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Abstract

Background: Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in
detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an
essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen
species that accumulate at the host-pathogen interface during infection.

Results: Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase
revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and
six were ‘orphans’. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated.
Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited
GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively.
Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the
wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO
classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In
particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase
activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the
soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to
develop normal symptoms on host plant tissues.

Conclusions: Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full
aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be
essential virulence factors for fungal necrotrophs.

Keywords: Glutathione transferases, Necrotrophic fungi, Pathogenesis
Background
Alternaria brassicicola is the causative agent of black
spot disease in a wide range of Brassicaceae crops. The
necrotrophic behavior of this fungus exposes it to several
plant defense compounds such as phytoanticipins and
phytoalexins [1, 2] during host colonization. Brassicaceae
phytoanticipins are represented by glucosinolates that
are hydrolyzed by myrosinase when the plant tissues are
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damaged during necrotrophic colonization. Brassicaceae
contain a large variety of glucosinolates, each of which
form different isothiocyanates (ITCs) when hydrolyzed
such as allyl-ITC (Al-ITC), benzyl-ITC (Bz-ITC) or
phenylethyl-ITC (Ph-ITC) [3]. ITCs, which are the major
breakdown compounds of glucosinolates [4], have been
shown to exert their toxicity towards A. brassicicola by
oxidative stress generation [5].
Glutathione transferases (GSTs) are a superfamily of pro-

teins which are found widespread in animals, plants, fungi
and bacteria. GSTs usually catalyze glutathione (GSH)
transfer onto hydrophobic molecules (glutathionylation
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activity), or GSH removal from specific substrates (deglu-
tathionylation) [6]. The varieties of electrophilic com-
pounds, which can be conjugated to GSH by GSTs include
aliphatic and aromatic halogen compounds, peroxides and
epoxides, α, β-unsaturated and low molecular weight pro-
teins. In particular, it has been shown that GSTs are able to
conjugate GSH to ITC in human, Arabidopsis thaliana
and Phanerochaete chrysosporium [7–9]. In the same vein,
GSTs play a major role in insect adaptation to plant sec-
ondary compounds, such as glucosinolates (GLS) and ITCs
in the polyphagous aphid species Myzus persicae [10]. In
addition, ITCs specifically induce GSTs in Caenorhabditis
elegans, providing oxidative stress tolerance [11]. Concern-
ing fungal pathosystems, induction of GST encoding genes
and increased transferase activity were reported in Scleroti-
nia sclerotiorum during Brassica napus infection and in
the presence of ITC [12]. Moreover, some GSTs have also
been identified as ligandin proteins that selectively bind or-
ganic anions such as tetrapyrroles in mammals and plants
[13, 14]. This ligandin property has been defined as the
capacity of the protein to bind non-substrate ligands [13].
In plants, it could be involved in intracellular transport of
hydrophobic compounds such as pigments, and in tempor-
ary storage of phytohormones [15, 16]. In fungi, this ligan-
din property has been described for members of the
GSTFuA class in P. chrysosporium [17]. These enzymes are
able to bind wood-derived molecules and could participate
in the intracellular transport and further elimination of
these compounds, which could be toxic for the cells. Sev-
eral GSTs also play a direct role in the antioxidant response
through their peroxidase activity, which reduces endogen-
ous or exogenous hydrogen peroxides or fatty acid perox-
ides [18, 19]. GSTs can usually accept various substrates.
This functional property allows them to detoxify a wide
range of endogenous and environmental chemicals and is
part of their evolution in response to selective pressure. In
Saccharomyces pombe and Aspergillus fumigatus, GSTs are
involved in the oxidative stress response. Their gene ex-
pression is induced by hydrogen peroxide (H2O2). The pro-
moters contain multiple copies of the stress response
element (STRE) consensus region and the binding site of
the Yap1 transcription factor, known to modulate the adap-
tive response to oxidative stress or cytotoxic agents [20]. In
yeast, the GTT1 gene promoter contains specific regions
of the response to xenobiotics [21] but GST regulation is
usually the result of post-transcriptional modifications [22].
The pathogenicity of A. brassicicola could be partly re-

