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ABSTRACT: Membrane filtration operations (ultra-, microfiltration) are now
extensively used for concentrating or separating an ever-growing variety of colloidal
dispersions. However, the phenomena that determine the efficiency of these
operations are not yet fully understood. This is especially the case when dealing with
colloids that are soft, deformable, and permeable. In this paper, we propose a
methodology for building a model that is able to predict the performance (flux,
concentration profiles) of the filtration of such objects in relation with the operating
conditions. This is done by focusing on the case of milk filtration, all experiments
being performed with dispersions of milk casein micelles, which are sort of ″natural″
colloidal microgels. Using this example, we develop the general idea that a filtration
model can always be built for a given colloidal dispersion as long as this dispersion
has been characterized in terms of osmotic pressure Π and hydraulic permeability k.
For soft and permeable colloids, the major issue is that the permeability k cannot be
assessed in a trivial way like in the case for hard-sphere colloids. To get around this
difficulty, we follow two distinct approaches to actually measure k: a direct approach, involving osmotic stress experiments, and a
reverse-calculation approach, that consists of estimating k through well-controlled filtration experiments. The resulting filtration
model is then validated against experimental measurements obtained from combined milk filtration/SAXS experiments. We also
give precise examples of how the model can be used, as well as a brief discussion on the possible universality of the approach
presented here.

1. INTRODUCTION

Membrane operations like ultra- or microfiltration are now
extensively used in the industry for separating and/or
concentrating colloidal particles (colloidal humic matter,
mineral colloids, macromolecular drugs, proteins, etc.). In the
past twenty years, considerable research effort has been devoted
to understanding and modeling such filtration operations.1

However, current approaches are still limited to monodisperse
hard-sphere colloids, while the colloids encountered in the real
world are often polydisperse, soft, deformable, and even porous.
In this paper, we treat the generic problem of soft and
permeable colloids, with the objective of proposing a
methodology for building a filtration model for such objects.
Our experimental model system is the milk casein micelle,

which is a ″natural″ equivalent to the artificial colloidal
microgels that are now commonly used in the Soft Matter
community (like poly(N-isopropylacrylamide) (PNIPAM)
systems, for instance).2,3 Those micelles, which make up to
80% of the protein content of cow milk, are complex
association colloids made of four distinct caseins (αs1, αs2, β,
and κ) and 8% in mass of phosphate and calcium ions.4 They
are highly polydisperse, with a vast majority of micelles with

diameters between 50 and 200 nm.5,6 Because they contain a
lot of water in their internal core (about 76%), the casein
micelles can literally be viewed as sponge-like colloids or
microgels that are highly porous (and consequently perme-
able), and that can deform when compressed.5,7−10 The choice
of the casein micelle is also motivated by the fact that milk
filtration operations are widely encountered in the dairy
industry,11,12 and it is now well established that the perform-
ance of ultra- and microfiltration in dairy processing are
intimately linked to the presence of the casein micelles in milk
and to their accumulation near the membrane surface.13 A
filtration model would then be of considerable interest and
benefit to this industry.
Since the pioneering works of Cohen and Probstein,14 and

later of Belfort et al. and Bowen et al.,15,16 understanding and
modeling the filtration of a colloidal dispersion has always been
a challenge. We refer the reader to the review of Bacchin et al.
for a detailed discussion and some historical considerations on



that point.17 Also, some other key references can be cited here,
like those of Chen et al. and Elimelech et al., for instance.18−21

In brief, the particularity of colloidal filtration is that the
interactions between and within the objects have dominant
effects on the filtration performance,14 whereas hydrodynamic/
shear-induced interactions are prevailing when filtrating
micrometer-size particles.22 As a consequence, colloidal
interactions have to be taken into account in a modeling
approach. In latest developments, this is usually done through
the use of the osmotic pressure Π as a quantitative descriptor of
the colloidal interactions.16,23,24 The osmotic pressure of a
colloidal dispersion indeed reflects the balance of all
interactions in the system.25−28 It gives a measure of how the
dispersion resists to an overall increase in its concentration: the
higher its osmotic pressure, the harder it is to ″compress″ it.
Besides osmotic pressure, another essential parameter that is
necessary to accurately model the filtration of a colloidal
dispersion is its permeability k, which measures the resistance
of the system to the hydraulic flow that passes through it.29,30

As opposed to the osmotic pressure, k is a ″structural″
parameter that originates from the hydrodynamic drag forces
exerted on the involved colloids and that is therefore directly
related to their size and spatial organization.30,31 Of course, Π
and k are both concentration-dependent parameters, and it is
by knowing how Π and k evolve with concentration C for a
given colloidal dispersion that the filtration model can be
built.16,32 The model can then be used in several ways, like
predicting concentration profiles and permeation volumes or
fluxes versus time (note that a model of this type has been
recently used for describing the concentration of colloids in
microevaporators, in direct analogy with filtration33).
This modeling approach has now been used for quite a

number of colloidal objects, such as latex particles or globular
proteins.1,16,23,34,35 The way the authors deal with the osmotic
pressure and its variation with concentration varies from case to
case. In some studies, the Π(C) relation is measured
experimentally, using the osmotic stress technique for
instance.34,35 In other studies, the authors use theoretical
expressions for Π(C), those expressions often being based on
the DLVO theory and therefore, depending on the size, the
surface charge and some other properties of the colloid.1,16,23

On the other hand, for all the systems investigated so far, k(C)
is always taken as the theoretical permeability of a bed of
noninteracting and nonporous hard spheres of size equivalent
to the size of the colloid investigated. Mathematical expressions
like the one of Happel are the most often used to estimate this
permeability.1,16,34,35 In such expressions, k(C) is only related
to the size of the colloid and to the volume fraction occupied by
the colloid in the dispersion.36

