Genome sequence of [i]Staphylococcus aureus[/i] newbould 305, a strain associated with mild bovine mastitis

To cite this version:

HAL Id: hal-01209374
https://hal.science/hal-01209374
Submitted on 29 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Genome Sequence of Staphylococcus aureus Newbould 305, a Strain Associated with Mild Bovine Mastitis

Damien Bouchard, Vincent Peton, Sintia Almeida, Caroline Le Maréchal, Anderson Miyoshi, Vasco Azevedo, Nadia Berkova, Lucie Rault, Patrice François, Jacques Schrenzel, Sergine Even, David Hernandez and Yves Le Loir

Updated information and services can be found at:
http://jb.asm.org/content/194/22/6292

REFERENCES

This article cites 12 articles, 4 of which can be accessed free at:
http://jb.asm.org/content/194/22/6292#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article),
more»

Information about commercial reprint orders:
http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to:
http://journals.asm.org/site/subscriptions/
Genome Sequence of *Staphylococcus aureus* Newbould 305, a Strain Associated with Mild Bovine Mastitis

Damien Bouchard,a,b Vincent Peton,a,b Sintia Almeida,a,b,c Caroline Le Maréchal,a,b,c Anderson Miyoshi,c Vasco Azevedo,c Nadia Berkova,a,b Lucie Rault,a,b Patrice François,d Jacques Schrenzel,a Sergine Even,a,b David Hernandez,d and Yves Le Loir,a,b

INRA, UR1253 Science et Technologie du Lait et de l’Œuf, Rennes, France; AGROCAMPUS OUEST, UR1253 Science et Technologie du Lait et de l’Œuf, Rennes, France; UFMG, ICB, Departamento de Biologia Geral, Belo Horizonte, MG, Brazil; and Genomic Research Laboratory, University Hospitals of Geneva (HUG), Geneva, Switzerland

Staphylococcus aureus is one of the main pathogens responsible for ruminant mastitis. Staphylococcal mastitis severity is highly variable, ranging from subclinical to gangrenous infection. *S. aureus* strains isolated from bovine or ovine/caprine hosts differ from human isolates, as documented previously (4). However, detailed genomic data regarding ruminant isolates are still scarce (4, 5, 8, 10, 11). There is thus a need for genomic data to better understand mastitis and identify bacterial factors responsible for the severity of the disease.

We previously characterized *S. aureus* bovine strain Newbould 305 (ATCC 29740) (12), which was isolated in 1958 from a cow in Orangeville, Ontario, Canada, with a clinical case of mastitis (4, 12). Newbould 305 reproducibly induces chronic mastitis with mild symptoms in cases of experimental cow mastitis (2, 6). It was previously shown to be clonally related to other bovine strains in ST115, whereas *S. aureus* RF122, another well-documented bovine strain (8) associated with severe mastitis symptoms, clustered in ST151 and was more closely related to ovine and caprine strains RF122. The majority of the genes (contig 5) were found in Newbould 305 compared to RF122. Among the SNPs had homology to SaPI genes in *S. aureus* strains of bovine (RF122), ovine (O46), or human (MW2) origin. The contig that was reported as a potential plasmid was further confirmed by homology and was designated pNewbould305.

Further analysis of the Newbould 305 genome is now under way. It will be further compared to the RF122 genome to identify specific factors that might explain the different phenotypes observed in infection acuteness.

Nucleotide sequence accession numbers. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number AKYW00000000. The version described in this paper is the first version, AKYW01000000.

ACKNOWLEDGMENTS

This work was supported by the Agence Nationale de la Recherche (NABAB project). Caroline Le Maréchal was the recipient of an INRA-ANSES Ph.D. grant. Sintia Almeida is the recipient of a CAPES-CONFCUB grant (project number 720/11). Damien Bouchard and Vincent Peton are recipients of a Ph.D. grant from the French Ministry of Research and from INRA and Region Bretagne, respectively.

We are thankful to P. Rainard (INRA Tours), who kindly provided the strain.

REFERENCES

Received 2 July 2012 Accepted 29 August 2012

Address correspondence to Yves Le Loir, Yves.LeLoir@rennes.inra.fr.

* Present address: Caroline Le Maréchal, ANSES, Plouffragan, France.

Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JB.01188-12

