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ABSTRACT

Body condition is an indirect estimation of the level 
of body reserves, and its variation reflects cumulative 
variation in energy balance. It interacts with reproduc-
tive and health performance, which are important to 
consider in dairy production but not easy to monitor. 
The commonly used body condition score (BCS) is 
time consuming, subjective, and not very sensitive. The 
aim was therefore to develop and validate a method 
assessing BCS with 3-dimensional (3D) surfaces of the 
cow’s rear. A camera captured 3D shapes 2 m from the 
floor in a weigh station at the milking parlor exit. The 
BCS was scored by 3 experts on the same day as 3D 
imaging. Four anatomical landmarks had to be iden-
tified manually on each 3D surface to define a space 
centered on the cow’s rear. A set of 57 3D surfaces from 
56 Holstein dairy cows was selected to cover a large 
BCS range (from 0.5 to 4.75 on a 0 to 5 scale) to cali-
brate 3D surfaces on BCS. After performing a principal 
component analysis on this data set, multiple linear 
regression was fitted on the coordinates of these sur-
faces in the principal components’ space to assess BCS. 
The validation was performed on 2 external data sets: 
one with cows used for calibration, but at a different 
lactation stage, and one with cows not used for calibra-
tion. Additionally, 6 cows were scanned once and their 
surfaces processed 8 times each for repeatability and 
then these cows were scanned 8 times each the same 
day for reproducibility. The selected model showed 
perfect calibration and a good but weaker validation 
(root mean square error = 0.31 for the data set with 
cows used for calibration; 0.32 for the data set with 
cows not used for calibration). Assessing BCS with 3D 
surfaces was 3 times more repeatable (standard error 
= 0.075 versus 0.210 for BCS) and 2.8 times more re-
producible than manually scored BCS (standard error 

= 0.103 versus 0.280 for BCS). The prediction error 
was similar for both validation data sets, indicating 
that the method is not less efficient for cows not used 
for calibration. The major part of reproducibility error 
incorporates repeatability error. An automation of the 
anatomical landmarks identification is required, first 
to allow broadband measures of body condition and 
second to improve repeatability and consequently re-
producibility. Assessing BCS using 3D imaging coupled 
with principal component analysis appears to be a very 
promising means of improving precision and feasibility 
of this trait measurement.
Key words:  body condition score, 3-dimensional im-
aging, principal component analysis, precision livestock 
farming

INTRODUCTION

Body condition assesses body reserves and is often 
used as an indirect indicator of reproduction and health 
status in dairy cattle management. Thin or fat cows are 
commonly known to be less efficient in reproduction 
with reduced success at first AI, longer calving-to-calv-
ing interval, and earlier return to heat cycles (Dechow 
et al., 2002; Berry et al., 2003). In the same way, body 
condition is correlated with health status (Ruegg and 
Milton, 1995), but the strength of this association de-
pends on the disease (Roche and Berry, 2006). Genetic 
selection enhances the genetic production potential of 
the dairy herd but weakens its reproductive and health 
performance. Improving the reproductive and health 
status of dairy cows while maintaining production is 
a central issue in dairy husbandry and justifies an in-
creasing interest in body condition phenotyping (Coffey 
et al., 2003; Pryce and Harris, 2006).

Major concern for selection is the difficulty in 
achieving accurate, objective, and high-throughput 
measurement of body condition in dairy cows. Body 
reserves can be recorded either directly by measuring 
the quantity of body lipids after slaughtering animals, 
or indirectly by measuring traits which are highly cor-
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related with lipid levels. Whole-body dissection is time-
consuming, cumbersome, expensive, and irreversible 
for broadband use (Szabo et al., 1999). Assessing body 
reserves indirectly has been largely analyzed: methods 
can be precise but time-consuming, expensive, and 
invasive, such as measuring adipocyte diameter or dif-
fusion space of deuterated water (Waltner et al., 1994). 
An imaging technique using ultrasonography offers new 
perspectives for achieving repeatable and noninvasive 
measures of body reserves, though they are not high-
throughput methods (Schröder and Staufenbiel, 2006). 
On the farm, body condition is usually based on scor-
ing, visually or by palpation, specific anatomic areas 
according to a chart. Body condition score appears as 
the cheapest and most practical method, though it suf-
fers from its subjectivity and low reproducibility for 
an individual monitoring. Small and rapid variations 
of body condition occur during the first half of lacta-
tion in dairy cows. However, these variations are hardly 
detected because scores for the same cow vary between 
scorers (Kristensen et al., 2006) and are not sufficiently 
reproducible (Pryce et al., 2014).

