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Abstract. 

In this paper we consider different models that assess eco-efficiency with production 

frontier estimation when both desirable outputs and undesirable outputs (or 

residuals) are considered. These models are confronted to livestock farm data (sheep 

meat farms) and greenhouse gas (GHG) emissions, to discuss their suitability in eco-

efficiency measurement. The application is to French sheep meat farms. Our results 

show that under certain conditions the existing models, except for the by-production, 

yield the same results as when residuals are treated as inputs. The results also reveal 

that the by-production model augmented with dependence constraints offer some 

promising opportunities. Besides, environmental inefficiency appears to be the main 

contributor of eco-inefficiency in the sheep meat production. 
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1. Introduction  

Since the pioneering work of Pittman (1983) to account for undesirable outputs (or unwanted or 

detrimental outputs, or pollutants, or residuals) in production technology modelling, many models 

have been developed in this area for the case of nonparametric analysis. In general, pollutants are 

treated as an extra input that is added to the technology (Hailu and Veeman, 2001, Hailu, 2003, 

Mahlberg et al., 2011) or included as an output under the weak disposability and the null-jointness 

assumptions (Färe et al., 1989, Chung et al., 1997, Färe et al., 2005). These two approaches, largely 

used in empirical applications (Zhou et al., 2008), have been criticized in the literature for their 

inadequacy to properly model pollution generating technologies (Coelli et al., 2007, Podinovski and 

Kuosmanen, 2011, Murty et al., 2012, Chen, 2014). However, in this debate some recent 

developments have emerged to circumvent the drawbacks associated to the previous models: first, 

models linked to the materials balance principles (Hampf and Rødseth, 2014), and second, models 

relying on the estimation of separate sub-technologies (Førsund, 2009, Murty et al., 2012, Sueyoshi 

and Goto, 2012, Dakpo, 2015). This latter formulation assumes that a production system cannot be 

represented by a single equation and uses multiple independent frontier representations, where one 

sub-technology is related to the production of good outputs and the other one to the generation of 

residuals. Given this abundant literature, there has been to date no empirical discussion on these 

models that can give more insights on their similarities or differences. 

The objective of this paper is then to carry on a systematic comparison of the aforementioned 

methods and discuss their suitability to real data in agriculture, with the specific case of livestock 

farms. The application to the livestock sector is relevant for two reasons. First, the complex 

interactions between agriculture and the environment can make difficult the choice of a method. 

Second, the last decade saw a growing attention at the international scale of the role played by 

livestock farming in the global greenhouse gas (GHG) emissions (Steinfeld et al., 2006, Gerber et 

al., 2013). Given these two issues and a projected increase in future demand of animal products, this 

sector is a suitable candidate to investigate the challenge of eco-efficiency computations. Besides, 

according to Hoang and Alauddin (2012), “for the sake of farmers” sustainability must become an 

important objective since the tensions on the environment might affect the ecosystem which can no 

longer sustain the agricultural activities. In this paper, we focus on sheep meat breeding systems 

located in French grassland areas. The low farm profitability in this sector – due to high 

competition, cost increase, low public support – and the sector’s key role in the viability of rural 

areas - through for instance the maintenance of rural landscapes – imply the double challenge of 

socio-economic and environmental performance. 
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The eco-efficiency computation, based on the Data Envelopment Analysis (DEA)  methodology, 

aims at finding the maximal attainable ratio of a good output (here meat production) on a bad 

output. Here the latter is considered as an aggregation of the three main GHG emissions reported in 

livestock farming namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Besides, 

in this empirical application we devote a particular care to the nature of methane (CH4) generation 

which is largely associated to the animal physiology, and in this case this gas can be viewed as 

given (fixed) and removed from the technology modelling. Following Hampf and Rødseth (2014) 

we also propose a decomposition of performance into different potential sources of improvement 

given different assumptions on the flexibility available to producers in their decision making. 