In the cases investigated, the use of such theoretical
expressions is possible because latex particles and globular
proteins are, like hard spheres, nondeformable and non-
permeable. One clearly sees here that this approach cannot be
followed entirely for soft and permeable objects. Indeed, while
it is always possible to measure Π(C) for any dispersion of soft
colloids (and casein micelle dispersions in particular; see
section 4.1), it is much more difficult to know how k(C) varies
with C in such a case. As opposed to hard spheres, which are
nonpermeable objects that can pack to a maximum volume
fraction of ∼0.64 for the monodisperse case, deformable and
porous particles can pack to concentrations that are much
higher than the concentration for close-packing. Moreover, in
these conditions of high concentrations, it is the internal

porosity of the objects that determines the permeability of the
dispersion. In such a case, k(C) is very difficultif not
impossibleto predict theoretically. With the present study,
and taking the casein micelle as our model experimental system,
our objective is to get around this difficulty and finally provide a
model that is fully able to predict the filtration of a dispersion of
soft and permeable colloids. Two approaches are presented for
estimating k(C). The first one consists of measuring k(C)
experimentally through specifically designed osmotic stress
experiments. The other one, inspired from the work of Bowen
et al.,1,37 consists of estimating k(C) from dead-end filtration
runs and from the known variation of Π with C.
As a final note, we emphasize that this work is dedicated to

the dead-end filtration case only, and has to be considered as a
first step toward the building of a model for industrial cross-
flow filtrations. This last case, for which the effect of cross-flow
velocity on the build-up of the accumulated layer needs to be
taken into account, will be investigated in future studies.

2. THEORY

2.1. Filtration Model. Figure 1 gives a schematic view of
how deformable colloids accumulate at a membrane surface in

dead-end filtration. The objects are of course the most
concentrated at the membrane surface. In the depicted
situation, the local concentration is such that the colloids are
deformed and in contact with each other. In the case of casein
micelles, this corresponds to the formation of a gel or
irreversible deposit.13,38−40 Above this very dense layer, a
polarized layer exists, where the objects are still more
concentrated than in the bulk but where phase transition has
not yet occurred. This phase transition can be characterized
through a critical osmotic pressure Πcrit, as depicted in Figure 1.
Let us first consider the polarized layer only. In this layer, the

solvent flux is governed by the solution thermodynamics. The
effective driving force for permeation through the polarized
layer is then simply the difference in osmotic pressure Π at its
two ends.19,41 At steady state, and with the convention of
Figure 1, this gives the following expression for the absolute
value J of the solvent volumetric flux at any point of the
polarized layer

Figure 1. Schematic cartoon of soft colloidal particles accumulating at
a membrane surface in dead-end filtration. The full and dashed lines
illustrate how the osmotic pressure Π(C) and the hydrostatic pressure
P vary through the polarized layer and the deposit. At Π(C) > Πcrit, the
polarized layer turns into an irreversible deposit that does not disperse
when pressure is released.40



η η
= −

Π
= −

Π
J

R x

k

x

1 d

d

d

dPL

PL

(1)

where RPL is the resistance of the polarized layer to solvent flow
at position x, kPL = 1/RPL is the corresponding permeability of
the polarized layer toward the solvent, and η is the dynamic
viscosity of the solvent.
As it was carefully demonstrated by Elimelech et al.,19 the

osmotic pressure difference across the polarized layer is in fact
strictly equivalent to the cumulative hydrodynamic drag forces
exerted on the particles. This implies that eq 1 can be expressed
in terms of a hydraulic pressure drop across the polarized layer,
the hydraulic resistance R and the permability k being defined
in the exact same way. This is the well-known Darcy’s law that
is commonly used in filtration theory
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Let us now consider the gel layer. In that case, and like in the
case of any porous media, the classical cake filtration theory
directly applies. The permeation flux through the gel is then
expressed in the same form as eq 2
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In cake filtration theory, the so-called ″solid″ (or
compressive, or effective) pressure PS is usually introduced at
that point.42−44 This pressure reflects the ″stress within the
matrix of solid particles″ that make the cake.43 For a gel or a
packing of microgel beads such as casein micelles, the effective
pressure is nothing other than the osmotic pressure Π of the
medium.28,45 The same equivalence as the one demonstrated
by Elimelech et al.19 in the polarized layer can then be used for
the gel/cake phase.42−44,46 This results in
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in all positions of the gel. In other words, a drop in liquid
pressure within the gel is always exactly balanced by an increase
in osmotic pressure.
Quite naturally, eqs 3 and 4 then give
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which is the exact homologue of eq 1 but in the gel phase.
Thus from eqs 1 and 5, one can see that the permeation flux

J, at steady state, can be described by the same single equation
over the entire layer of material accumulated at the membrane
surface, i.e., the polarized layer plus the gel layer. Taking
explicitly into account the concentration dependence of both k
and Π, this equation writes
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Equation 6 is the key equation used in the present work. It
basically says that the filtration flux of a colloidal dispersion can
be predicted knowing the variations of permeability and
osmotic pressure with the concentration of colloids. Quite
importantly, we believe that eq 6 is universal and can be applied
to any colloidal dispersion, including ″complicated″ ones such
as mixtures of several colloids and/or dispersions of soft
colloids, for instance. In other words, it is possible from eq 6 to

predict a filtration flux of any colloidal dispersion as long as
k(C) and Π(C) are known. Note that, for monodisperse hard-
sphere colloids, we can actually demonstrate that the
″generalized Darcy’s law″ of eq 6 is in fact equivalent to the
convection−diffusion mass balance equation that is generally
used for describing the concentration polarization phenomenon
in such a peculiar case.1,16,23,32 We briefly discuss that point in
the Supporting Information provided with this article.
As a side note, it is important to stress here that

electroviscous effects can somewhat increase the apparent
viscosity of the fluid at sufficient colloid concentrations (see ref
47 for details). This can be accounted for through an additional
term in eq 6.16 However, we voluntarily neglect those effects, as
they are known to be minor in most cases (×1.4 at max).