Imaging technologies have recently become more af-
fordable and their image quality and precision justify 
potential on-farm application. Therefore, few research 
groups (Ferguson et al., 2006; Bewley et al., 2008; Hal-
achmi et al., 2008, Negretti et al., 2008; Azzaro et al., 
2011; Bercovich et al., 2013; Weber et al., 2014) have 
attempted to automate BCS to achieve a more objec-
tive and less time-consuming method. Directly scoring 
body condition on 2-dimensional (2D) images is as ef-
ficient as standard BCS, but is still as subjective and 
labor consuming as the latter (Ferguson et al., 2006). 
Subsequently developed indirect methods aimed at re-
ducing time and labor consumption of body condition 
monitoring. The first step was to build an acquisition 
system capable of acquiring high-quality images at an 
affordable price and not too sensitive to environmental 
changes. The second step was to define the information 
to be extracted from images to be used to assess BCS. 
Methods developed by Bewley et al. (2008), Halachmi 
et al. (2008), and Negretti et al. (2008) did not use 
whole information kept in 2D images but extracted in-
dicators they assumed to be sensitive to BCS variation, 
such as angles, areas, or 2D shape of the rear.

Instead of using partial characteristics of the shape 
and keeping the rear shape in the common 2D space, Az-
zaro et al. (2011) and Bercovich et al. (2013) dealt with 
whole information kept in the rear shape. Azzaro et al. 
(2011) used principal component analysis (PCA) and 
Bercovich et al. (2013) compared partial least square 
regression (PLSR) and Fourier descriptors (FD). 
These 3 methods are efficient tools commonly used in 
shape processing (Vranic and Saupe, 2001; Allen et al., 

2003; Zion et al., 2007). Bercovich et al. (2013) con-
cluded that the best method was the model predicting 
BCS linearly from a few FD. The PCA learning method 
proposed by Azzaro et al. (2011) performed better on 
external validation than did methods using partial 2D 
information (Bewley et al., 2008; Halachmi et al., 2008) 
and PLSR or FD learning methods (Bercovich et al., 
2013). The main reason according to Bercovich et al. 
(2013) was that they could only focus on the tailhead 
area, whereas the hooks are important too (Edmonson 
et al., 1989). These results reflect that it is important to 
focus on the area going from the hook bones to the pin 
bones and to work with whole information previously 
compressed with factor extraction techniques (PCA, 
PLSR, and FD) rather than using partial indicators.

Dealing with 2D images implies a loss of information 
that is kept in the third dimension. More recent work 
assessing body condition with 3D surfaces showed a 
level of calibration similar to the best calibration ob-
served with 2D methods (Weber et al., 2014).

To enhance the prediction quality of an assumed 
shape-correlated indicator, using 3D appeared more 
relevant than using 2D because 3D depicts the most 
complete information available to analyze the shape’s 
variability. The idea in this project was to work with 
whole information available to depict a 3D surface to 
identify the traits of the variation in shapes, which are 
associated with body condition variability. Therefore, 
the present study aimed at working closely with imag-
ing experts from 3DOuest (Lannion, France) to develop 
a method combining the use of 3D shapes of the rear 
and the reduction of the number of 3D variables us-
ing PCA to assess BCS with greater objectivity and 
higher precision. Moreover, because only a few studies 
analyzed their method validation, we assessed external 
validation, repeatability, and reproducibility of the 
method.

MATERIALS AND METHODS

Experimental System Overview

Data.  Data were collected at the INRA-UMR 
PEGASE experimental dairy station in Méjusseaume, 
France, between March and July 2013. Cows are milked 
twice a day and weighed individually and automatically 
at the milking parlor’s exit on a weighing static station 
(DeLaval France, Elancourt, France).

Surface Acquisition System. The 3D acquisi-
tion system was an Xtion PRO Live Motion Sensor 
(ASUSTek Computer Inc., Taiwan). Ninety pictures 
are captured in 3 s and stacked to build a 3D surface. 
The sensor was attached 2 m up from the soil level 
at weigh station entry and connected to a mechanical 
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sensor detecting the opening and closing of entry doors. 
The door opening reset the camera to its initial posi-
tion, and the door closing automatically started the 
scan. The reference area was located between the top 
of the hook bones and the pin bones. Indeed, most of 
the BCS charts focus their scoring on 2 areas: the flank 
and the area between the hook bones and pin bones. 
Edmonson et al. (1989) observed that overall BCS was 
reliably correlated with hooks and pins prominence, 
with the depression between the hook bones and with 
the depression between the hook bones and the pin 
bones. The 3D surfaces were automatically saved to a 
computer with date and hour of scan.

