (a) + (ρ+ β |y2|) |a− y1|2

}
∫
E∆,t,T

(
d2
Oγ ∧ 1

)
(y1)µ2 (dsdγ′dγdy1dy2dz, U) ≤ Cε∫

E∆,t,T |y2|2 µ2 (dsdγ′dγdy1dy2dz, U) ≤ C.


The link between these sets and the actual solution of our initial problems will appear explicitly

in the proofs. For now, all one needs to know is the following.

Proposition 11 Let us fix ε > 0, the time horizon T > 0, 0 ≤ t ≤ T and the final data ξ. Then,
the family Θε (t, T, ξ) is non-empty, convex and compact (with respect to the usual topology on the
space of probability measures).

As explained before, we embed the solutions of our (approximating) BSDE into a measure.
The linear restriction is a mere reformulation of Itô’s formula. The support condition is linked to
gradients. The distance to lysogeny domains follows from the estimates on approximating solutions
as do the second order moments (guaranteeing compactness). We postpone the proof to Section 5.

Second, following the approximating construction of solution to the initial problem (1) (see
proof of Theorem 10), one considers the lower limit of sets

Θ0 (t, T, ξ) = lim inf
ε→0

Θε (t, T, ξ) .

Admit, for the time being (the actual proof is given afterwards) that the solutions to the initial
BSVI (with control) can be seen as elements of the limit set Θ0 (t, T, ξ) . Then one is entitled
to ask oneself if these solutions also enjoy similar properties (regularity, support and linear-type
restriction). This is, indeed, the case as summarized by the following result.
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Theorem 12 (i) (convexity and compactness) The set Θ0 (t, T, ξ) is a non-empty, convex and
compact subset of P(B (0, C) ∪ {∆})× P(E∆,t,T × U) and, for every µ = (µ1, µ2) ∈ Θ0 (t, T, ξ) ,∫

E∆,t,T×U

|y2|2 µ2
(
dsdγ′dγdy1dy2dzdu

)
≤ C.

(ii) (support and subdifferential) Every measure µ =
(
µ1, µ2

)
∈ Θ0 (t, T, ξ) satisfies the

support condition

Supp
(
µ2
)
⊂
{(
s, γ′, γ, y1, y2, z, u

)
: y1 ∈ Oγ , y2 ∈ ∂−ϕOγ (y1)

}
.

(iii) (linear constraint) Every limit measure
(
µ1, µ2

)
∈ Θ0 (t, T, ξ) satisfies

Eγ0 [φ (T, ξ)]

∈
∫
Rm
φ (t, y)µ1 (dy)

+lim inf
ε→0

{∫
E∆,t,T×U

〈∇yφ (s, y1) , H (s, y1) y2〉 η2 (dsdγ′dγdy1dy2dzdu) : η ∈ Θε (t, T, ξ)

}
−
∫
E∆,t,T×U

〈∫
E f(s, γ′, γ, y1, z, u)λ (γ)Q (γ, dγ′)

〉
µ2 (dsdγ′dγdy1dy2dzdu)

+

∫
E∆,t,T×U

(∂tφ (s, y1) + φ (s, y1 + z)− φ (y1))λ (γ)Q (γ, {γ′})µ2 (dsdγ′dγdy1dy2dzdu) .

Remark 13 (i) This kind of relaxation has been recently employed in order to characterize Pon-
tryagin-type optimality criteria in forward Brownian settings. To this purpose, the interested reader
is referred to [30].

(ii) In the convex setting, whenever the functions ϕO have at most quadratic growth, using
the gradient estimates in [27, Proposition 4.3], one gets supy2∈∂ϕO(y1) |y2| ≤ c (1 + |y1|) , for some
constant c > 0. In this framework, one can replace

lim inf
ε→0

{∫
E∆,t,T×U

〈∇yφ (s, y1) , H (s, y1) y2〉 η2
(
dsdγ′dγdy1dy2dzdu

)
: η ∈ Θε (t, T, ξ)

}
with the term ∫

E∆,t,T×U
〈∇yφ (s, y1) , H (s, y1) y2〉µ2

(
dsdγ′dγdy1dy2dzdu

)
.