lated to its ability to protect itself against Brassicaceae
defenses compounds including ITC [23–25]. The results
obtained by [5, 26] showed that at least six genes encod-
ing GST in A. brassicicola, were up-regulated upon ex-
posure to ITC. One of these GSTs, named AbGST1,
which is also up-regulated during interaction with the
host plant has been the focus of a more detailed study
[26]. AbGST1 transcription was found to be significantly
enhanced by heavy metals and 1-chloro-2,4-dinitroben-
zene (CDNB) and the recombinant protein exhibited
high glutathione transferase activity with allyl and benzyl
ITC as substrate as compared to CDNB. In the present
study, we functionally characterized the other five ITC-
inducible GSTs as well as the phenotype of mutants defi-
cient for these enzymes. Our results indicate that three
of these GSTs, belonging to the GSTO, Ure2pB and
MAPEG classes, may contribute to pathogenicity prob-
ably by protecting the fungus against the oxidative stress
generated by host plant defense compounds.

Results
Phylogenetic analysis of GST- coding sequences from A.
brassicicola
Searching the A. brassicicola genome (http://genome.jgi-
psf.org/Altbr1/Altbr1.home.html) with glutathione trans-
ferase as keyword generated 25 entries. Sequence analyses
revealed that 23 of them might correspond to true GSTs.
A phylogenetic analysis focusing on GSTs from 8 Ascomy-
cetes species and 1 Basidiomycete fungus allowed the
clustering of most sequences into the main previously de-
fined classes [27–29] (Fig. 1). A. brassicicola clearly exhib-
ited 3 Ure2pB sequences but no Ure2pA, 1 EFBγ, 5
GTT1, 3 GHR, 2 GSTO, 2 GSTFuA and 1 MAPEG se-
quences. However, attribution of the other six sequences
to previously identified groups was not clear. In particular,
two sequences clustered close to P. chrysosporium GTT2,
but their sequences contained domains related to beta or
sigma GSTs that are usually found in bacteria and
humans, respectively. Moreover, they were not related to
the yeast GTT2 isoform. These sequences have thus not
yet been classified. No member of the newly described phi
class [30] was found.
In a previous study, five of these GST coding genes have

been found up-regulated upon exposure to ITC [5]. Based
on the present phylogenetic analysis, they were renamed as
follows: AbGTT1.2 (AB05243.1), AbGSTO1 (AB04746.1),
AbMAPEG1 (AB08663.1), AbUre2pB1 (AB09895.1) and
AbGSTFuA1 (AB07364.1) corresponding to ITC-induced
ESTs A1F1, A2C1, A2H5, A2C10 and A4D12, respect-
ively [5] (Table 1). Similarly, the previously character-
ized AbGST1 from A. brassicicola [26] was renamed
AbGTT1.1 (AB05341.1).

Enzymatic activities of selected AbGST proteins
Recombinant AbGTT1.2, AbUre2pB1, AbGSTFuA1 and
AbGSTO1 proteins were produced in Escherichia coli and
purified. Despite several attempts to optimize the produc-
tion parameters, AbMAPEG1 was always found in the in-
soluble fraction and could thus not be purified in its active
form. The enzymatic activities of the recombinant pro-
teins were determined using CDNB as a classical substrate

http://genome.jgi-psf.org/Altbr1/Altbr1.home.html
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Fig. 1 Phylogenetic tree of ascomycete glutathione transferases. Sequences from the basidiomycete Phanerochaete chrysosporium were added to
allow GST classification into the following classes: Ure2p, GSTFuA, Omega (GSTO), Glutathionyl Hydroquinone Reductase (GHR), EFBγ, GTT1 and
MAPEG. The sequences (Additional file 3) were retrieved from genomes of Saccharomyces cerevisiae, Phanerochaete chrysosporium (Pc), Alternaria
brassicicola, Botrytis cinerea, Leptosphaeria maculans, Mycosphaerella figensis, Mycosphaerella graminicola, Neurospora crassa and Stagonospora
nodorum available at the Joint Genome Institute (http://www.jgi.doe.gov/). Sequence alignments were done by CLUSTALW and the tree was
constructed with the Neighbor joining method. The scale marker represents 0.2 substitutions per residue. Data available from the Dryad Digital
Repository: http://dx.doi.org/10.5061/dryad.19f18
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for glutathione transferase assay. Various ITCs were also
used (Al-ITC, Bz-ITC and Ph-ITC) and peroxidase activ-
ities were tested using H2O2 and cumene hydroperoxide
(Cu-OOH) (Table 2). Finally deglutathionylation activity
was assayed using β-ME-SG. AbGTT1.2 and AbUre2pB1
exhibited both GSH transferase with CDNB and perox-
idase activity with Cu-OOH. No activity was detected
with H2O2. AbGSTFuA1 was found to be the most
Table 1 Correspondence between EST, protein accession numbers
and AbGST names derived from the phylogenetic analysis