Manual Body Condition Scoring. Cows were 
scored for body condition once per month, on the same 
day as 3D scans, by 3 technicians using the French 
BCS chart defined by Bazin et al. (1984). This system 
involves palpation of the tail head and of the last rib. 
Scores were scaled every 0.25 points, ranging from 0 for 
a thin cow to 5 for a fat cow. Each technician assigned 
one BCS resulting from the mean of the BCS per area, 
and the mean of the BCS assigned by the 3 technicians 
was taken as the final BCS.

Methodology: From 3D Surface to BCS Estimation

The method involves 2 main steps: first, the surfaces 
are normalized using several transformations to render 
them comparable, followed by a calibration step that 
adjusts and selects the best equation to assess BCS 
from the 3D information set previously summarized by 
PCA (Figure 1).

3D Surface Normalization: Defining Shared 
Information to Be Analyzed.  Because position 
in the weigh station varies for each cow, the scanned 
anatomical area varied between acquisitions. The first 
step consisted of extracting common 3D information 
to ensure that the information being analyzed referred 
exactly to the same anatomical area for each 3D surface 
and to the same number of 3D points per 3D surface, 
independent of the size of the cow. The idea was to align 
the surfaces and then to superimpose them to find the 
surface common to the set of 3D surfaces used for the 
calibration (Figure 2). To assess BCS independently of 
the anatomical size of the cow, the 3D surfaces were 
standardized on a common rear size.

The 3D surfaces were aligned to compensate for lo-
cation differences in the weigh station. To align the 
3D surfaces, the coordinate space, which is originally 
centered on the camera, was transformed in a space 
centered on the cow’s rear, called rear-centered space. 
Therefore, 4 anatomical landmarks were manually iden-
tified: top of the left hook bone (HBL) and top of the 
right hook bone (HBR), as well as with 2 points at the 

base of the sacrum, one on the left side (SBL) and one 
on the right side (SBR). These 4 landmarks were used 
to define the X- and Y-axes of the rear-centered space, 
and the Z-axis was defined as orthogonal to the X- and 
Y-axes (Figure 3). The 3D surfaces were then aligned 
by superimposing the rear-centered space defined for 
each 3D surface.

The 3D surfaces were standardized on a common rear 
size to delete any variability in 3D surfaces that could 
be related to size and not to body condition. The mean 
of the coordinates was estimated for each landmark 
in the calibration set. The 3D surfaces used for the 
calibration were resized such that the 4 landmarks had 
these calculated means as coordinates (Figure 3).

From this point on, 3D surfaces were standardized 
on a common rear size, though they did not necessarily 
have the same number of 3D points. To analyze compa-
rable information between 3D surfaces, the aim was to 
extract the set of 3D points shared by the set of 3D sur-
faces used for the calibration. These 3D surfaces were 
orthogonally projected onto the X-Y plane of the rear-
centered space. The intersection of these projections 
defines the area shared by the whole calibration set. 
This intersection, called the mask, was then split into 
a 150 × 150 grid (i.e., 22,500 pixels). Each 3D surface 
was orthogonally projected onto this mask. Because a 
3D surface contains more than 22,500 points, each pixel 
refers to several 3D point projections. To ensure having 
exactly the same number of points per pixel, only one 
3D point per pixel was kept: the one with the highest 
Z coordinate, and the others were removed from the 
pixel.

Calibration Step: Assessing BCS from 3D 
Information. After normalization, the next step con-
sisted in summarizing the variability of 3D surfaces by 
performing PCA. The calibration set was defined with 
3D surfaces characterized at the most with 22,500 pixels 
described with 3 coordinates each; pixels without any 
3D-points were not kept in the data. Each 3D surface 
was the result of a combination of 67,500 descriptors. 
A PCA was performed to define a space characterizing 
as much variability of the data set as possible with 
the least number of dimensions. In this way, 3D sur-
faces used for calibration were used in a PCA as the 
statistical individuals and their 67,500 3D references 
as the variables. Each 3D surface was projected onto 
this PCA space and became a linear combination of its 
coordinates in this PCA space.