Yet another way of writing the linear constraint condition would be to study the asymptotic behavior
of the Rm-valued vector measures with uniformly-bounded variation

y2µ
ε,2
(
dsdγ′dγdy1dy2dzdu

)
, where µε =

(
µε,1, µε,2

)
∈ Θε (t, T, ξ) .

The proof of the theorem is postponed to Section 5.

Conclusions To conclude the section, in order to design the best fitting model for our pathogen/
host system, one could proceed as follows. First, identify the desired target behavior (i.e. ξ).
Next, among the (relaxed) measures in Θ0 (t, T, ξ) , select those who best fit your purpose. To
come back to the comments on our linearized model, if one wishes to avoid jumps on the pro-
tein concentration, one has to minimize

∫
E∆,t,T×U |z|µ

2 (dsdγdy1dy2dzdu) (recall that continuous
switch is given by z = 0 support). To get the largest activity (lysogeny) time, one maximizes∫
E∆,t,T×U s1y1 6=∆µ

2 (dsdγdy1dy2dzdu) . To maximize coherence of the model, one should occupy
the boundary of the lysogenic domain as little as possible, which leads to minimizing the quan-
tity

∫
E∆,t,T×U 1y1∈Bd(Oγ)µ

2 (dsdγdy1dy2dzdu) . These problems exceed the purpose of the present
article. However, since we have nice regularity of the constraints domain Θε (t, T, ξ) , one simply
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passes to the Fenchel dual (see [28] or [30] for forward PDMP or singular perturbations settings).
Optimality conditions can then be obtained as in [30].

However, while in the forward case these sets of constraints are shown to be the closed convex
hulls of occupation measures, this is less known under the present framework. We are still search-
ing a method adapted to this case (Krylov-like shaking the coefficients followed by mollification
arguments as in the forward case is envisaged).

Further generalizations may benefit from the piecewise diffusive switched framework in [35]
(replacing the approach in [16]). This would allow treating mesoscopic models in which a second-
order approximation (based on the central limit theorem instead of the law of large numbers)
appears (similar to [3]). Nevertheless, technical difficulties appear on the predictable component
of the inter-jumps Brownian driven BSVI and global estimates (as in proof of Theorem 10) are far
from obvious.

Finally, we wish to emphasize that the special assumptions on the mode component (Γ) allows
one to use the techniques of [16] and reduce the BSVI to a system of ordinary differential inclusions.
This is a key point for the proofs. In all generality, the jump parameter λ is computed as a propensity
function and may depend on all the components (see, for example, [20]). In this case, the Marked
point mechanism is quite different changing with the control input and one should use a relaxed
framework.

5 Proofs of the Results in Sections 3 and 4

This section gathers all the proofs of the results in Sections 3 and 4.

5.1 Proof of Proposition 7

We begin with providing the elements of proof for the equivalence between the BSVI (1) and the
system of ordinary differential inclusions (13). The proof strongly relies on the structure properties
mentioned in Subsection 3.2.1. The idea is to associate a specific form to the jump component ZT,ξ

and plug it into the driver written as in Subsection 3.2.1.
Proof of Proposition 7. We begin our proof with noting that if Y T,ξ = (yn) is a solution to the
initial system (1), then the jumps only occur at times Tn ≤ T and

Y T,ξ
Tn
− Y T,ξ

Tn− = ZT,ξTn
(ΓTn) .

On the other hand, for every n ≤M − 1, recalling (11), it follows that

ZT,ξTn+1

(
ΓTn+1

)
= yn+1

(
en ⊕

(
Tn+1,ΓTn+1

)
, Tn+1

)
− yn (en, Tn+1) .

This equality, as well as those following are understood as everywhere except a Pγ0-null set. Since
we will be dealing with a finite family (for n ≤ M), taking the union of such sets gives us yet
another Pγ0-null set. We recall that the process ZT,ξ has to be progressively measurable such that
a version of the process ZT,ξ is defined by setting

(15) zn (e, t, γ) := yn+1 (e⊕ (t, γ) , t) 1t>|e| − yn (e) .