2.2. Modeling the Filtration from k(C) and Π(C). In
dead-end filtration, the prediction of a flux from k(C) and Π(C)
relies on a series of hypotheses and calculations that are given
in detail in the papers of Bowen’s and Bacchin’s groups,1,16,23

and that we just briefly give here.
First, the quasi-stationary approximation is applied, meaning

that the filtration is considered as a succession of stationary
states for which eq 6 can be used as such. Multiplying eq 6 by
C, we obtain
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We then integrate eq 7 on the thickness δ of the accumulated
layer
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which simplifies in
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We now make the reasonable assumption that the full
quantity of matter accumulated (polarized layer + gel, first
integral in eq 9) is directly related to the filtered volume Vf and
the bulk concentration of colloids Cbulk. We then have
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with Am the membrane area.
The Darcy’s law, expressed at the membrane surface, is also

important since it directly relates J to the osmotic pressure Πm

at the membrane surface

η
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P

R

m
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with Rm the hydraulic resistance of the membrane.
Then, for a given transmembrane pressure ΔP, the

calculation of Vf and J with filtration time t consists of the
following steps: (a) Assume a given value of Cm, the
concentration at the membrane surface. (b) Calculate Πm

knowing the relation between Π and C. (c) Calculate J from
eq 12, knowing the membrane resistance. (d) Calculate Vf from
eq 11, the integral term being estimated through either a
numerical or graphical method and using the known variations



of k(C) and Π(C). (e) Reiterate steps (a)−(d) for other values
of Cm covering the expected range of variation (from Cbulk to a
realistic maximum value of C that can be attainable at the
membrane surface). (f) When the values of Vf and J are known
for a sufficient number of points, the time t necessary to filtrate
one given volume Vf can be estimated through the following
simple integration, again performed either numerically or
graphically
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By performing step (f) for a number of points, we obtain the
full variation of Vf and J with filtration time t.
Additional information that can be obtained at this point is

the concentration and osmotic pressure profiles in the
accumulated layer. To obtain those profiles, one first has to
choose a filtration time t, which implies setting both a colloid
concentration Cm and an osmotic pressure Πm at the membrane
surface (see preceding calculation). The C and Π profiles are
then simply constructed by solving the following integral at
different positions in the layer
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This whole approach has been followed in some previous
filtration studies involving dispersions of one ″hard″ (non-
deformable) and nonporous colloid, like latex particles, for
instance.1,16,23,34,35 In all cases, k(C) is simply assumed to be
the permeability of a bed of nonporous spheres, and is
estimated through known mathematical expressions such as the
Happel’s equation.36 Concerning Π(C), theoretical expressions
also exist for different colloidal systems: from the simple
expressions of Carnahan−Starling for dispersions of non-
interacting hard spheres to the more complicated DLVO-based
expressions proposed by Bowen et al. for dispersions of
interacting spheres.1,48 However, as far as a given colloidal
system is concerned, and when it is possible, our advice is to
determine experimentally the Π(C) curve, since accurate
osmotic pressure models are still lacking.26,27 Such an
experimental determination of Π(C) is usually performed
through the osmotic stress technique.25,34,49

2.3. Using the Model in a Reverse Way: Estimating
k(C) Knowing Π(C) and J(t). In this paper, we deal with
dispersions of casein micelles, which are sponge-like objects
that are both porous and deformable.5,7−10 As for other
colloids, it is possible to determine the Π(C) behavior of casein
micelle dispersions through osmotic stress experiments (section
4.1 and ref 9). On the other hand, the k(C) of casein micelle
dispersions is both difficult to measure experimentally (last part
of section 3.3) and nearly impossible to predict theoretically:
mathematical expressions exist for dispersions of porous
spheres,30,50 but they are still impractical as they rely on
internal characteristics that are not known yet for casein
micelles.
We propose here to estimate the k(C) of casein micelle

dispersions by using the filtration model of section 2.1
″reversely″. That is to say, we propose to estimate k(C)
using Π(C), known experimentally, and values of J(t), also
obtained experimentally through well-defined filtration runs.
After k(C) is determined in that way, our idea is that the
knowledge of k(C) and Π(C) will make it possible to predict
the filtration of casein micelle dispersions in absolutely any

conditions of filtration, simply by following the steps (a)−(f)
found in the previous section. In many aspects, this proposition
is similar to the one of Bowen et al. in 2001, who showed that it
is possible to obtain Π(C) for a protein dispersion, still using
the model presented in section 2.1, but this time taking the
Happel’s equation for k(C), and using J(t) values obtained
through dead-end filtration experiments.37 In both cases
(estimating k(C) from Π(C) and J(t), or estimating Π(C)
from k(C) and J(t)), the calculations are based on eq 10, which
can be rewritten in the form
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This equation can then be turned into the following time-
dependent expression (see ref 16 for a detailed description of
the mathematical manipulations that are performed)
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which gives, after differentiation
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When differentiated with respect to time, eq 12 gives
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Then, by combining eqs 17 and 18, we obtain
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Thus, by performing filtration experiments where Vf, and
consequently J, are obtained as a function of time, we can
simultaneously: (i) calculate the osmotic pressure at the
membrane surface Πm as a function of time using eq 12, and
then determine the corresponding Cm at each time, and (ii)
calculate the product k(Cm)Cm as a function of time using eq
19. The permeability k(C) is then obtained by computing the
Cm and k(Cm)Cm values at each time.

3. EXPERIMENTAL SECTION

3.1. Dispersions. All dispersions were prepared from native
phosphocaseinate powder (NPC) dispersed in a solvent made from
ultrafiltration of skimmed milk (UF permeate). The NPC powder was
prepared in our laboratory following a protocol given by ref 51 and
that we summarize in a previous paper.40 In the powder, the caseins
and their associated minerals make more than 90% of the total solid
content.

The UF permeate solvent was prepared through membrane
ultrafiltration of fresh skim milk (5000 Da cutoff). The totality of
the milk protein fraction, i.e., caseins and whey proteins, is eliminated
through this operation. The UF permeate contains the milk minerals,
lactose, and a few other low molar mass molecules.52 Both thiomersal
and sodium azide, purchased from Sigma-Aldrich (St. Louis, MO,
USA), were added to the NPC dispersions as preservatives at 0.02%
and 0.05% (w/w), respectively.