The last step of the calibration process consisted 
of predicting BCS using the summarized information 
of the 3D shape by PCA. The calibration aimed at 
mathematically defining the link between the manually 
scored BCS and the coordinates of the 3D surface in 
the PCA space. The coordinates on the eigenvectors 
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were regressed on BCS with a multiple linear regression 
with the lm function of R (R Core Team, 2013). This 
model is defined as follows:

 
BCS eig eig

  eig eig
i i i k

ik n in i

= + × + × + +
× + + × +
α β β β

β
1 1 2 2 ...

... ,ε
 [1]

where BCSi is the BCS estimated by technicians of the 
ith cow; eigik is the coordinate of the 3D surface as-

sociated with cow i on the kth principal component of 
the PCA; n is the maximum number of principal com-
ponents allowed in the model according to degrees of 
freedom; α, β1, β2,… βn are the regression parameters, 
and εi is the residual error. The best model was selected 
by stepwise regression thanks to the step function in R. 
The stepwise regression initiates with the null model 
and adds at each step the more explanatory variable at 
5% significance and deletes the variable that was previ-

Figure 1. Methodology to estimate BCS with 3-dimensional surfaces: calibration, external validation, repeatability, and reproducibility and 
use for scoring.
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ously added if this variable is not as explanatory as the 
freshly added variable. The best model is the one with 
the least variables and the smallest Akaike information 
criterion. To look over model robustness, the quality of 
the model selected by stepwise and those built at each 
step of the stepwise were compared according to their 
adjusted coefficient of determination (R2) and the error 
of prediction when performed on external data sets. To 
assess the BCS of a 3D surface out of calibration set, 
the normalized surface was projected onto the mask, 
then onto the PCA space, and its coordinates on the 
PCA space were replaced in the model.

Procedure to Validate the Method

To develop a method for a high-throughput use, it 
is important to characterize the properties of this new 
technology in terms of validation and repeatability. Fig-
ure 1 describes the steps used to validate the method.

External Validation Procedure. Validation quali-
fies the capacity of the selected model to accurately 
estimate the predicted variable (here, BCS scored by 3 
technicians) when testing the model on individuals not 
used for calibration. Estimated BCS is called 3D BCS. 
The mean standard error of prediction (MSEP) was 

Figure 2. Three-dimensional (3D) surface processing to extract the 3D information common to the set of 3D surfaces used for the calibra-
tion: example of 2 3D surfaces, one initially composed of n 3D points and one with p 3D-points (n > p). The first step (1) rescales the individual 
format of each 3D surface (white trapezoid) on a common rear format (dashed black trapezoid), and second step (2) superimposes the 3D sur-
faces used for the calibration to find the set of 3D points common to the 3D surfaces used for the calibration (white rectangle with X common 
3D points; n > p > X).
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used to qualify validation and was defined according to 
Wallach (2006) as the sum of the following 3 errors to 
better understand MSEP variability: the biased squared 
error, defined as the squared difference between average 
measured BCS and average estimated BCS; the slope 
error, depending on how closely correlated the slope 
of the regression of BCS on 3D BCS was to 1; and the 
unexplained error, depending on how variations in BCS 
and 3D BCS were correlated. Validation reliability was 
tested on 2 sets of cows: on the one hand on 3D surfaces 
from cows selected for calibration, but with different 
stage in lactation (validationset_stage data set), 
and on the other hand on 3D surfaces from cows not 
used for calibration (validationset_cows data set).

Repeatability and Reproducibility. Repeatability 
assesses the error generated when estimating an indica-
tor several times on the same sample with the same 
methodology in the same environment in a short period 
of time. Reproducibility assesses the same error but 
under variable environmental conditions. In this way, 
repeatability was estimated by extracting the 4 land-
marks 8 times on the same day, from the same 3D scan, 
and reproducibility was estimated with cows scanned 8 
times each on the same day, with the 4 landmarks ex-
tracted once per 3D surface. The 3D BCS variation was 
corrected for the effect of the chosen cows in extracting 
the residuals of the model of ANOVA, which explains 
3D BCS with the cow’s identity factor. Coefficients of 

variation for repeatability (CVr) and for reproducibil-
ity (CVR) were assessed:

 CV
M

CV
Mr

r

r
R

R

R
= × = ×
σ σ

100 100, , [2]

where σr and σR are SD of the corrected 3D BCS, re-
spectively, for the repeatability and reproducibility data 
sets; and Mr and MR are, respectively, the mean 3D 
BCS in the repeatability and reproducibility data sets. 
In the same way the repeatability and reproducibility 
of BCS were estimated by correcting BCS variability 
from the effect of the chosen cows and from the effect 
of the experts dealing with body condition scoring: 1 
model is an ANOVA including “cow’s identity” as a 
factor and 1 ANOVA model includes cow’s identity and 
BCS expert’s identity as factors to explain BCS for re-
peatability and reproducibility, respectively. The more 
repeatable (reproducible) the 3D BCS is, the smaller 
the CVr (CVR).

Data Sets Used. Once per month from March 
to July 2013, all lactating cows were scanned on the 
same day as body condition scoring at evening milk-
ing. Dry cows with extremely high BCS were scanned 
twice within 3 mo and added to the sample to build a 
calibration data set representing a wide range of animal 
factors including BCS, BW, parity, and DIM. All data 
sets were built from this perspective: 57 3D surfaces 
associated with 56 cows (1 cow used twice at a different 
stage in lactation) built a calibration data set with BCS 
ranging from 0.5 to 4.8 and a mean of 2.2, and included 
all BCS extreme cows. Validation data sets included 25 
3D surfaces each, with BCS between 0.8 and 4.8 and 
a mean of 2.3 for validationset_stage, and between 0.8 
and 2.9 with a mean BCS of 1.8 for validationset_cows. 
Method repeatability and reproducibility were analyzed 
with 6 cows associated with 6 BCS between 1.1 and 4.8 
(Figure 4).

RESULTS

A Functional Acquisition System Without  
Major Problems

The same prototype was used throughout the whole 
data collection period and gathered 1,433 scans from 
March to July 2013. One acquisition and its record-
ing lasted 4 s. Despite the high performance of the 3D 
acquisition system, an average of 20% of 3D surfaces 
per acquisition series were rejected due to large holes 
and intermittent areas probably associated with cow 
movement while scanning.

Figure 3. Localization of the 4 anatomical landmarks hook bone 
left (HBL), hook bone right (HBR), sacrum basis left (SBL), and sa-
crum basis right (SBR) used to normalize the 3-dimensional surfaces 
and their coordinates after size standardization.



Journal of Dairy Science Vol. 98 No. 7, 2015

3-DIMENSIONAL REAR SHAPE TO ASSESS BODY CONDITION SCORE 4471

Figure 4. Description of data sets used for (a) the calibration, (b) the validation for validationset_stage and (c) the validation for valida-
tionset_cows and (d) the repeatability-reproducibility according to their BCS, BW, and DIM for primiparous (Δ) and multiparous cows ( ).
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The final data set used to develop the method con-
tained 180 manually selected 3D surfaces and involved 
81 cows: 56 cows used for the calibration and 25 used 
at a different lactation stage for the validationset_stage 
data set, and 25 other cows used for the validationset_
cows data set; 6 of these 81 cows were used to estimate 
repeatability and reproducibility.

The Most Complete Model Provides  
a Perfect Calibration

The 57 3D surfaces defining the calibration data set 
were used in a PCA to compute the eigenvectors de-
scribing those surfaces. Their coordinates on the eigen-
vectors were regressed linearly on their corresponding 
BCS. The PCA resulted in 57 eigenvectors that were a 
combination of the set of 3D points referenced in each 
3D surface before PCA computing.

The best multiple linear regression model selected by 
stepwise assessed BCS with 55 coordinates, associated 
with 55 eigenvectors. This model was able to explain 
almost 100% of BCS variability (R2 = 1) in the calibra-
tion set, with an error close to 0.

Considering that the model had 56 degrees of freedom, 
a maximum of 55 variables could have been selected. 
Therefore the most complete model was also the best 
model selected by stepwise. The selection discarded 
the coordinates associated with the 57th and the 38th 
eigenvectors. Each principal component is described by 
its inertia, which is the percentage of the variability of 
the 3D surfaces it explains. The PCA orders eigenvec-
tors according to inertia, considering that the first is 
the eigenvector with the highest inertia. Eigenvector 
ranking differed from their order of appearance in the 
selected linear model. However, the first 2 eigenvectors 
in PCA were also the first 2 eigenvectors selected by 
stepwise. They explained 68.5% of 3D surface vari-
ability and the model including these 2 eigenvectors 
explained 71% of the variability of the BCS. In the 
end the 13 first eigenvectors were useful to describe 
95% of 3D surface variability, whereas 19 had to be 
implemented in the model by stepwise to describe 95% 
of BCS variability.