EST Protein GST name

A1F1 AB05243.1 AbGTT1.2

A2C1 AB04746.1 AbGSTO1

A2H5 AB08663.1 AbMAPEG1

A2C10 AB09895.1 AbUre2pB1

A4D12 AB07364.1 AbGSTFuA1
active protein in our tests, exhibiting significant GSH
transferase activities with all ITCs. AbGSTO1 exhibited
a deglutathionylating activity with β-ME-SG. These en-
zymatic profiles are in accordance with those identified
within each class for other fungal species except for
Ure2pB1 [9, 27, 29, 31, 32]. The Ure2p class was split into
two subclasses (Ure2pA and Ure2pB). AbUre2pB1 clus-
tered within the Ure2pB subclass, however it exhibited a
glutathionylation activity like the yeast isoform, which be-
longs to the Ure2pA subclass, rather than the deglutathio-
nylation activity previously measured for Ure2pB in P.
chrysposporium and E. coli [33, 34].

Gene expression of GSTs during plant infection and in
response to oxidative stress
Gene expression of all the selected GSTs was previously
shown to be ITC-inducible. Their expression was there-
fore checked during in planta interaction with Brassica

http://www.jgi.doe.gov/
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Table 2 Kinetic parameters of AbGSTs in enzymatic assays

AbGTT1.2 AbGSTO1 AbUre2pB1 AbGSTFuA1

Km (mM)

CDNB 1.82 ± 0.33 ND 5.01 ± 0.40 0.40 ± 0.02

Al-ITC ND ND ND 0.12 ± 0.02

Bz-ITC ND ND ND 0.18 ± 0.03

Ph-ITC ND ND ND 0.11 ± 0.02

Cu-OOH 0.12 ± 0.04 ND 0.77 ± 0.06 ND

β-ME-SG ND 1.12 ± 0.02 ND ND

GSH 1.33 ± 0.10 0.45 ± 0.13 0.87 ± 0.02 0.50 ± 0.0004

kcat (s
-1)

CDNB 0.10 ± 0.05 ND 1.50 ± 0.08 38.18 ± 6.10

Al-ITC ND ND ND 76.80 ± 11.64

Bz-ITC ND ND ND 11.81 ± 1.82

Ph-ITC ND ND ND 20.54 ± 2.96

Cu-OOH 6.82 ± 1.18 ND 0.20 ± 0.01 ND

β-ME-SG ND 49.00 ± 9.40 ND ND

The apparent Km values for all compounds were determined using a 0.1-50 mM
concentration range in the presence of 3 mM GSH. The Km value for GSH was
determined with 2 mM CDNB and a 0.01 to 10 mM GSH concentration range.
The apparent Km and kcat values were calculated by nonlinear regression using
the Michaelis-Menten equation (r2 > 0.99). Data are represented as
mean ± S.D. (n ± 3)
ND Not detectable
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oleracea (Fig. 2a). Genes encoding the five GSTs were
up-regulated compared to the control (in vitro develop-
ment conditions). AbGTT1.2 gene was most strongly
and quickly (2 dpi, i.e. when the necrotic area around
the inoculation point was barely visible) induced during
the interaction. The maximum expression level was
reached at 6 dpi (i.e. extending necrosis with fungal co-
nidia formed on the surface of infected tissues) for most
of the GSTs. Peak of expression was particularly marked
for the genes encoding AbGTT1.2 and AbGSTO1. Over-
all, the transcription induction of the five selected genes
occurred very rapidly during infection and remained
Fig. 2 Quantitative RT-PCR results for the expression of selected GST genes
inoculation (dpi) (a) or in vitro in the presence of H2O2 (2.5 mM) for 30 min
ratio of its relative expression (studied gene transcript abundance/actin and t
expression in the corresponding control. The data are the mean of three repe
high throughout the interaction. As ITCs have been
found to generate oxidative stress in fungi [5], expres-
sion of the five GST genes was also recorded in fungal
cultures supplemented with H2O2 (Fig. 2b). Strong up-
regulation of all the selected AbGST genes was observed
after 30 min exposure and then the transcripts returned
to their basal level after 2 h.