NPC dispersions with concentrations ranging from 1 to 120 g·L−1

were prepared by thoroughly mixing the NPC powder in UF permeate
for 15 h at 35 °C, a condition that ensures full dissolution of the
powder.53 For higher concentrations, additional NPC powder was
added into a dispersion of 120 g·L−1 and mixed for another 24 h at 35



°C. The method allows making NPC dispersions up to 180 g·L−1 in
concentration.
In NPC dispersions, the casein micelles are known to be in a

structural state that is virtually identical to their native state in milk.54

Also, NPC dispersions have the exact same pH and ionic strength as
fresh skim milk, i.e., pH 6.7 ± 0.1 (20 °C) and ionic strength 80 mM.
In those conditions, the casein micelles are very stable, predominantly
because of the brush repulsion forces exerted by the ∼10 nm κ-casein
chains that protrude from their surface.55,56

3.2. Osmotic Pressure Measurements. Osmotic Stress. The
osmotic pressure of NPC dispersions at concentrations ranging from
30 to 700 g·L−1 was measured using osmotic stress. This technique is
based on water exchange between the sample and a polymer solution
of controlled osmotic pressure.25,49 The sample (NPC dispersion) is
placed in a dialysis bag that, in turn, is immersed in a reservoir
containing a polymer solution (poly(ethylene glycol), PEG, in our
case) also prepared with UF solvent. At equilibrium, i.e., after at least
14 days of compression, the chemical potentials of water on either side
of the bag are equal, and therefore the osmotic pressure of the sample
equals that of the polymer in the reservoir. The casein concentration in
the bag is then determined through drying at 105 °C, thus giving one
point Π(C) of the osmotic pressure curve.
Experimentally, the osmotic stress was realized using standard

regenerated cellulose Spectra/Por 2 dialysis bags with a molecular
weight cutoff of 12−14 kD (Spectrum Laboratories, Rancho
Dominguez, CA). These bags were chosen to allow exchange of
water, ions, and lactose, but not caseins or PEG. Two types of stressing
polymers were used: a 20 kD and a 35 kD molecular weight PEG.
Because of their size, those PEG molecules are supposed not to pass
through the dialysis bags of 12−14 kD (even if ″reptation″ events
cannot be excluded; see next paragraph). Solutions of PEG were
prepared at different osmotic pressures by dispersing the PEG polymer
in UF permeate. For both solutions, the relation between osmotic
pressure Π (bar) and PEG concentration [PEG] (%, w/w) is
expressed as follows9,57

Π × = +A Blog( 10 ) [PEG]C5
(20)

with A = 0.49, B = 2.5, and C = 0.24 for PEG 35 kD, and A = 0.57, B =
2.75, and C = 0.21 for PEG 20 kD.
PEG 35 kD was used to prepare stressing solutions at pressures

from 1000 Pa to a maximum of 4 bar, i.e., a pressure that corresponds
to the maximum of solubility for this polymer in an aqueous solvent.
PEG 20kD, which has a much higher solubility, was used to prepare
stressing solutions at pressures ranging from 5 to 100 bar. We
preferred to use two PEG molecules, and not only PEG 20 kD, for
preparing our solutions because of the proximity between 20 kD
molecular mass and the 12−14 kD cutoff of the dialysis membrane
(lower cutoff are available, but with a much lower permeability). At
pressures higher than 5 bar, this proximity is not a problem since the
NPC dispersions are solid gels, thus ensuring that the possible
migration/reptation of PEG molecules into the bags is strongly
limited. At lower pressures, such a phenomenon cannot be excluded,
and that is why we used a polymer of higher molecular mass (35 kD)
in this case.
Membrane Osmometry. The osmotic pressure of NPC dispersions

was also measured using a membrane osmometer. The instrument we
used (Osmomat 090, Gonotec, Berlin, DE) is limited to low osmotic
pressures (<7000 Pa), which correspond to the pressures measured for
NPC dispersions with casein concentrations ranging from 1 to 180 g·
L−1.
A membrane osmometer is composed of two compartments of

constant volumes that are separated by a membrane of a given
molecular weight cutoff. The sample is introduced in one compart-
ment, while the solvent (UF permeate in our case) is introduced in the
other compartment. The induced osmotic pressure difference is then
directly measured via a pressure transducer placed in the solvent side.
For making our experiments, we used a 10 kD regenerated cellulose
membrane supplied by Gonotec. Also, we performed experiments with
either ″fresh″ (= freshly prepared, 0 day) or ″aged″ (14 days) NPC

dispersions to examine the impact of casein proteolysis on osmotic
pressure (section 4.1).

3.3. Permeability Measurements. From Dead-End Filtration
Runs. The filtration apparatus we used is depicted in Figure 2. It

consists of a cell filtration of volume 2500 mL (model 2000, Millipore,
Billerica, MA, USA) that accepts membranes with an effective area of
165 cm2. Experiments were all performed with regenerated cellulose
ultrafiltration membranes of 10 kD MWCO (Ultracel membrane,
Millipore). Before each experiment, the hydraulic resistance Rm of the
membrane was determined by filtering pure UF permeate. Note that
the flux was always fully recovered (±5%) after each experiment and
extensive membrane flushing; indicating that membrane internal
fouling was negligible and that Rm can be considered constant during
the course of the filtration.

All filtration experiments were performed with 1 g·L−1 NPC
dispersions. We chose such a low concentration, which is more dilute
than that of casein in milk (∼25 g·L−1), to determine the permeability
in a concentration range that also covers the very dilute regime. The
dispersions were filtered under constant applied pressures ranging
from 0.1 to 4 bar. The permeate solvent was collected in a beaker
placed on an electronic balance linked to a computer, allowing the
weight of permeate to be collected with time. All filtrations were
performed at 20 °C, the filtration cell being immersed into a water
bath at a controlled temperature.