External Validation Shows Similar Results  
for Both Validation Sets

The BCS was estimated on 2 data sets: validation-
set_stage, which contained cows previously used for 
calibration, but at different stages in lactation and 
validationset_cows, which contained new cows. Pre-
dicted BCS were strongly correlated with manually 
scored BCS when using the model on both validation 

sets (r = 0.89 for validationset_cows and 0.96 for 
validationset_stage, P-value < 10−16, Figure 5). The 
MSEP for both data sets were 0.09 and 0.10 point of 
BCS for validationset_stage and validationset_cows, 
respectively. The MSEP was mostly unexplained with 
a higher rate being unexplained for validationset_stage 
compared with validationset_cows: 95.4 and 70.3% of 
MSEP variability were unexplained, respectively; the 
remaining 29% were explained by slope error.

Running the set of models, selected at each step 
throughout the stepwise, on validation sets highlighted 
that prediction error decreased as stepwise continued. 
The MSEP was minimal at the 39th and 32nd step 
for validationset_stage and validationset_cows, respec-
tively. The model selected by stepwise is not the one 
with the highest validation quality.

A Repeatable and Reproducible Method

The particularity of this step was to assess error as-
sociated with the method independently of error as-
sociated with the reference method, in this case BCS. 
Processing each 3D surface 8 times meant that the 8 
processes had the same BCS but that landmarking was 
repeated 8 times. Similarly, scanning each cow 8 times 

Figure 5. Validation of 3D BCS for both data sets (a) validation-
set_stage and (b) validationset_cows regarding manual BCS. The line 
of best fit is the solid line and the line of perfect concordance (slope of 
1 and intercept of 0) is the dashed line.
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the same day meant that the error associated with BCS 
was the same for each scan, but the error associated 
with acquisition and processing differed for each scan. 
In this way, reproducibility error included repeatability 
error in its variability. The σr was equal to 0.075 (CVr 
= 2.91%) and σR was equal to 0.103 (CVR = 3.95%) 
BCS point. The method’s acquisition system and sur-
face processing are associated with an error character-
izing 4% of the variation of assessed BCS. Ultimately, 
BCS assessed with 3D surfaces was 2.8 times more 
repeatable and reproducible than manually scored BCS 
(Table 1).

The step-by-step evolution of σr during stepwise se-
lection was curvilinear with a minimum at the 28th 
step with σr of 0.068.

DISCUSSION

Several studies have investigated development of new 
methods to automatically assess the BCS of dairy cows 
with greater accuracy using 2D (Bewley et al., 2008; 
Halachmi et al., 2008, 2013; Negretti et al., 2008; Azzaro 
et al., 2011; Bercovich et al., 2013) or 3D information 
(Weber et al., 2014) relating to the surface of the cow’s 
rear. The method proposes a new development in the 
use of pictures to assess BCS learning 3D-information 
with PCA.

An Efficient Acquisition System

Even though one more dimension was sampled, the 
developed acquisition system was as efficient as previ-
ous systems developed to collect 2D surfaces: the 3D 
camera was neither light sensitive, contrary to the 
camera used by Bewley et al. (2008), nor sensitive to 
changes in ambient humidity, contrary to the camera 
used by Azzaro et al. (2011). Consequently, fewer im-
ages had to be removed: 80% of the 3D surfaces were 
of good quality, whereas for Bewley et al. (2008) and 
Azzaro et al. (2011) only 23 and 2.75% of the entire 
pictures set were of sufficient quality, respectively.

Landmark Extraction Automation: An Imperative 
Step Before Monitoring

Identification of anatomical landmarks is essential in 
image processing because it defines a shape-centered 
space, which is the basis for subsequent analysis. This 
step was performed manually to assess the proof of 
concept and, therefore, was the most time-consuming 
step with on average 3 min spent per 3D surface. In 
comparison, Bewley et al. (2008) and Azzaro et al. 