It is then obvious (see also [16]) that, on the stochastic interval s ∈ (Tn, Tn+1] , one has

f(s, γ,Γs−, Y
T,ξ
s− , ZT,ξs ) = f(ŷn+1)n (s, γ, yn (en, s) ,−yn (en, s)) ,

where ŷn+1 is given by (12).
We prove that any solution of the BSVI (1) satisfies the system of ordinary differential inclusions

(13). The converse is quite similar and makes use of the same elements of proof. If n = M, one has
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Tn+1 =∞, Pγ0-almost everywhere on Ω and the compensator satisfies the (∞, γ)-support condition
in (8). This easily implies the terminal condition on yM .

On Tn ≤ t < Tn+1, one has

Y T,ξ
t +

∫ Tn+1∧T

t
KT,ξ
s ds = Y T,ξ

Tn+1−1Tn+1≤T + ξ1Tn+1>T +

∫ Tn+1∧T

t
f(s, γ,Γs−, Y

T,ξ
s− , ZT,ξs )p̂ (ds, dγ) ,

if Y T,ξ
Tn+1− 6= ∆. If Y T,ξ

Tn+1− = ∆, then, by definition, (Y T,ξ
t ,KT,ξ

t ) = (∆, 0) on t < Tn+1. Moreover,

f (·, ·, ·,∆, ·) is null such that the previous equality is trivially satisfied. Then, except on a Pγ0−null
set, recalling that we have introduced (15), (12) and using the notations in Section 3.2.1, one gets

yn (en (ω) , t) +

∫ Tn+1(ω)∧T

t
H (s, yn (en (ω) , s)) kn (en (ω) , s) ds

= yn (en (ω) , Tn+1 (ω)) 1Tn+1(ω)≤T + ξn (en (ω)) 1Tn+1(ω)>T

+

∫ Tn+1(ω)∧T

t

∑
γ∈E

f(ŷn+1)n (s, γ, yn (en (ω) , s) ,−yn (en (ω) , s)) q̂nen(ω) (ds, {γ}) .

(The reader will want to note that Y T,ξ
Tn+1− 6= ∆ implies that Y T,ξ

t 6= ∆ on Tn+1 ≤ t.) We can

actually write this equality for every t. Indeed, due to (6), (5) one freezes yn for t ≤ Tn (ω) and
everything is set to 0 if T < Tn (ω) i.e.{

yn (en (ω) , t) = yn (en (ω) , Tn (ω)) , if t ≤ Tn (ω) and

ξn (en (ω) , t) = yn (en (ω) , t) = 0, whenever T < Tn (ω)

and recall the support conditions on the compensator (8). This gives our claim.

5.2 (Elements of) Proof of Theorem 10

To prove Theorem 10, one uses a penalizing approach similar to the classical Moreau-Yosida-Brézis
one for the convex context. For more details, the reader is referred to the comprehensive studies
in [11] or [4]. Recently, the authors of [41] have developed a penalization approach to multivalued
differential equations with generalized reflection in a nonconvex setting.

The equations that make the object of our framework (and those appearing in [41]) cannot be
tackled by the semigroup operators theory because of the particular structure of the multivalued
term. Indeed, mixing a reflection matrix and a monotone operator (such as the subdifferential)
leads to losing both monotonicity and Lipschitz properties of its constituent parts.

Whenever ϕ : Rm → (−∞,+∞] is a lower semicontinuous function such that, for some a, b, c ≥ 0
one has

ϕ (y) + a |y|2 + b |y|+ c ≥ 0,

for all y ∈ Rm, we introduce, for ε > 0, the usual inf-convolution

ϕε(x) := inf
y∈Rm

{
1

2ε
|x− y|2 + ϕ (y)

}
,

for all x ∈ Rm. The following proposition summarizes the main properties of inf-convolutions in a
semiconvex setting. These results are borrowed from [41] and will turn out to be very useful in the
study of (14). To summarize, one gets a neighborhood of the domain of ϕ on which the infimum
giving the inf-convolution is attained. The minimizing argument is unique and belongs to Dom (ϕ) .
Convenient local estimates on the gradient of the penalization are given as well as links with the
Fréchet subdifferential at the projection point. More precisely, we have:

18



Proposition 14 If 0 < ε < 1
2a , then, for every x ∈ Rm, there exists xε ∈ Dom (ϕ) such that

(16)
1

2ε
|x− xε|2 + ϕ (xε) = ϕε(x).