Pathogenic behavior of GST-deficient mutants in planta
Virulence and aggressiveness of the GST-deficient mu-
tants were evaluated on B. oleracea. Six days after inocu-
lation of a highly concentrated conidia suspension (105

conidia per ml), usual symptoms were observed for the
wild-type and mutant genotypes (data not shown). At
high parasitic pressure, the loss of one of the five-
selected AbGSTs did not affect the virulence of A. bras-
sicicola. The analysis of symptoms under lower applied
parasitic pressure (104 conidia per ml) revealed differ-
ences in aggressiveness between the tested genotypes
(Fig. 3). ΔAbGTT1.2 and ΔAbGSTFuA1 mutants showed
no significant difference compared to the wild-type when
the inoculum was at low concentration. For ΔAbGSTO1,
ΔAbMAPEG1 and ΔAbUre2pB1 a significant decrease in
aggressiveness compared to the wild-type strain was ob-
served at 6 dpi. The necrotic area decreased by approxi-
mately 70 % for these mutants.

Susceptibility of GST-deficient mutants to isothiocyanates
The effects of AbGST inactivation in A. brassicicola on co-
nidia germination and initial mycelium growth in the
presence of ITCs were examined. An analysis of the neph-
elometric growth curves (Fig. 4a) revealed that under con-
trol condition (PDB medium), no significant phenotypic
difference in conidia germination (based on the lag time
parameter) or mycelium growth (based on the maximum
growth rate parameter) was detected in any of the tested
mutants as compared to the wild-type. In contrast, mu-
tants deficient for AbGSTO1 and for AbUre2pB1 showed
. Gene expression was measured either in planta at 2, 4 and 6 day post
and 2 h (b). For each gene, expression induction is represented as a

ubulin transcript abundance) in each inductive condition to its relative
titions



Fig. 3 Pathogenic behaviour of GST-deficient mutants. B. oleracea leaves were inoculated with 5 μL drops of conidia suspension (104 conidia/mL
in water). Transformants were inoculated on the right part of the central vein and compared on the same leaf with the parental strain (inoculated
on the left part of the central vein). Percentages of aggressiveness with respect to the wild-type strain were calculated at 6 dpi. Stars indicate a
significant difference with respect to the wild-type aggressiveness (100 %) using the Student test (P < 0.01)
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an increased susceptibility to ITC compared to the wild
type (Fig. 4b). In comparison, ΔAbGSTFuA1 behaved like
the wild-type strain and ΔAbGTT1.2, ΔAbMAPEG1 had
an intermediate phenotype.

Discussion
In A. brassicicola, the first characterized GST, initially
called AbGST1 [26] and renamed AbGTT1.1 in the
present study as it belongs to the GTT1 family, was
shown to possess conjugation activity of Al-ITC or
CDNB to glutathione. A more thorough examination of
the A. brassicicola proteome revealed 22 more putative
GSTs that could be classified into 7 families according to
the proposed classification. Investigation of the GST
content in several fungal genomes revealed a huge diver-
sity in terms of GST number ranging from 6 in S. cerevi-
siae to more than 40 in saprophytic Basidiomycetes [30].
However, the number of GSTs encoded by the A. brassi-
cicola genome was comparable to that found in other
fungal necrotrophs such as Botrytis cinerea (24), Stago-
nospora nodorum (23), or hemibiotrophs such as Myco-
sphaerella graminicola (25), Mycosphaerella fijensis (28),
Leptosphaeria maculans (23). Five of the A. brassicicola
GSTs that were previously shown to be up-regulated
during ITC exposure [5] were clustered into five differ-
ent classes, i.e. GTT1, GST Omega, GSTFuA, Ure2p
and MAPEG.
Detailed analysis of the catalytic properties of these