The weight of permeate was converted into a volume knowing the
density of UF permeate (ρUF = 1023 kg.m−3, determined using a DMR
48 density meter, Anton Paar, AU). The filtration flux was then
calculated by differentiating the volume data versus time, using
Taylor’s expressions like those given by Bowen et al.37

From Osmotic Stress Experiments. Imagine an infinite ″slice″ of
NPC dispersion, the casein concentration in this slice being uniform
and constant at Cslice. The thickness of the slice is e, and we assume
that a hydrostatic pressure difference ΔP is applied through the slice.
The resulting hydraulic flux would then simply be

η
=

Δ
J

k C P

e

( )slice

(21)

By performing such an experiment with slices of different
concentrations, it is theoretically possible to build the k(C) curve
for NPC dispersions. Of course, it is difficult to do such a ″perfect″
experiment in the real world. There is, however, one way to approach
the ideal conditions of the ″slice experiment″. The whole idea is based
on the osmotic stress principle explained in section 3.2. An NPC
dispersion is first equilibrated at a given osmotic pressure Π through
osmotic stress (Figure 3a, left cartoon). After equilibrium is reached,
the casein concentration in the bag is uniform. The bag is then placed
in a reservoir of osmotic pressure Π + ΔΠ, ΔΠ being only a small
pressure increment compared to Π. Because of the difference in
osmotic pressure between the bag and the reservoir, the NPC

Figure 2. Schematic diagram of the dead-end filtration apparatus.



dispersion in the bag will compress to a higher concentration (Figure
3a).
During this compression, the mass of the bag is followed by

weighing at different times. From these masses, it is then possible to
obtain the flux J0 of solvent that escapes from the bag at t = 0 (Figure
3b). Following eq 21, and neglecting the hydraulic resistance of the
bag, this flux can be expressed as

η η
=

Π − Π
=

ΔΠ= =

=

=

=

J
k C

e

k C
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( ) ( ) ( )t t

t

t

t
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bag, 0 reservoir bag, 0

0

bag, 0

0

(22)

with et=0 the thickness of the equivalent ″slice″. As a first
approximation, it can be estimated as the volume of the bag Vbag

divided by its surface Abag

ρ
= ==e
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M

A
t 0

bag

bag

cas cas

bag (23)

where Mcas is the total mass of casein in the bag, as determined
through drying at 105 °C after the experiment. ρcas is the density of the
casein dispersion, calculated knowing Cbag,t=0 and using a density
calibration curve determined from measurements performed before-
hand (DMR 48 density meter, Anton Paar, AU).
From eqs 22 and 23, it is then possible to calculate the permeability

k at casein concentration Cbag,t=0. Note that this method is only valid at
time t = 0 since it is the only moment where the concentration in the
bag (and consequently the permeability) can be considered uniform.
Indeed, as compression occurs, colloidal reorganizations in the bag
most probably happen. This leads to temporary structural
inhomogeneities that prevent consideration of a uniform permeability
in the bag. Note also that such experiments are difficult to prepare and
perform, so that we only show here the results of 4 of them.

4. RESULTS AND DISCUSSION

4.1. Osmotic Pressure Π(C). Figure 4 gives the osmotic
pressures measured for the NPC dispersions used in this work.
The results obtained from osmotic stress combine two sets of
data that were acquired by two distinct individuals at an interval
of several years (this work and ref 9). As already pointed in the
Experimental Section, 14 days of compression was required to
reach thermodynamic equilibrium in those experiments. On the
other hand, the membrane osmometry experiments were
performed for the purpose of the present study only. In
membrane osmometry, it takes between a few minutes and one
hour of equilibration to get one point. Using this technique, it
was then possible to measure the osmotic pressure of a ″fresh″
NPC dispersion (just after preparation) and of the same
dispersion but after 14 days at ambient temperature.
For the purpose of the following discussion, it is useful to

know the effective volume fraction ϕ that is occupied by the
casein micelles at different casein concentrations. ϕ is simply
calculated through

ϕ = vC (24)

with v the initial ″voluminosity″ v of the micelle, taken as v =
4.4 mL per gram of caseins.6 ϕ is displayed on the top x-axis of
Figure 4.
Looking at Figure 4, one can easily observe that osmotic

pressure evolves differently with C at low and high casein
concentrations. This two-regime behavior is a feature that we
already report and discuss in a previous paper.9

In the low concentration regime (C < 180 g·L−1), the
osmotic pressure is directly proportional to the concentration
of casein (Π ∝ C1, Figure 4). In this regime, we previously
demonstrated through precise rheological measurements that
the casein micelles strictly behave as hard spheres in a liquid;
meaning that they are still separated from each other and
interact through excluded volume effects only.38 The maximum
concentration of 180 g·L−1 corresponds to a volume fraction ϕ
= 0.78. This last value exceeds the random close packing limit
for monodisperse hard spheres (ϕcp = 0.64) simply because the
casein micelles are 30−40% polydisperse spheres that can pack
more efficiently than monodisperse ones. Also, the fact that the
micelles interact through excluded volume effects only is
explained by the high ionic strength of the dispersion (= low if
not inexistent electrostatic repulsions) and the absence of brush
repulsion forces as long as there is no direct contact between
two neighboring micelles. In such ″nonrepulsive″ situations, the
osmotic pressure is directly related to the total number n of
species in the dispersion according to the Van’t Hoff’s law

Π =
n

V
RT

(25)

This simple relation readily explains the linear dependence of
Π with casein concentration C. In addition, we can show that n
not only counts the total number of casein micelles in the
dispersions, but also counts some small peptides and casein

Figure 3. Determination of permeability k(C) from osmotic stress
experiments.

Figure 4. Evolution of osmotic pressure Π as a function of casein
concentration and effective volume fraction. The open diamonds are
the experimental points obtained through osmotic stress experiments
(present work and ref 9). The full symbols are the experimental points
obtained through membrane osmometry with either fresh (squares) or
aged (triangles) NPC dispersions. The full line is eq 26.



fragments that are in fact retained by the dialysis membrane
during osmotic stress (see ref 9 for a detailed discussion).
Those small species are initially present in the NPC powder at a
very low mass concentration. Their number density is, however,
very high. Also, when the powder is dispersed in an aqueous
solvent, their number density increases with time as a result of
proteolysis, this phenomenon being due to the presence of a
small amount of enzymes (plasmin) in the NPC powder. This
is demonstrated here by the fact that higher osmotic pressures
are measured for a NPC dispersions aged of 14 days (Figure 4;
quite consistently, these pressures also exactly correspond to
the pressure measured using osmotic stress after 14 days of
dialysis).
In the concentrated to very dense concentration regime (C >

180 g·L−1), the osmotic pressure rises approximately as the
sixth power of concentration (Figure 4). Phase transition
actually occurs at the entry of this regime, and the samples all
behave as coherent solids or gels in this concentration range.9,38