Moreover, the following assertions hold.

(i) Jε (x) := xε ∈ Dom (∂−ϕ) and Aε (x) :=
1

ε
(x− xε) ∈ ∂−ϕ (xε).

(ii) For all x ∈ Rm, x0 ∈ Dom (ϕ) and all 0 < ε < 1
4a+1 , the following inequality holds true

(17) |Jε (x)− x|2 ≤ 1

1− ε (4a+ 1)
|x− x0|2 +

4ε

1− ε (4a+ 1)

[
β (|x|) + b2 + ϕ(x0)

]
,

where β (r) = ar2 + br + c. In particular, Jε and Aε are globally sublinear functions for 0 < ε ≤
1/(4a+ 2), i.e.

|Jε(x)| ≤ C(1 + |x|), |Aε(x)| ≤ C

ε
(1 + |x|), ∀x ∈ Rm, where C = C(a, b, c, x0).

Moreover, if x ∈ B (x0, r0), r0 > 0, then

|Jε (x)− x| ≤ (r0 +
√
εC0)(1− ε (4a+ 1))−1/2,

where C0 = 2
√
β (r0 + |x0|) + b2 + ϕ(x0). Also, taking x = x0 in (17), we get

limε→0 Jε (x0) = x0, ∀x0 ∈ Dom (ϕ) and Dom (∂−ϕ) = Dom (ϕ) = Dom (ϕ).

(iii) In addition to its lower semicontinuity property, assume ϕ to be (ρ, β)-semiconvex. We fix
x0 ∈ Dom(ϕ) and λ0 > 0. If we consider 0 < r0 ≤ r̄0 and 0 < ε ≤ ε̄0, with

(18) r̄0 :=
1

36

(
λ0

1 + λ0

)2 1

(1 + (ρ+ β)λ0)2 and ε̄0 :=
1

4a+ 2
∧ 1− r0

4a+ 1
∧
√
r0 ∧

r2
0

1 + C2
0

,

where C0 = 2
√
β (r0 + |x0|) + b2 + ϕ(x0), then, for all x, y ∈ B (x0, r0), it follows

(19) |Jε (x)− Jε (y)| ≤ (1 + (ρ+ β)λ0) |x− y| and |Aε (x)−Aε (y)| ≤ 2 + (ρ+ β)λ0

ε
|x− y| .

In particular, the minimizing point Jε (x) (= xε) of infy∈Rm
{

1
2ε |x− y|

2 + ϕ (y)
}

is unique for

0 < ε ≤ ε̄0 and x ∈ B(Dom (ϕ) , r̄0). Moreover, ϕε ∈ C1(B(Dom (ϕ) , r̄0)) and ∇ϕε (x) =
Aε (x) ∈ ∂−ϕ (Jεx). Moreover, ∇ϕε and Jε are Lipschitz functions on every bounded subset of
B(Dom (ϕ) , r̄0) and int (Dom (ϕ)) = int (Dom (∂−ϕ)).

Proof. The interested reader can consult the complete proof of these technical results in [41,
Proposition 4].

We are now able to give the main steps in the proof of Theorem 10 by hinting the main
differences with respect to [41, Theorem 7]. Besides providing the reader with key elements, the
proof is important for the developments on occupation measures. It is based on a penalization
approach for the multivalued operator ∂−ϕO. However, since ∇ϕεO is not defined on the entire
space we must use a specific technique for this nonconvex setup, technique which is imposed also
by the presence of the perturbing matrix H. For more details, the interested reader can consult
[41, Theorem 7, Theorem 8].