ITC-inducible GSTs revealed that, besides AbGTT1.1,
another GST, called AbGSTFuA1, was able to conjugate
ITC to glutathione. Members of the fungus-specific
GSTFuA class have been described as having ligandin
properties with various small aromatic compounds and
GSH transferase activity with phenetyl-ITC [9]. This
GST therefore appears to be a good candidate in protec-
tion mechanisms of A. brassicicola against host fungi-
toxic metabolites. However the mutant strain deficient
for this enzyme was neither more susceptible to ITC nor
less aggressive on Brassica than the wild-type and thus
did not appear to be crucial for A. brassicicola pathogen-
icity. This could be due to a putative functional redun-
dancy with the second isoform identified in the A.
brassicicola genome. Otherwise it could be due to the
fact that, in presence of high ITC concentrations, the ef-
ficient conjugation activity of AbGSTFuA1 could result
in intracellular GSH depletion, leading to overall cellular
oxidative stress. Indeed, Zhang [35] reported that ITCs
are presumed to penetrate human and animal cells by
diffusion but once inside the cells they rapidly conju-
gated via their -N = C = S group with intracellular GSH.
Such conjugation, which takes place spontaneously but
is enhanced by GST, may explain the rapid accumulation
of ITC within the cells (up to 100-fold the extracellular
concentration) and the rapid and marked depletion of
GSH observed after ITC exposure [36, 37].
AbGTT1.2 is a second member of the GTT1 class of

ITC-inducible GST in A. brasiscicola. However, unlike
AbGTT1.1, AbGTT1.2 was able to conjugate glutathione
to CDNB but was not found to accept ITCs as substrate
and had a highly efficient peroxidase activity against



Fig. 4 Nephelometric monitoring of growth of the wild-type strain and AbGST deficient mutants. Conidia from the wild-type and mutants were
used to inoculate microplate wells containing standard PDB medium (a) or supplemented with Ph-ITC (b). Growth was automatically recorded for
25 h at 25 °C using a nephelometric reader. Each genotype was analyzed in triplicate and the experiments were repeated three times per growth
condition. Black circles: wild-type strain; black triangles: ΔAbGTT1.2; white squares: ΔAbGSTO1; black diamonds: ΔAbMAPEG1; white circles: ΔAbUre2pB1;
black squares: ΔAbGSTFuA1
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cumene hydroperoxide. In S. cerevisiae, GTT1 was
shown to catalyse the reduction of hydroperoxides [38]
and to be involved in xenobiotic detoxification [39].
Strong in planta AbGTT1.2 gene induction was ob-
served during fungal infection, but the ΔAbGTT1.2 mu-
tant did not show reduced aggressiveness on its host
plant or increased susceptibility to ITC compared to the
wild-type. As five members of the GTT1 class were
found in A. brassicicola, the absence of a marked pheno-
type for the AbGTT1.2-deficient mutant suggested that
these GSTs have partial functional redundancies in this
fungal pathogen.
By contrast with the two above-mentioned GST-deficient

mutants, ΔAbMAPEG1, ΔAbUre2pB1 and ΔAbGSTO1
mutants were highly impaired in their pathogenicity, with
a severe reduction in their ability to form extended
necrosis on host tissues. The two latter mutants were
also found to be much more susceptible than the wild-
type to ITC exposure. AbGSTO1 belongs to the Omega
family, a member of the cysteine-containing GSTs
superfamily that is widespread in several kingdoms and
phyla [40]. The conserved cysteine residue in their ac-
tive site modifies their enzymatic properties as they do
not catalyze conventional conjugation reactions but in-
stead have glutathione-dependent thioltransferase ac-
tivity like many other cysteine-containing GSTs [41]. In
line with its apparent protective role against ITC tox-
icity, AbGSTO1 protein may therefore be involved in
the reduction of sulfur bonds formed after reaction be-
tween ITC and cysteine sulfhydryl groups of target cel-
lular proteins, thus restoring their enzymatic functions.
Indeed, in human cells, ITCs were found to covalently
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bind to multiple cysteine residues of different target
proteins such as α and ß-tubulin [42], Toll-like receptor
TLR4 [43] or cytochrome P450 enzymes [44].
AbUre2pB1, as noted with AbGTT1.2, was found to