(2011) identified 23 anatomical points to describe the 
shape. Dividing the number of extracted landmarks by 
8 significantly reduces the time consumed during image 
processing, but also facilitates the potential automation 
of the landmark extraction procedure. Nevertheless, 
extracting the 4 landmarks manually is too time and 
labor consuming to cope with high-throughput use on 
farm. Moreover, the results showed that method repro-
ducibility was limited by method repeatability. In fact 
method repeatability is defined by the repeatability 
of landmark extraction. The subjectivity of manual 
extraction limits the repeatability of the method. To 
improve 3D BCS repeatability and consequently 3D 
BCS reproducibility, a solution would be to automate 
landmark extraction. Moreover, the high frequency of 
measurements enabled by automation will statistically 
increase the precision of 3D BCS estimates.

A Promising Methodology: 3D Rear Information 
Reflects BCS Variability Well

The model developed to assess BCS adjusted per-
fectly on observed BCS. With an R2 equal to 1 and 
a SD equal to 0, the model explained the whole BCS 
variability in calibration set. The selected model con-
tained 55 variables, which is the maximum the model 
can contain in light of the degrees of freedom. The 
equation containing 55 variables showed the best re-
sults for the calibration set, but the changes to the SD 
of the model when predicting BCS on validation sets 
during the stepwise was minimal around the 32nd step. 
We assume that the selected model probably includes 
coordinates associated with eigenvectors, which may 
explain specific shapes in the calibration set, without 
any generic meaning. This over-parameterization of the 
model could explain that external validation shows a 
smaller error when using a model with fewer variables. 
An influence analysis of the 3D surfaces on the param-
eters would analyze the relevance of each parameter 
in the model and a ridge regression would analyze the 
robustness of the model.

Table 1. Repeatability and reproducibility of the measures of body 
condition scored by experts and of BCS assessed by the 3-dimensional 
(3D) method1

Method σr σR CVr CVR

3D BCS2 0.075 0.103 2.91 3.95
BCS 0.210 0.280 10.05 13.44
1σr = standard deviation of repeatability; σR = standard deviation of 
reproducibility; CVr = coefficient of variation of repeatability; CVR = 
coefficient of variation of reproducibility.
23D BCS = BCS assessed with the 3D method.
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Good Validation and Reproducibility Limited  
by BCS Reproducibility

The correlation between 3D predicted BCS and ob-
served BCS (r = 0.89–0.96) was similar to that observed 
by Halachmi et al. (2013; r = 0.94), who worked with 
2D images of the cow’s rear. Nevertheless, this com-
parison is not scientifically valid because experimental 
designs (BCS chart, BCS scorers) differed between both 
studies; the different methods should be used under the 
same conditions.

Both validation sets, validationset_stage and valida-
tionset_cows, displayed similar errors. Consequently, we 
assume that the model is no more sensitive to surfaces 
associated with cows used at a different lactation stage 
in the calibration set than surfaces never used before 
in method development. Azzaro et al. (2011) developed 
a method based on polynomial kernel PCA to learn 
2D shapes and used linear regression of the eigenvalues 
to assess BCS. These researchers used the methods of 
Halachmi et al. (2008) and Bewley et al. (2008) and 
compared the validation of the 3 methods. Models de-
veloped by Bewley et al. (2008) and Azzaro et al. (2011) 
demonstrated the best validation (SD = 0.33 and 0.31 
unit of BCS, respectively). Bercovich et al. (2013) used 
Fourier descriptors combined with a linear regression 
to assess BCS from the 2D rear contour. Their model 
validation was estimated with the RMSEP calculation 
and was worse than the current model: RMSEP = 0.34 
and 0.31–0.32 units of BCS, respectively. To correctly 
compare the validation of these various methods, we 
should test them in the same experimental conditions 
and calculate the same indicators. Nevertheless, we 
may highlight here that validation errors are similar 
to the reproducibility error of the reference method, 
which was 0.28 BCS units in our study. The error gen-
erated when assessing BCS with 3D surfaces naturally 
includes the error of the reference method, here BCS. 
Calibrating 3D surfaces on a more precise and repeat-
able measure such as ultrasonography (Schröder and 
Staufenbiel, 2006) should reduce the body energy re-
serve measurement error. Weber et al. (2014) calibrated 
a set of distances, depths, and volumes extracted from 
3D surfaces of the rear of dairy cows to assess backfat 
thickness measured by ultrasonography. Their method 
calibrated well with backfat thickness (r = 0.96), but 
neither validation nor repeatability was evaluated.