Proof of Theorem 10. Let us fix η ∈ O = Dom (ϕ) . We recall that the positive quantities ε̄0

and r̄0 have been introduced in Proposition 14.
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Step 0. Approximating equations. We fix 0 < r0 <
r̄0
4 . One fixes a Lipschitz function α : Rm →

[0, 1] such that

α(x) =

{
1, if dO (x) ≤ r̄0

3 ,

0, if dO (x) > r̄0
2 .

Next, one introduces the approximating equations, holding for Leb-almost all t ∈ [0, T ].

(20) yε (t) +

∫ T

t
H(r, yε (r))α(yε (r))∇ϕεO(yε (r))dr = η +

∫ T

t

∫
E
α(yε (r))f(r, γ′, yε (r))ν

(
dr, dγ′

)
.

The presence of the truncation α makes the integrand of the first integral correctly defined on
the entire space (the reader may want to take a look at Proposition 14). It is clear that the set
B (O, r̄0/2) is invariant with respect to (20). One may also want to note that the integrand function
Ψε(r, yε (r)) := H(r, yε (r))α(yε (r))∇ϕεO(yε (r)) is represented as

Ψε(r, yε (r)) =


H(r, yε (r))∇ϕεO(yε (r)), yε (r) ∈ B

(
O, r̄03

)
,

H(r, yε (r))α(yε (r))∇ϕεO(yε (r)), yε (r) ∈ B
(
O, r̄02

)
\B
(
O, r̄03

)
,

0, yε (r) /∈ B
(
O, r̄02

)
.

We emphasize that, in [41, Theorem 7], without the boundedness and closure of the domain, the
authors provided first a local solution. Then, by adding the additional hypothesis on the domain,
it was extended to a global solution. In our context, one can directly deduce that we have a global
solution yε for Eq.(20), solution which belongs to C([0, T ] ;B (O, r̄0)).

Step 1. Estimates. The a priori estimates obtained, for the reversed time, in [41, Theorem 7,
Estimates (28)] lead to:

(21)


supt∈[0T ] ϕ

ε
O(yε (t)) +

∫ T

0
|∇ϕεO(yε(s))|2ds ≤ C(r0),∫ T

0
|yε(s)− Jε(yε(s))|2ds ≤ C(r0)ε and supt∈[0,T ] |∇ϕεO(yε(t))| ≤

2C(r0)√
ε

,

where C(r0) is a positive constant, independent of ε. The cited result in [41, Theorem 7] relies on
local estimates (in particular C is a local constant) but, in our framework, we use (AO) to get a
global constant C (r0).

Step 2. Limit equation. As usual for these approximating techniques, the next step consists in
proving Cauchy behavior of the family of solutions and use the topological properties of the space
C([0, T ] ;B (O, r̄0)). Under the assumption of absolute continuity w.r.t the Lebesgue measure, one
disintegrates the measure ν (dt, dγ′) = νt (dγ′) dt and sets

g(t, y) :=

∫
E
f
(
t, γ′, y

)
νt
(
dγ′
)
,

for all t ∈ [0, T ] and all y ∈ RM . Next, one uses the chain differentiation rule for the (absolutely
continuous) function

Φε,δ (r) = 〈Mε,δ (r) (yε (r)− yδ (r)), yε (r)− yδ (r)〉 = |M1/2
ε,δ (r)(yε (r)− yδ (r))|2,

where, for 0 < ε, δ < ε̄0, Mε,δ (r) := [H(r, yε (r))]−1 + [H(r, yδ (r))]−1. We obtain, for every
0 ≤ s ≤ t ≤ T ,

Φε,δ (t) = Φε,δ (s) +

∫ t

s
[〈(αε,δ (r) dyε (r) + α̂ε,δ (r) dyδ (r))(yε(r)− yδ(r)), yε(r)− yδ(r)〉

+2
〈
Mε,δ (r) (yε(r)− yδ(r)),−H(r, yε (r))∇ϕεO (yε (r)) +H(r, yδ (r))∇ϕδO (yδ (r))

〉]
dr

+2

∫ t

s
〈Mε,δ (r) (yε(r)− yδ(r)),

∫
E(f (r, γ′, yε (r))− f (r, γ′, yδ (r)))νr (dγ′)〉dr ,
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with αε,δ, α̂ε,δ : R+ → L(Rm;Rm×m) two measurable functions, bounded by a constant independent
of the processes yε and yδ. Arguing similar to [41, Theorem 7, Page 95] and recalling that f is
bounded, we deduce that

