

Dynamic herd simulations

Philippe Faverdin, Christine Baratte, Romain Perbost, Sylvain Thomas, Eric Ramat, Luc Delaby, Jean-Louis Peyraud

▶ To cite this version:

Philippe Faverdin, Christine Baratte, Romain Perbost, Sylvain Thomas, Eric Ramat, et al.. Dynamic herd simulations. RedNex Final conference, Aug 2013, Paris, France. hal-01210714

HAL Id: hal-01210714 https://hal.science/hal-01210714v1

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dynamic Herd simulations

REDNEX

CowNex, a tool to assess nitrogen excretion and efficiency of a dairy cattle herd according management

> *P. Faverdin*¹, *C. Baratte*¹, *R. Perbost*^{1,2}, *S. Thomas*^{1,2}, *E. Ramat*², *L. Delaby*¹, *J-L Peyraud*¹

¹INRA, UMR PEGASE, France, ²ULCO, Calais, France RedNex Final conference Paris 30th August 2013

Context

- Competition on protein resources
 - Increase in cost
 - Interest to produce most of them (Farm selsufficiency)
- Nreactive (Nitrogen cascade, Galloway 2004) has always many environmental impacts (climate change, eutophication, acidification, health with small particles), and livestock is an important step in its transformation
 - 77% of ammonia emissions come from animal N excretion
- Farmers have an important responsability in the use the protein

Background and objective

- At cow level, on a daily basis:
 - N efficiency in dairy cows depends of the rumen balance of nitrogen and the efficiency of metabolizable protein (MP)
 - MP efficiency if a function of MP/NE of the diet, energy balance, essential AA content and milk yield.
- However, what are the main factors of N efficiency at herd scale according the type of dairy system and annual feeding management ?

→ CowNex, a simple tool to estimate N efficiency of a dairy herd Faverdin et al. RedNex Final conference Paris 30th August 2013

Plan

- Description of the modeling work
- Presentation of the CowNex Website
- Simulation of different model farms with different characteristics and feeding systems

Objective of CowNex: Building a model predicting N excretion for a dairy herd over the year

- Calculating N excretion from a dairy herd according to the number of animals and the diets on a daily basis.
- Merging animal sub-model and a herd demography structure (number of heifers, dry cows and productive cows across the year and the feeding strategies for each category of animals).
- The animal sub-model predicts N intake and urinary and faecal N output on a daily basis using on farm available data.
- N intake and N partition is predicted daily using the intake model developed during the GRAZEMORE project and other results of the RedNex project.

REDNEX-

General overview of CowNex

REDNEX

A model to rebuild the dynamic structure of the herd

Intake Capacity and lactation of Grazin

The CowNex Website

With the VLE modeling language

And the informatic skills of ULCO

Use of CowNex: different steps

- Describe the main characteristics of the herd : <u>Herd</u>
- Select the feedstuffs used to fed the herd during the year : <u>Feed</u>
- Define the main groups of cattle gathering several classes of animal fed with the same diet during the year :

Feeding Groups

- Indicate for each feeding group the different diets offered during the year : <u>Diet Plan</u>
- Run the simulation to get results : <u>Simulation</u>

REDNEX

Simulation of feeding management of different model farms using survey data

REDNEX Exemple of one model farm description (Institut de l'Elevage, 2011)

15 diets of different model farms in different parts of France

A complex description of the intake: simplification with a sequence of diet

Simulation using model farms to study N efficiency Protein selfsufficiency and emissions in different farming systems

1/ Translation of the feeding system description in CowNex to be consistent with global feed use data

2/ Simulation of the model farms and adaptation with CowNex

- Effect of age at first calving
- Comparison of model dairy farms
- Effect of protein supplementation on several model farms

Cows-Vaches

Diet 2 (60 Day) 💢 Diet 3 (88 Day) X Diet 4 (76 Day) 💢 Diet 1 (75 Day) Diet 5 (62 Day) 🔀 **Begin**: **Begin**: Begin : Begin : 9/1/2012 Begin : 11/16/2012 1/16/2013 4/15/2013 End : 7/1/2013 End End End : 11/15/2012 End : 8/31/2013 🔶 1/15/2013 4/14/2013 6/30/2013 (mm/jj/aaa) (mm/ii/aaa) (mm/jj/aaa) (mm/jj/aaa) (mm/jj/aaa) DM DM DM DM DM (kg/day) (kg/day) (kg/day) (kg/day) (kg/day) FreshGrass 100 100 100 MilkP-LaitP MaizeS-EMais 7 65 Straw-Paille 10 SMB-Tt_Soja 1 20 Barley-Orge 4 4 4 Grass Silage BRE Foin 100 5 Total Time outdoors (h) 20 0 20 0 20

Whole herd analysis : effect of age at first calving

- Virtual Farm with 100 cows high maize use, high producing cows (9700 kg milk) and group calving
- All heifers are reared with high replacement rate
- Replacement rate has little effect on N meat or milk efficiency

Variable	2 years	3 years
Cows	100	100
Heifers	84	133
Calves	13	13
Feed use (t/y)	998	1199
Conc use (t/y)	195	203
N intake (kg/y)	24380	29399
N Meat (kg/y)	622	745
N Milk (kg/y)	5109	5119
N Efficiency %	23.7	20.0
N milk efficiency %	27.3	27.3
N meat efficiency %	9.9	6.3
N Self sufficiency	70.2	73.3

Example of 6 specialize dairy farms

• Farms of plain regions

Forage system	West	Other regions
>30% ha maize	Maize W	Maize E
10%< ha maize<30%	Maize Grass W	Maize Grass E
>10% ha maize	Grass W	Grass E