The method developed was 2.8 times more repeat-
able and reproducible than manually scored BCS. 
When assessing BCS with 3D surfaces, the measure-
ment includes an error of 0.1 BCS units, independent 
of the error due to the reference method used. The ma-
jority of reproducibility error seemed to overlap with 

repeatability error. Repeatability error translates the 
error associated with manual landmark extraction. In 
this way, the next step would be to automate landmark 
extraction to completely eliminate human subjectivity.

In conclusion, the model performed well for calibra-
tion and validation. Nevertheless, one essential step is 
the automation of landmark extraction, which is un-
derway: similar to Bercovich et al. (2013), an algorithm 
extracts automatically the 4 landmarks in identifying 
the local extreme points. After automation validation, 
the next step will be to validate the model on more 
dairy herds before using the method on a large scale. 
In practice, other experimental farms and later com-
mercial farms will be equipped with the prototype to 
collect more 3D surfaces and validate the model on 
those surfaces.

Nonbiased Learning of Global 3D Information  
with PCA: An Evolving Approach of Imaging

Principal component analysis is more flexible than 
using predetermined criteria thanks to its learning 
capacity. In fact, restricting trait analysis to a small 
number of specific criteria is risky as a first approach 
because these criteria are not necessarily the best ones 
for predicting this trait. The space defined by PCA al-
lows as much variability kept in 3D surfaces as possible 
to be expressed, with the least number of dimensions. 
In this way, PCA-based learning on the global informa-
tion contained in a shape should minimize such a bias.

Azzaro et al. (2011) and Bercovich et al. (2013) used 
factor extraction tools too: PCA, PLSR, and FD, re-
spectively. Their average error rate on external valida-
tion was 0.31 unit of BCS for Azzaro et al. (2011) and 
0.34 unit of BCS for Bercovich et al. (2013). The model 
developed in the current work performed as good as the 
model developed by Azzaro et al. (2011). The rear size 
of the 3D shapes has been standardized on a common 
size to ensure having variables with exactly the same 
definition on each 3D surface and to avoid problems 
due to body size variability as Bercovich et al. (2013) 
observed with PLSR method.

In terms of reproducibility, Bercovich et al. (2013) 
had an average error of 0.11 unit of BCS with the FD 
method, similar to our model error of 0.10 unit of BCS. 
Nevertheless, the BCS range they used to assess repro-
ducibility was smaller than ours: from 2.2 to 3.6 (1 to 
5 scale), from 1.1 to 4.8 (0 to 5 scale), respectively. It 
is important to characterize the method on the whole 
scale, even for the extremes. This comparison of stud-
ies shows that methods based on global shape analysis 
summarized by a statistical tool (PCA, PLSR, or FD) 
are the most efficient, whatever the statistical tool.
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Moreover, as our approach focuses on the whole in-
formation contained in the shape and not on a local 
characteristic, this method could be easily adapted to 
other breeds or to other body condition charts, even if 
the more meaningful criteria differ. Method adaptation 
needs first to define a calibration set reflecting BCS 
variability as closely as possible, then to define the PCA 
space with this new calibration set, and finally to assess 
the coefficients of the model predicting BCS from the 
coordinates of the eigenvectors. Such a method is not 
only adaptable to several body condition charts, but 
also, thanks to its impartiality, should calibrate well 
on other traits if the anatomical region is meaningful. 
All these evolutions can be carried out very rapidly, 
without any change in the software.

CONCLUSIONS

The cow’s rear was described in 3D in the PCA space 
defined by the calibration data set. The PCA space 
was seen as the space expressing as much variability 
as available in 3D surfaces. The goal was to develop an 
automated system able to assess the BCS of dairy cows 
with more objectivity and lower costs than manually 
scored BCS and to use it on a large scale. Validation 
analysis showed good performance and consolidated the 
developed approach. For the moment, only 4 anatomi-
cal landmarks are manually extracted. Automation is 
underway and is essential to enable the method to be 
used on a large scale. A further improvement would be 
to calibrate the method on a more precise and objective 
method, such as ultrasonography, to reduce the error 
associated with the reference method. The efficacy of 
this methodology confirms that the use of 3D surfaces 
is a promising tool for phenotyping body condition, and 
shows that it will be possible to use 3D surfaces to 
assess several phenotypes, such as BW, which for the 
moment are not easy to measure accurately on a low 
budget.
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