The paper is organized as follows. In Section 2 we briefly explain the main assumptions, the basis 

and the significant features of each model. Section 3 describes the data used and the empirical 

results obtained. Section 4 discusses the appropriateness of each approach to the farm data used and 

points out the challenges that still remain. Section 5 concludes. 

2. Pollution-generating technologies modelling: theoretical basis and eco-efficiency 

computations 

We begin by describing the environmental production technology which is represented by the set of 

good and bad outputs (𝑦, 𝑏) that can be produced by the inputs 𝑥: 

 

Ψ𝑏𝑎𝑑 = [(𝑥, 𝑦, 𝑏)| 𝑥 ∈ ℝ+
𝐾, 𝑥 ≥ 0, can produce 𝑦 ∈ ℝ+

𝑄 , 𝑦 ≥ 0 

 and 𝑏 ∈ ℝ+
𝑅 , 𝑏 ≥ 0] 

(1) . 

We shall also assume the following classic postulates: no free lunch, non-emptiness, closeness, 

boundness, convexity, free (strong) disposability of inputs and good outputs and variable returns to 

scale (VRS). One can refer to Chambers (1988) and Färe and Grosskopf (2004) for more details 

regarding the standard axioms of production theory. Given this framework pollution has been 

modelled in different ways in the literature. For our particular case study, we consider one good 

output and one undesirable output. 

2.1. Inclusion of undesirable outputs in the production technology: literature review 

Considering that pollution generates social costs, and that an input orientation is straightforwardly 

interpreted in terms of costs savings (minimization), some authors (e.g. Dyckhoff and Allen, 2001, 
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Prior, 2006) recommended to introduce unwanted outputs as extra inputs and to assume their free 

disposability. These authors argued that emissions of environmentally detrimental outputs can be 

viewed as the usage of the environment’s capacity for their disposal. Hence, according to them, 

considering them as inputs is likely a good way to account for the consumption of natural resources. 

Under this assumption, the technology can be represented as the following, where 𝑁 is the number 

of Decision Making Units (DMUs): 

 

Ψ𝑏𝑎𝑑
𝑖𝑛𝑝𝑢𝑡𝑠 = [(𝑥, 𝑦, 𝑏) ∈ ℝ+

𝐾+1+1| 𝑦 ≤ ∑ 𝜆𝑖𝑌𝑖

𝑁

𝑖=1

;  𝑏 ≥ ∑ 𝜆𝑖𝐵𝑖

𝑁

𝑖=1

 ; 

𝑥 ≥ ∑ 𝜆𝑖𝑋𝑖

𝑁

𝑖=1

;   ∑ 𝜆𝑖

𝑖

= 1 and 𝜆𝑖 ≥ 0; 𝑖 = 1, … , 𝑁] 

(2) . 

This approach has however been criticized in the literature because it violates the physical laws of 

thermodynamics (Färe and Grosskopf, 2003). 

Another modelling strategy considers residuals as extra outputs but impose the weak disposability 

assumption (WDA) and also the null-jointness of both types of outputs (good and bad) (Färe et al., 

1989, Chung et al., 1997, Färe et al., 2007). The WDA can be summarized as follows: 

 (𝑦, 𝑏) ∈ Ψ𝑏𝑎𝑑  , 0 ≤  𝜃 ≤ 1 ⟹ (𝜃𝑦, 𝜃𝑏) ∈ Ψ𝑏𝑎𝑑 (3) . 

As for the null-jointness property, it is represented by: 

 (𝑦, 𝑏) ∈ Ψ and 𝑏 = 0 then 𝑦 = 0 (4) . 

The WDA implies that it is not costless to reduce bad outputs. More precisely, if one wishes to 

reduce undesirable outputs, good outputs must also be reduced for a given level of inputs. This 

implies that resources must be diverted to abatement activities in order to mitigate pollution level. 