REDNEX

Comparison of dairy systems

		OTHER REGIONS			WEST	
Annual results	Maize E	Maize Grass E	Grass E	Maize W	Maize Grass W	Grass W
Total Diet DM (kg)	7047	6756	6108	6791	6327	5732
Total Diet N(kg)	187	181	152	165	163	142
CP annual diet	166	168	156	152	161	155
Milk (kg) /cow	8169	7500	6334	7827	6786	5608
Self sufficiency(DM)	76%	82%	89%	87%	88%	94%
Self sufficiency(N)	49%	57%	78%	67%	73%	79%

Comparison of dairy systems

		OTHER REGIONS			WEST	
Annual results	Maize E	Maize Grass E	Grass E	Maize W	Maize Grass W	Grass W
N Milk (kg)	44.2	40.6	32.5	42.3	37.8	30.4
N Faeces (kg)	61.8	62.0	54.2	59.5	56.3	52.0
N Urine (kg)	80.2	78.7	64.9	62.5	68.7	57.8
N excreted (kg)	142	141	119	122	125	110
N Efficiency	23.6%	22.4%	21.4%	25.7%	23.1%	21.4%
Kg NH3/T milk	4.9	4.0	1.8	2.2	3.4	1.7
% Controllable	69%	63%	48%	58%	56%	47%

Impact of indoor protein supplementation on emissions

- Comparaison of different protein supplementations in dairy systems using large amont of soyabean meal (dairy specialized and cropdairy systems). Calcul on dairy cows only.
 - 14% CP

REDNEX

- 15% CP
- 16% CP
- Collection of CowNex output to calculate NH₃ and N₂O emission using the EMEP/EEA european reference method and national database to describe housing and manure management systems

1	A	В	С	D
1	equations/lots	Cows-Vaches	Heifers-Génisses	Calves-Veaux He
14	MaizeS-EMais N	17.9361614	0	1.208880048
15	Straw-Paille N	0	1.884728099	0
16	SMB-Tt_Soja N	20.29854541	6.946569279	0
17	Barley-Orge N	23.6938453	0	4.064640162
18	Grass Silage N	0	7.538912283	0
19	BRE N	0	0	0
20	Foin N	10.00888089	0	0
21	Total Diet MS(input)	7510.849093	3339.256725	547.5000218
22	Total Diet N(input)	181.8897581	91.28261772	13.78824055
23	СР	151.3558553	170.8513025	157.4
24				
25	N intake(dm)	757036.8075	446261.8916	6956.097832
26	N intake(n)	18333.11255	12199.10807	175.1823678
27	N produced(dm)	732255.5584	435017.3779	4173.658699
28	N produced(n)	16287.17263	11270.76101	67.00113432
29	N imported(dm)	24781.24906	11244.51375	2782.439133
30	N imported(dm)	24781.24906	11244.51375	2782.439133
31	Self efficiency(dm)	96.72654634	97.48028815	60
32	Self efficiency(n)	88.8401933	92.39004155	38.24650572
33				
34	N Milk	45.29550802	0	0
35	N Meat	5.51291129	3.936631399	0.629798532
36	N Feaces	67.68911106	25.50556371	3.854400153
37	N Urine	67.34937134	61.42919758	2.921911558
38	Total Diet N (output)	181.8897581	91.28261772	13.78824055
39	N Efficiency	27.93363399	4.312575052	4.567649725
40				
41	totalExcretion	13610.85815	11618.05582	86.09440244
42	Collectable feaces	2572.289909	866.2873052	48.97092874
43	Collectable urine	1597.906984	1249.659492	37.1234737
44	Collectable total	4170.196893	2115.946797	86.09440244
45	Uncollectable feaces	4250.260765	2542.303901	0
46	Uncollectable urine	5190.400494	6959.80512	0
47	Uncollectable total	9440.66126	9502.109021	0
48	% Controlable	30.63875067	18.21257214	100
49				
14	🕞 🕅 simulation 🤇 💱	1		

Relationship between the use of simulated soybean meal use per year and the protein content of the winter diet

Protein Dairy Farm selfsufficiency

Protein Selfsufficiency of dairy herds decreases of 2.4 per 100 kg DM additional soybean meal.

REDNEX

Nitrogen efficiency decreases with nitrogen supplementation

Efficiency of nitrogen utilization by the dairy cows decreases by 0.68 for 100 kg DM additional soybean meal, but varies largely with the farming system

REDNEX

N efficiency at herd level

N efficiency (N milk or meat/ N intake) of dairy herds increases with milk production, but decreases with protein supplementation, which often ofsets the benefit of the dairy performance

The urine part of nitrogen excretion increases with protein supplementation

Protein supplementation and ammonia losses

N ammonia increases of 2.9 kg per 100 kg DM Soybean Meal per cow per year, or 3.5 kg ammonia. (NH3 emissions including manure spreading, inventory methods)

REDNEX

N efficiency and ammonia emission

Ammonia emissions increases when N efficiency decreases within a system, but the relationship between farming systems is less clear, the time spent indoor being an important factor

Greenhouse gas emissions increases with protein supplementation

REDNEX

Conclusions

- CowNex is a simple tool to assess quickly the efficiency of N use at herd level
- Increase age at first calving decrease N efficiency of meat
- If maize systems could theoritically better balance protein supplementation, it is not always observed in pratice and they are less protein selfsufficient
- Protein supplementation is an important lever to control protein selfsufficiency, nitrogen excretion and environmental impacts of dairy farming system
- Time spent indoor increases the risks of ammonia emissions
- In many systems, there is economic and environmental benefit to pay attention to the protein supplementation

REDNEX

This presentation has been carried out with financial support from the Commission of the European Communities, FP7, KBB-2007-1.

SEVENTH FRAMEWORK PROGRAMME

Thank you for your attention

It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.