function as GST and peroxidase although the measured
activities were low. However, contrary to the ΔAbGTT1.2
mutant, the ΔAbUre2pB1 mutant showed increased sus-
ceptibility to ITC and decreased aggressiveness compared
to the wild-type strain. The first structural and biochem-
ical characterization of a fungal Ure2pB GST (PcUre2pB1
from Phanerochaete chrysosporium) was recently pub-
lished [33]. Unlike PcUre2pB1, AbUre2pB1 did not depict
any activity in deglutathionylation tests with β-ME-SG.
Based on our results, it is therefore difficult to come up
with any convincing explanation concerning the role of
this enzyme in protection against ITCs and in pathogen-
esis, but they raise interesting questions concerning the
evolution of these enzymes. It should be noted that, be-
sides small molecules, PcUre2pB1 was also shown to be
involved in glutathionylation/deglutathionylation of pro-
teins, particularly to interact with a GST from the omega
class of P. chrysosporium, PcGSTO3 [33]. As AbGSTO1
and AbUre2pB1 have comparable expression patterns and
mutants deficient for these two GSTs have similar phe-
notypes, it would be interesting to check whether these
two proteins could also interact and cooperate to pro-
tect the fungal cell against ITC toxicity. We have not
been able to produce the soluble active form of AbMA-
PEG1 in a bacterial expression system. In fact, active
recombinant forms of eukaryotic members of these
membrane-associated GSTs have mainly been obtained in
yeast or baculovirus/insect expression systems [45, 46].
However, careful inspection of the protein sequences
derived from AB08663.1 (corresponding to the A2H5
ITC-induced EST, [5]) revealed the presence of a se-
quence pattern similar to that described by Bresell
et al. [45] for the MGST3 sub-family of microsomal
glutathione transferase (MAPEG) and a typical MAPEG
hydrophobicity profile (Additional file 1). This protein
has been shown to exhibit peroxidase activity and the
corresponding gene is up-regulated in P. chrysosporium
in the presence of toxic oak extracts, suggesting a puta-
tive role in the oxidative stress response [47]. The
phenotype of the mutant defective for AbMAPEG1
suggested that this protein had no function in ITC de-
toxication while being important for full pathogenicity.
Examination of microarray data from A. brassicicola
exposed to brassicaceous indolic phytolexins (N’Guyen,
unpublished) revealed that among the 23 GSTs, 6 were
up-regulated in the presence of brassinin but of these
only AbMAPEG1 belongs to the ITC-inducible set con-
sidered in the present study. This suggests that AbMA-
PEG1 could be involved in brassinin tolerance during
host-plant colonization.
Conclusions
Three of the ITC-inducible GSTs were found to be
essential for the normal pathogenicity of A. brassi-
cicola. So far functional characterization of fungal
GSTs has mainly been performed with saprophytic
model species such as A. nidulans and S. cerevisiae
or wood-degrading species like P. chrysosporium. A
mutant deficient for a GST (ΔBcGST1) was obtained
in B. cinerea but did not show any reduced virulence
[48]. To the best of our knowledge this study there-
fore provided the first evidence that some GSTs play
an essential role in the pathogenicity of a fungal
necrotroph.

Methods
Fungal strains and growth conditions
The A. brassicicola wild-type strain Abra43 used in this
study has previously been described [23, 24]. For rou-
tine culture, A. brassicicola was grown and maintained
on potato dextrose agar (PDA). The method based on
microscale liquid cultivation (from conidial suspen-
sions) and automated nephelometric recording of
growth, followed by extraction of relevant variables
(lag time and growth rate), was described by [49]. To
study the susceptibility of fungal strains to ITCs, allyl-
ITC (Al-ITC), benzyl-ITC (Bz-ITC) or phenetyl-ITC
(Ph-ITC), all purchased from Aldrich Chemical Co.
(Milwaukee, WI), were diluted from stock solutions
prepared in methanol at the final desired concentra-
tions. Solvent concentrations in controls and assays
did not exceed 1 % (v/v).