Φε,δ (t) ≤ Φε,δ (s) + C

∫ t

s
|yε − yδ|2

(
C + |H (yε)| |∇ϕεO (yε)|+ |H (yδ)| |∇ϕδO (yδ) |

)
dr

+ 2

∫ t

s

〈
yε − yδ, ([H (yε)]

−1 − [H (yδ)]
−1)

[
H(yε)∇ϕεO (yε) +H(yδ)∇ϕδO (yδ)

]〉
dr

+ 4

∫ t

s

(
3 |yε − yδ|2 + 3ε |∇ϕεO (yε)|2 + 3δ|∇ϕδO (yδ) |2

)(
2ρ+ β |∇ϕεO (yε)|+ β|∇ϕδO (yδ) |

)
dr

+ 4

∫ t

s

(
ε |∇ϕεO (yε)|2 + δ|∇ϕδO (yδ) |2 + (ε+ δ) 〈∇ϕεO (yε) ,∇ϕδO (yδ)〉

)
dr

+ C

∫ t

s
([H (yε)]

−1 + [H (yδ)]
−1) |yε − yδ|2 dr.

The reader may want to note that we have dropped the dependence on r in the solutions y and in
H. These terms should, obviously, be read yε (r) , H(r, yε (r)), etc. To conclude, one simply plugs
in the estimates (21) in order to get

• ε
∫ t

s
|∇ϕεO (yε(r))|3 dr ≤ ε supτ∈[s,t] |∇ϕεO(yε(τ))|

∫ t

s
|∇ϕεO (yε(r))|2 dr ≤

√
εC(r0),

• ε
∫ t

s
|∇ϕεO (yε(r))|2

∣∣∇ϕδO (yδ(r))
∣∣ dr = 2

√
εC(r0)

∫ t

s
|∇ϕεO (yε(r))|

∣∣∇ϕδO (yδ(r))
∣∣ dr

≤
√
εC(r0)

(∫ t

s
|∇ϕεO (yε(r))|2 dr

)1/2(∫ t

s

∣∣∇ϕδO (yδ(r))
∣∣2 dr)1/2

≤
√
εC(r0).

Finally, by passing to limit as ε→ 0, we deduce the existence of a pair (y, k), which is a solution
for Eq.(14) on [0, T ]. The uniqueness follows patterns similar to these estimates and is omitted.

Remark 15 A careful look at [41, Theorem 7 Eq. (24-26, 28, 29)] shows that the constant C(r0)
only depends on r0, cH , sup

x∈O
|ϕO (x)| , the bound and the Lipschitz constant of f (but not on f itself !)

and T. Therefore, it takes the form K

(
1 + r0 + cH + sup

x∈O
|ϕO (x)|+ sup

x
|f (x)|+ sup

x 6=y

|f(x)−f(y)|
|x−y| + T

)
.

5.3 Proofs of the Results of Section 4

We give the proof of the linear formulations associated to the ε-approximating problems.
Proof of Proposition 11. We begin with proving that this set is non-empty. For simplicity
reasons, we assume that the domain O is switch-invariant (i.e. O does not depend on γ ∈ E). The
general result follows similar patterns and relies on the solution of the approximating problem

(22)


−dY ε,T,ξ,u

t +H(t, Y ε,T,ξ,u
t )∇ϕεOΓt−

(Y ε,T,ξ,u
t )dt

=

∫
E
f(t, γ′,Γt−, Y

ε,T,ξ,u
t− , Zε,T,ξ,ut (γ) , ut)q̂ (dt, dγ′)−

∫
E
Zε,T,ξ,ut (γ′)q(dt, dγ′),

Y ε,T,ξ,u
T = ξ ∈ L0 (Ω,FT ,Pγ0 ;Rm) .