This phase transition is due to direct interactions between the
casein micelles when they are forced to get into close contact,
i.e., when ϕ exceeds 0.78. As concentration is further increased,
the casein micelles are forced to deform and de-swell. Effective
volume fractions superior to 1 are reached, clearly indicating
that the micelles have shrunk to a lower volume. In this second
concentration regime, and in direct contrast to the first regime,
the osmotic pressure is related to the strong interactions
between (= surface interactions) and inside (= compression
resistance) the casein micelles.9 It is because such strong and
direct interactions are involved that the osmotic pressure rises
so fast with casein concentration. This also implies that the
contribution of the small species to the osmotic pressure can be
totally neglected in this second regime.
Altogether, the results of Figure 4 can be used to obtain an

analytical expression for the evolution of Π with C. In our case,
we are interested in the Π(C) relation for a ″fresh″ dispersion
of casein micelles, as we aim to build a filtration model for this
very case. We choose the following expression, which is a
simple polynomial function that fits our data in a very
acceptable manner (Figure 4)

Π = + + +aC bC cC fC(Pa) 2 3 6
(26)

with C expressed in g·L−1, a = 8, b = 3 × 10−2, c = 1 × 10−5, and
f = 3 × 10−11.

4.2. Permeability k(C). The permeability k(C) of the NPC
dispersions was estimated using two different approaches. The
first approach lies on the reverse calculation of k(C) using the
filtration model of section 2 and following the procedure
detailed in section 2.3. For this purpose, the evolution of Π
versus C is needed, which is the eq 26 we just determined.
Some filtration data are also required to make the calculations
(see eq 19). We report the data used in our case in Figure 5.
Those results correspond to five dead-end filtration experi-
ments performed at transmembrane pressures ranging from 0.1
to 4 bar. The resulting values of k are given in Figure 6. The
second approach consists of measuring k by monitoring the
kinetics of compression in osmotic stress experiments. Four
experiments of this type were performed. The k values are also
reported in Figure 6.
A first and quite reassuring remark is that the k points

(Figure 6), despite being obtained in different pressure
conditions and/or with different techniques, appear to be
distributed over one single curve. This curve covers 4 decades
of k values, with a permeability that decreases with C in a
monotonous way. As for the osmotic pressure, we then propose
to discuss these results by considering two concentration
regimes.

Before Close-Packing/Dilute Regime (C < 180 g·L−1). In
this first regime, and as already explained, the micelles are still
separated from each other, meaning that there is still plenty of
interstitial space between them where liquid can flow. In that
case, it seems judicious to compare our results with the
predictions for a system of hard and nonporous spheres. The
permeability of such a dispersion can be estimated from the
Happel’s equation36

ϕ
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with rp the radius of the involved particles and ϕ the volume
fraction occupied by the particles. Taking the voluminosity of
the casein micelle and an average particle radius of 50 nm,5 we
obtain the dashed curved of Figure 6 (Happel (1)). In the

Figure 5. Evolution of permeation flux J as a function of time for dead-end ultrafiltrations of NPC dispersions at different transmembrane pressures.
The symbols are the experimental data. The lines are the predictions obtained using the filtration model (procedure of section 2.2) and assuming
that Π and k evolves with C according to eqs 26 and 28, respectively. The results are presented in a semilog plot to better visualize the data at small
filtration times.



concentration regime that we consider here, we clearly see that
all the measured permeabilities are lower than the prediction
for hard spheres. As the Happel’s approximation is for
nonpermeable and monodisperse hard-spheres, two possible
reasons come to mind for explaining this difference: (i) the size
polydispersity of the micelles; (ii) the porosity of the micelles.
However, if we now look at the theory, we can actually
demonstrate that none of these reasons are in fact valid. The
effect of polydispersity on the permeability of a bed of hard
spheres has been investigated in the work of Li and Park.59

These authors show that a broad distribution of size, as in the
case of casein micelle,5,6 indeed leads to a lower permeability as
compared to the monodisperse case. However, this effect is
relatively tenuous, and cannot explain the large difference that
we observe. The effect of porosity is even less equivocal.
Indeed, theoretical works have clearly demonstrated that
dispersions of porous spheres always have higher permeabilities
than dispersions of nonporous spheres of the same size.30,50 So
as the properties of the casein micelle alone do not seem to
explain our results, we speculate that the low permeabilities we
measure are partly due to other species present in the
dispersions, those species being the small peptides and casein
fragments that are already responsible for the high osmotic
pressures measured at low casein concentration.9 Of course,
this is only a qualitative assessment at that point, which would
need to be verified in future studies.
After Close-Packing/Dense Regime (C > 180 g·L−1). At the

entry of this regime (packing zone, ϕ = 0.78−1), the

permeability of the hard sphere system diverges toward zero
(dashed line, Figure 6). This is readily explained by the fact that
the interstitial spaces between the spheres are progressively
closed. On the other hand, the permeability of the NPC system
does not diverge at all, and still continues to slowly and
regularly decrease with C. This is a direct effect of the internal
porosity of the micelle as compared to nonporous hard spheres:
the fluid gets forced through the micelle as the intermicellar
voids are progressively closed. (As a side-effect, we can
reasonably assume that the contribution of the small species
to k tends to become negligible when reaching such high
volume occupancy.) After close-packing, and especially at
sufficiently high concentrations where ϕ > 1, the dispersion
turns into a cohesive gel in which the micelles are in direct
contact and ″squeezed″ against each other. If we assume that
the gel is homogeneous and lacks microfractures or other local
heterogeneities, the permeability of the system is then entirely
determined by the internal structure and porosity of the casein
micelle itself. In that case, it is difficult to compare our results
with theoretical expressions for porous systems, especially
because we are still lacking the fine structural details that would
be necessary to inject in such models (internal tortuosity?
presence or not of internal voids? Mesh size of the casein
network?). However, there is one very simplified model that
can be tested, and that we already used for explaining the
osmotic pressure of the casein micelle in the very dense
regime.9 In this model, the micelle interior is described as a
collection of nonconnected hard spheres that occupy a fraction
ϕ of the total volume of the micelle. Still using the Happel
expression, and by taking the size (rp = 4.4 nm) and the
voluminosity (v = 1.4 mL.g−1) of these substructures as
identical to those used in our previous paper, we obtain the
dashed gray curve of Figure 6. One can see that the
correspondence with our experimental results is quite good.
Of course, this view of a micelle composed of noninteracting
spheres cannot be taken as realistic. There is however a certain
physical meaning behind the use of such a model. We refer the
reader to a previous paper for a detailed discussion on that
point.9