RNA isolation and expression analysis by real-time
quantitative PCR
Total RNA was prepared according to the TRIzol reagent
protocol (Invitrogen). Additional cleanup and DNase
treatment were performed using the Nucleospin RNA II
kit (Macherey-Nagel) according to the manufacturer’s
protocol. Complementary DNA was synthesized from
5 μg of total RNA using the reverse-transcription system
[50 mM Tris-HCl pH 7.5, 75 mM KCl, 10 mM DTT,
3 mM MgCl2, 400 nM oligo(dT)15, 1 mM random hexam-
ers, 0.5 mM dNTP, 200 units M-MLV reverse transcript-
ase, Promega]. The total volume was adjusted to 30 μl and
the mixture was then incubated for 60 min at 42 °C. Ali-
quots of the resulting first-strand cDNA were used for
real-time PCR amplification experiments using the ABI
Prism 7000 sequence detection system (Applied Biosys-
tems) and the SYBR green PCR master mix according to
the manufacturer’s instructions. After 10 min denaturation
at 95 °C, the reactions were cycled 40 times at 95 °C for
15 s and 60 °C for 1 min. The absence of contaminating
genomic DNA in the RNA samples was checked by direct
amplification of non-reverse transcribed samples. The
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synthesis of a single specific PCR product was verified by
melting point analysis after the run. For each condition,
all amplifications were performed in triplicate from two
separate biological samples and the mean was determined
for further calculations. The relative quantification ana-
lysis was performed using the comparative ΔΔCt method
as described by [50]. To evaluate the gene expression level,
the results were normalized using Ct values obtained from
actin cDNA amplifications run on the same plate.

Generation of targeted gene replacement constructs and
fungal transformation
The gene replacement cassettes were generated using
the double-joint PCR procedure [51]. The selectable
marker inserted in the PCR constructs corresponded to
the Hph gene cassette (1436 bp) from pCB1636 [52]
conferring resistance to hygromycin B. The sets of
primers used to amplify the 5’ and 3’ flanking regions of
each targeted gene are presented in the Additional file 2.
The double-joint final PCR products were used to trans-
form A. brassicicola protoplasts as described by [53].
The A. brassicicola wild-type Abra43 was used to obtain
the hygromycin-resistant strains deficient for each GST.
Potential transformants were prescreened by PCR with
relevant primer combinations (Additional file 2) to con-
firm integration of the replacement cassette at the tar-
geted locus. Two putative gene replacement mutants for
each construct were further purified by three rounds of
single-spore isolation and then confirmed by PCR.

Infection assays
For plant infection assays on Brassica oleracea plants (var.
Bartolo), 5 μL drops of A. brassicicola conidia suspension
(105, 104 or 103 conidia/mL in sterile water) were inocu-
lated on leaves from 5 week-old plants. Inocula were sym-
metrically deposited on the left and right sides from the
central vein. The plants were then maintained under sat-
urating humidity (100 % relative humidity). Symptoms
were observed and samples collected at 2, 4, 6 days post-
inoculation (dpi) for AbGst expression analyses.