Under this switch-invariance of the domain assumption, ∇ϕεO is Lipschitz on B(O, r̄0) and we
assume ξ ∈ L0 (Ω,FT ,Pγ0 ;O) . The equation can be considered on the entire space by multiplying
H and f with the function α appearing in Step 0 of the proof of Theorem 10. Then, one applies
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[16] to get the existence and uniqueness of the solution to (22). Moreover, due to [16], the càdlàg
adapted process Y ε,T,ξ,u = (yε,n) satisfies
(23)

yε,M (eM (ω) , t) = ξM (eM (ω)) and, for all n < M,

−dyε,n (en (ω) , t) +H (t, yn (en (ω) , t))∇ϕεO (yε,n (en (ω) , t)) dt

=
∑
γ∈E

f(ŷε,n+1)n (en (ω) , s, γ′, yε,n (en (ω) , s) ,−yε,n (en (ω) , s) , un (en (ω) , s)) q̂nen(ω) (ds, {γ′}) ,

yε,n (en (ω) , T ) = ξn (en (ω)) .

In particular, yε,M ∈ B(O, r̄0) ⊂ B (0, C(r0)) and the estimates (21) hold true. Moreover, the
process Zε,T,ξ,u = (zε,n) is given (as in (15)) by

zε,n (e, t, γ) := yε,n+1 (e⊕ (t, γ) , t) 1t>|e| − yε,n (e) .

Hence, zε,n is B (0, 2C(r0))-valued. (In the general case, yε,n (e) might be replaced by ∆ such that
zε,n is B (0, 2C(r0) + |∆|)-valued). One defines the occupation measure

µu(·)
ε ∈ P

(
B (0, C(r0))

)
× P

(
[t, T ]× E2 × B (0, C(r0))× Rm × B (0, 2C(r0))× U

)
by setting

µ
u(·),1
ε (A) = Eγ0

[
1A

(
Y ε,T,ξ,u
t

)]
,

µ
u(·),2
ε (B) = Eγ0

[∫ T

t
1B(s, γ′,Γs−, Y

ε,T,ξ,u
s− ,∇ϕεO(Y ε,T,ξ,u

s ), Zε,T,ξ,us (γ′), us)ds

]
,

for all Borel sets A ⊂ B (0, C(r0)) and B ⊂ [t, T ]×E2×B (0, C(r0))×Rm×B (0, 2C(r0))×U . Due
to Definition 4 and Proposition 14−(iii), by noting that (y1, y2) stands for (Y ε,T,ξ,u,∇ϕεO(Y ε,T,ξ,u),
one gets

Supp(µu(·),2
ε ) ⊂(24) {(

s, γ′, γ, y1, y2, z, u
)

: ∀p ∈ Rm, 〈p− y1, y2〉+ ϕεO (y1) ≤ ϕεOγ (p) + (ρ+ β |y2|) |p− y1|2
}
.

Moreover, the estimates (21) imply
(25)∫

E∆,t,T×U
d2
Oγ (y1)µ

u(·),2
ε (dsdγ′dγdy1dy2dzdu) ≤ supn

∫ T

0
|yε,n(s)− Jε(yε,n(s))|2ds ≤ C(r0)ε∫

E∆,t,T×U
|y2|2 µu(·),2

ε (dsdγ′dγdy1dy2dzdu) ≤ supn

∫ T

0
|∇ϕεO(yε,n(s))|2ds ≤ C(r0).

Finally, whenever φ ∈ C1,2
b ([t, T ]× Rm) , Itô’s formula applied to φ(·, Y ε,T,ξ,u

· ) on [t, T ] yields

Eγ0 [φ (T, ξ)]

= Eγ0

[
φ(t, Y ε,T,ξ,u

t )
]

+ Eγ0

[∫ T

t

〈
∇yφ(s, Y ε,T,ξ,u

s ), H(s, Y ε,T,ξ,u
s )∇ϕεO((Y ε,T,ξ,u

s )
〉
ds

]
− Eγ0

[∫ T

t

〈
∇yφ(s, Y ε,T,ξ,u

s ),

∫
E
f(s, , γ′,Γs−, Y

ε,T,ξ,u
s− , Zε,T,ξ,us

(
γ′
)
, us)λ (Γs−)Q

(
Γs−, dγ

′)〉 ds]
+ Eγ0

[∫
E
φ(Y ε,T,ξ,u

s− + Zε,T,ξ,us (γ′))− φ(Y ε,T,ξ,u
s− )λ (Γs)Q(Γs, γ

′)ds

]
.