Empirical Equation for k(C). One important objective of
section 4.2 is to obtain an empirical expression for k versus C.
This expression is then used for modeling the filtration of NPC
dispersions (next section). We propose to employ the following
function, drawn in Figure 7

=
′ + ′ + ′

k
a C b C f C

(m )
12
2 6

(28)

with C expressed in g·L−1, a′= 9.2 × 1014, b′ = 1.1 × 1012, and f ′
= 4.6 × 103.
Note that this expression is based on the fact that k varies

with C in a fashion that is quite similar to that of Π with C
(slope of ±1 at low concentrations, and slope of ±6 at high
concentrations). Such a similarity between Π and k may be
fortuitous, or may have a physical explanation. We do not have
an answer to this question yet.

4.3. Analysis of the Resulting Filtration Model. Now
that we have two analytical expressions for Π(C) and k(C), we
can build and use the filtration model of section 2. A first test of
the model consists of predicting the filtration fluxes for the
conditions of the filtration runs we already performed (Figure
5). For that purpose, we use the procedure given in section 2.2
and the adequate values of transmembrane pressure, casein
concentration, and membrane resistance. The fluxes obtained

Figure 6. Evolution of the permeability k of the NPC dispersions as a
function of casein concentration and effective volume fraction. Those k
values were obtained both from osmotic stress experiments (closed
circles) and from the filtration data of Figure 5 using the procedure of
section 2.3 (other symbols). The shaded area gives the region where
phase transition occurs; which corresponds to a packing fraction ϕ

between 0.78 and 1 (180−230 g·L−1, eq 24 with voluminosity v = 4.4
mL.g−1).9,38,58 The results are compared with the permeability of
monodisperse nonporous hard sphere dispersions as calculated from
the theoretical expression of Happel (eq 27): Happel (1) (dashed line)
= objects of 100 nm in diameter and voluminosity v = 4.4 mL.g−1,
Happel (2) (full line) = objects of 8.8 nm in diameter and v = 1.4
mL.g−1.



are shown in Figure 5 as full lines. One sees that the
correspondence between the model and the experimental data
is very satisfactory. Of course, we are not doing a ″validation″
of the model here as the experimental data of Figure 5 are the
values we used to build the model. However, this test is useful
because it shows that the analytical expression chosen for k(C)
efficiently captures the ″true″ variation of permeability over the
entire range of concentration investigated during the filtration
(from 1 g·L−1 in the bulk to the maximum concentration that
can be attained at the membrane surface, i.e, almost 500 g·L−1

at ΔP = 4 bar). Incidentally, this test also shows that we did not
make any mistake in deriving and using the equations given in
section 2.
To analyze the physics of the local accumulation of casein

micelles, let us now consider the ″virtual″ dead-end filtration of
a NPC dispersion with Cbulk = 1 g·L−1; the membrane
resistance being arbitrarily set to Rm = 1 × 1013 m−1. For a given
transmembrane pressure ΔP, the model is not only able to
predict the flux versus time, but can also give the evolution of
the osmotic pressure Πm at the membrane surface versus time.
This is what we do in Figure 8, where both J and Πm are plotted
against time for three values of ΔP. Πm can in turn be
compared to the critical osmotic pressure Πcrit, i.e., the pressure
at which phase transition occurs (Figure 1). In a recent paper,

Figure 7. Empirical expression for k(C). The symbols are the
experimental data. The full line is eq 28.

Figure 8. Using the model: time dependence of J and Πm for ″virtual″ filtrations of a NPC dispersion. For all cases, the bulk casein concentration was
set to Cbulk = 1 g·L−1 and the membrane resistance was set to Rm = 1 × 1013 m−1. The three figures (a)−(c) correspond to three different
transmembrane pressures. All calculations were made following the procedure of section 2.2, and assuming that Π and k evolve with C according to
eqs 26 and 28, respectively. In all figures, the approximate time tcrit at which Πm reaches the critical value for phase transition (Πcrit = 31−35 kPa, see
ref 40) is indicated with vertical full lines.



we were able to measure this pressure for NPC dispersions, and
we found Πcrit = 31−35 kPa.40 From that value, it is possible to
evaluate the filtration time at which an irreversible deposit is
formed at the membrane surface. Knowing this critical time tcrit
is of crucial importance for whoever wants to avoid any severe
fouling of the filtration installation and minimize cleaning costs.
Of course, and as illustrated in Figure 8, tcrit depends on the

applied transmembrane pressure. At ΔP = 1 bar (Figure 8a), a
deposit is formed after only 2 min of filtration. At ΔP = 5 bar
(Figure 8c), the formation of the deposit is almost
instantaneous with tcrit = 3.5−4 s (!). At ΔP = 0.5 bar (Figure
8b), which seems to be a good compromise, the filtration can
be conducted during 30 min before a gel is formed onto the
membrane. Thus, by performing successive filtrations at ΔP =
0.5 bar and for less than 30 min, it is theoretically possible to
conduct the filtration on an ″infinite″ time interval, without the
annoying formation of an irreversible deposit at the membrane.
The only constraint would be to ″redisperse″ the polarized
layer between each run, by a simple agitation procedure, for
instance (like in ref 40).
Figure 9 gives another illustration of how the filtration model

can be used. For given conditions of filtration (taken as

identical to those of Figure 8a in that case), it is indeed possible
to calculate the casein concentration profile at the membrane
surface for a given filtration time. In the conditions of Figure 9,
we see that the thickness of the accumulated layer reaches
about 10 μm at relatively short times (see the profile at t = 128
s). It takes more than 2 days for this layer to reach 0.5 mm in
thickness. At this point, the gel is about 50 μm thick, which
represents up to 10% of the total thickness of the accumulated
layer.
In Figure 10, we finally compare the predictions of our model