Expression and purification of the recombinant proteins
GST coding sequences were amplified from the cDNAs
obtained as described above, using the Phusion™ Hot
Start High Fidelity DNA polymerase (Finnzymes) and
relevant primer sets (Additional file 2). The PCR prod-
ucts were cloned into the NcoI and either BamHI sites
(AbGTT1.2, AbGSTO1, AbMAPEG1 and AbGSTFuA1)
or XhoI (AbUre2pB1) of the pET-14b vector (Novagen)
resulting in a construction devoid of an His-Tag. The re-
combinant plasmids were then used to transform the
Escherichia coli strain BL21 (DE3) co-transformed by
the chloramphenicol-resistant plasmid (pRARE) in order
to provide the rare t-RNAs for AUA, AGG, AGA, CUA,
CCC, and GGA. Cultures were progressively amplified
up to 2 L in LB medium supplemented with ampicillin
and kanamycin at 37 °C. Protein expression was induced
at the exponential phase by adding 100 μM isopropyl β-
D-thiogalactopyranoside (ITPG) for 4 h at 37 °C. The
cultures were then centrifuged for 15 min at 4400 × g.
The pellets were suspended in 30 mL of TE NaCl
(30 mM Tris-HCl, pH 8.0, 1 mM EDTA, 200 mM NaCl)
buffer. Cell lysis was performed on ice by sonication
(2 × 2 min at 1 min intervals), and the soluble and insol-
uble fractions were separated by centrifugation for
30 min at 27,000 × g at 4 °C. The soluble fraction (super-
natant) was then fractionated with ammonium sulfate in
two steps, and the protein fraction precipitating between
40 and 80 % of the saturation contained the recombin-
ant protein, as estimated by 15 % SDS-PAGE. The pro-
tein was purified by size exclusion chromatography after
loading on an ACA44 (5 × 75 cm) column equilibrated
in TE NaCl buffer. Fractions containing the protein were
pooled, dialyzed by ultrafiltration to remove NaCl, and
loaded onto a DEAE cellulose column (Sigma) in TE
(30 mM Tris-HCl, pH 8.0, 1 mM EDTA) buffer. The pro-
teins were eluted using a 0–0.4 M NaCl gradient. Finally,
the fractions of interest were pooled, dialyzed, concentrated
by ultrafiltration under nitrogen pressure (YM10 mem-
brane; Amicon). Purity was checked by SDS-PAGE. Protein
concentrations were determined spectrophotometrically
using the specific molar extinction coefficient at 280 nm of
each GST as calculated online (http://web.expasy.org/prot
param/) using the ProtParam tool: 42 400 cm-1 M-1, 46
410 cm-1 M-1, 60 390 cm-1 M-1, 49 390 cm-1 M-1 for
AbGTT1.2, AbGSTO1, AbUre2pB1 and AbGSTFuA1,
respectively.

Activity measurement
GSH transferase activity was spectrophotometrically
assessed with Al-ITC, Bz-ITC and Ph-ITC prepared in
methanol and 1-chloro-2,4-dinitrobenzene (CDNB) pre-
pared in DMSO. The increased absorbance arising from
the formation of the S-glutathionylated adduct was
monitored at 274 nm for ITC and 340 nm for CDNB.
Reactions with CDNB were performed in 100 mM phos-
phate buffer (pH 7.5), in the presence of GSH (5 mM)
while the reaction with ITC was performed at pH 6.5
with an identical GSH concentration. Peroxidase activ-
ities were monitored as follows: 1 mM peroxide (hydro-
gen peroxide, and cumene hydroperoxide) in 30 mM Tris-
HCl (pH 8.0), was incubated in the presence of 2 mM
GSH, 200 μM NADPH, 0.5 IU glutathione reductase. The
activity was monitored according to the decrease in
absorbance at 340 nm arising from NADPH oxidation in
this coupled enzyme assay system. Hydroxyethyldisulfide
(HED) was incubated with GSH to allow the spontaneous
formation of glutathionylated β-mercaptoethanol (β-ME-

http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
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SG). Then, the β-ME-SG deglutathionylation test was
monitored using the coupled system but by using 1 mM
HED instead of the peroxides. The reactions were started
by adding the purified enzyme (0.1 μM) and monitored
with a Cary 50 UV-Visible spectrophotometer (VARIAN).
Catalytic parameters were calculated using the GraphPad®
software.

Sequence analysis
Amino-acid sequence alignments were done by CLUS-
TALW and the tree was constructed with the neighbor
joining method in MEGA 5.0 software [54]. Hydropathy
curves were generated according to Kyte and Doolitle [55].

Additional files

Additional file 1: Structural features of AbMAPEG1. (A) Protein
sequence of AB08663.1. Amino-acids in red are conserved in the specific
pattern characteristic for MAPEG members belonging to the MGST3
subfamily [45]. Underlined residues are conserved in all members of the
MAPEG family [46]. (B) Hydrophobicity plots according to [55] of the protein
sequences from AB08663.1 (left) and human MGST3 (Swissprot identifier
O14880) (right).

Additional file 2: List of primers.

Additional file 3: List of sequences used to generate the
phylogenetic tree of GSTs.
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