Using the definition of µ
u(·)
ε , one simply gets the linear constraint in Θε (t, T, ξ). It follows that

each occupation measure µ
u(·)
ε ∈ Θε (t, T, ξ) .
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The convexity of Θε (t, T, ξ) is obvious.
Relative compactness w.r.t. the weak * topology of probability measures follows from the

second inequality in (25) by noting that all the other components are bounded and simply applying
Prohorov’s theorem. Finally, let us consider some sequence Θε (t, T, ξ) 3 µm ⇀ µ. We only need
to prove the support condition. To this purpose, we let

S :=
{(
s, γ′, γ, y1, y2, z, u

)
: ∀p ∈ Rm, 〈p− y1, y2〉+ ϕεO (y1) ≤ ϕεO (p) + (ρ+ β |y2|) |p− y1|2

}
.

This set is closed. Thus, 0 = lim inf
n

µ2
m (Sc) ≥ µ (Sc) . This completes our proof.

To end this section, we give the proof of Theorem 12 characterizing the (relaxed) occupation
measures associated to the BSVI (1). Before giving the proof of this theorem, we invite the reader
to note that if one passes to the limit as ε → 0 in (23) and looks at the proof of Theorem 10,
one gets a solution of (14). Then, one obtains the solution of (1). Therefore, the limits of the
occupation measures introduced before characterize (but may not be limited to) all the controlled
solutions of (1). This justifies our interest in the properties of such Θ0 (t, T, ξ).
Proof of Theorem 12. (i) Convexity and closedness follow immediately from the properties of the
approximating sets Θε (t, T, ξ). For details on limits of sets, the reader is referred to [2, Chapter 1,
Section 1.1]. To see that this limit set is non-empty, one simply recalls that the second order moment
inequalities in the definition of Θε (t, T, ξ) are uniform w.r.t. ε > 0. Then, one uses Prohorov’s
theorem (see, for example [7]). Finally, since the application E∆,t,T × U 3 (s, γ′, γ, y1, y2, z, u) 7→
|y2|2 is weakly lower semicontinuous, the moment estimate follows.

(ii) Whenever (µε ∈ Θε (t, T, ξ))ε>0 is a sequence converging to µ ∈ Θ0 (t, T, ξ) , one has∫
E∆,t,T×U

(
d2
Oγ ∧ 1

)
(y1)µε,2

(
dsdγ′dγdy1dy2dzdu

)
≤ C(r0)ε,

for all ε > 0. Therefore, passing to the limit as ε → 0 yields y1 ∈ Oγ , µ2 - almost everywhere on
E∆,t,T × U. To prove the second condition, we introduce the closed, convex sets

Sε :=
{(
s, γ′, γ, y1, y2, z, u

)
: ∀p ∈ Rm, 〈p− y1, y2〉+ ϕεOγ (y1) ≤ ϕOγ (p) + (ρ+ β |y2|) |p− y1|2

}
,

S :=

{
(s, γ′, γ, y1, y2, z, u) : y1 ∈ Oγ , ∀p ∈ Rm,

〈p− y1, y2〉+ ϕOγ (y1) ≤ ϕOγ (p) + (ρ+ β |y2|) |p− y1|2
}
.

One recalls that Supp(µε,2) ⊂ Sε. Second, Sε is increasing (as a set-valued function of ε) and

µ2 (Sc) = µ2

(
∪
ε>0
Scε
)
≤ lim inf

ε→0+
µε,2 (Scε) = 0.

(iii) One simply notes that the sets appearing in the right-hand side of condition (iii) are convex
and compact. This is a simple consequence of gradient inequalities in (21). The assertion follows
by passing to the limit as ε→ 0 in the equality constraints characterizing the sets Θε (t, T, ξ) . Our
proof is now complete.
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[11] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing
Co., Inc., New York, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática
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