to the interesting results of David et al.60 In contrast to the first
modeling tests of Figure 5, the idea is now to directly confront
our model to experimental data that it has never ″seen″ before.
The study of David et al. is particularly suitable to that purpose
because (i) they also investigate NPC dispersions of casein
micelles, and (ii) their filtration results include filtration fluxes

and concentration profiles at the membrane surface, such
measurements being made possible via combined filtration/
SAXS experiments.
Figure 10a gives the prediction of flux versus time as

compared to the data of David et al. The agreement is
acceptable, with predicted fluxes that are in the same range as
those measured during the filtration, particularly at inter-
mediate times (1000−10000 s). Figure 10b gives the
experimental and the predicted concentration profiles. Again,
the agreement is acceptable, with predictions that do not
exactly match the experimental concentrations, but which are
clearly close to them.
In fact, several reasons could be responsible for the small

but existingdifferences between our model and the
experimental data of David et al. The principal are as follows:
Water instead of UF permeate: David et al. prepared their
dispersions by mixing the NPC powder with pure water instead
of UF permeate. In such dispersions, the casein micelles have
characteristics that are close to native, but with some minor
changes in size (−5%) and mineral composition (−7% in
calcium and phosphate content).54 It is imaginable that such
changes have some effects on Π(C) and k(C), making eqs 26
and 28 not totally appropriate to this case.
A 100 kD membrane: All our filtration, osmotic stress, and
osmometry experiments were performed with membranes of
∼10 kD. Conversely, David et al. used a 100 kD membrane for
their filtrations. In their case, it is probable that the 100 kD
membrane does not retain some of the small species that are
retained by the 10 kD filtration and dialysis membranes. Again,
that would have a potential impact on the Π(C) and k(C)
curves that need to be used for modeling the David’s results,
making eqs 26 and 28 not fully appropriate.
SAXS calibration: In the setup used by David et al., the casein
concentration at the vicinity of the membrane is measured
using an X-ray beam of 70 μm high (i.e., in the direction
perpendicular to the membrane).60 As a consequence, and
despite all the precautions that the authors employ to calibrate
the position of the beam relative to the membrane surface, we
cannot exclude that an error of a few micrometers or even a few
dozen micrometers exists between the positions given by the
authors and the ″exact″ positions of the given concentration
points. To illustrate the effect of such a small experimental
error, we report in Figure 10c the experimental points of David
et al. with a shift of 40 μm toward lower x values. In that case,
one can see that the correspondence between the model and
the experiment is very good.
Having listed all these points, it now seems clear that the

″acceptable″ agreement of Figures 10a and b is in fact
extremely satisfactory. So it appears that the model (and its
associated Π(C) and k(C) functions) is able to accurately
predict the dead-end filtration of casein micelle dispersions in
given conditions of transmembrane pressure and casein
concentration.
If we now look at the casein micelle as a model object, such

successful results make us confident that the modeling
approach proposed here could be generalized to any
″complicated″ colloidal dispersion of soft and/or permeable
and/or polydisperse objects.

5. CONCLUSION

Colloids have always been problematic objects in membrane
filtration, essentially because their overconcentration at the
membrane surface strongly impacts the performance of the

Figure 9. Modeling the casein concentration profile in the
accumulated layer during a ″virtual″ filtration of a NPC dispersion.
The case shown here corresponds to the conditions of Figure 8a: Cbulk

= 1 g·L−1, Rm = 1 × 1013 m−1, ΔP = 1 bar. Filtration times from
bottom to top: 6 s, 14 s, 43 s, 128 s, 456 s, 2.3 d.



process.17 However, after some years of development,
″colloidal″ filtration models now exist.1,32 But still, they are
limited to the ideal case of monodisperse hard-sphere colloids,
which makes them impractical in the real world. In this paper,
we treat the problem of soft and permeable colloids, with the
objective of proposing a general approach for predicting the
filtration of such objects.
For that purpose, and for a number of reasons that we give in

the Introduction, we chose to base our study on the specific
case of milk filtration, all experiments being performed with
dispersions of milk casein micelles. Using this example, we
develop the general idea that a filtration model can always be
built for a given colloidal dispersion as long as this dispersion
has been characterized in terms of osmotic pressure Π and
hydraulic permeability k. Following what was already proposed
for hard-sphere colloids, the filtration model can then be
constructed knowing the evolution of Π and k with the colloid
concentration.
For colloids that are soft, deformable, and permeable, the

major issue is that the permeability of the dispersion cannot be
assessed in a trivial way like in the case for hard-sphere colloids.
To get around this difficulty, we followed two distinct
approaches to actually measure the permeability k: a direct

approach, involving osmotic stress experiments, and a ″reverse

calculation″ approach, consisting of estimating k through well-

controlled filtration experiments.
The reported evolution of k(C) is the first important result of

this paper, as such experimental data have rarely been reported

until now for such peculiar objects (in contrast to theoretical

studies that are already available30,50). We briefly discuss this

evolution in light of our previous studies about the osmotic and

phase properties of casein micelle dispersions.5,9,38 We also

show that some questions remain, such as the exact effect of the

presence of small impurities on k, or the potential physical basis

of the observed similarities between the evolution of Π and k

with C.
From the knowledge of k(C), we then construct a filtration

model and analyze it through a series of test and ″virtual″

experiments. We also directly compare the predictions of the

model to filtration data obtained by other authors in combined

filtration/SAXS experiments. In our opinion, the results of

those calculations and comparisons are quite unequivocal and

totally validate our methodology.

Figure 10. Comparing the model predictions with actual filtration results: filtration flux versus time (a), casein concentration profiles in the
accumulated layer (b)−(c). The experimental results (symbols) are taken from the work of David et al.,60 where a dispersion of NPC powder
dispersed in water was filtered through a 100 kD ultrafiltration membrane at ΔP = 1.2 bar. The full and dashed lines are the predictions obtained
from the filtration model of section 2.2, assuming that Π and k evolve with C according to eqs 26 and 28. In (b) and (c), the filtration times from
bottom to top are: 133, 188, 246, and 325 min. In (c), the experimental results are reported supposing that the distances given in the original David’s
paper are overestimated by 40 μm.
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