Under this assumption the production technology is defined as: 
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Ψ𝑏𝑎𝑑
𝑤𝑒𝑎𝑘 = [(𝑥, 𝑦, 𝑏) ∈ ℝ+

𝐾+1+1| 𝑦 ≤ 𝜃 ∑ 𝜆𝑖𝑌𝑖

𝑁

𝑖=1

;  𝑏 = 𝜃 ∑ 𝜆𝑖𝐵𝑖

𝑁

𝑖=1

 ; 

𝑥 ≥ ∑ 𝜆𝑖𝑋𝑖

𝑁

𝑖=1

;  ∑ 𝜆𝑖

𝑖

= 1 and 𝜆𝑖 ≥ 0; 𝑖 = 1, … , 𝑁 ; 0 ≤ 𝜃 ≤ 1] 

(5) . 

As formulated in (5) the WDA assumes a common proportional reduction of desirable and 

undesirable outputs. The model thus considers that all DMUs share the same uniform abatement 

effort 𝜃. Yet, as pointed out by Kuosmanen (2005) and Kuosmanen and Podinovski (2009), policies 

should be targeted to abatement activities where the abatement costs are lowest. The authors 

therefore proposed an extension of the traditional WDA modelling by assuming a specific 

abatement effort for each producer (firm-specific abatement factor). The new technology proposed 

is similar to the one in problem (5) except that 𝜃 is replaced by 𝜃𝑖. Despite the interesting feature of 

this model, some recent studies have cast a doubt on the relevance of the WDA. For instance Murty 

et al. (2012), using a transformation function to estimate the different trade-offs, showed some 

inconsistencies linked to this assumption. Chen (2014) also revealed some empirical drawbacks 

related to the WDA using an illustrative example. 

Since it has been discussed that the WDA does not really fit with the physical laws, Hampf and 

Rødseth (2014) suggested to use the weak G-disposability which is based on the materials balance 

principles (MBP). This approach is related to the first two laws of thermodynamics. Let the input 

set be divided into two different subsets: material inputs 𝑥𝑀 which generate pollution, and non-

material inputs 𝑥𝑁𝑀 which are pollution free. The technology set can be defined as: 
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Ψ𝑏𝑎𝑑
𝑤𝑒𝑎𝑘 𝐺 = [(𝑥, 𝑦, 𝑏) ∈ ℝ+

𝐾+1+1| 𝑦 + 𝑠𝑦 = ∑ 𝜆𝑖𝑌𝑖

𝑁

𝑖=1

;  𝑏 − 𝑠𝑏 = ∑ 𝜆𝑖𝐵𝑖

𝑁

𝑖=1

 ; 

𝑥𝑀 − 𝑠𝑥𝑀 = ∑ 𝜆𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

;  𝑥𝑁𝑀 − 𝑠𝑥𝑁𝑀 = ∑ 𝜆𝑖𝑋𝑖
𝑁𝑀

𝑁

𝑖=1

 ; 

𝑊′𝑠𝑥𝑀 + 𝐻𝑠𝑦 − 𝑠𝑏 = 0 ; ∑ 𝜆𝑖

𝑖

= 1 and 𝜆𝑖 ≥ 0; 𝑖 = 1, … , 𝑁 ] 

(6) . 

where 𝑠𝑥, 𝑠𝑦 and 𝑠𝑏 are respectively input excesses, good output shortfall and pollution excess, that 

are present in the technology due to inefficiency. 𝑊 is the vector of input pollution factors and 𝐻 

represents the recuperation factor associated to the good output. This new approach grounded on 

MBP differs from the one proposed by Coelli et al. (2007) which is based on the estimation of an 

iso-environmental line in the same vein as iso-costs lines, and which totally neglects the possibility 

of interaction (substitution) between material and non-material inputs. However, as pointed out in 

Førsund (2009), the mass conservation equation (𝑊′𝑠𝑥𝑀 + 𝐻𝑠𝑦 − 𝑠𝑏 = 0) does not explicitly show 

how residuals are generated; instead the equation simply puts forward how the variables are related 

given the MBP. In addition, the mass balance equation introduces “some limits on derivatives in the 

system of equations”. Furthermore, Hampf and Rødseth (2014) have also demonstrated that under 

some assumptions the weak G-disposability is equivalent to the weak disposability as proposed in 

Färe and Grosskopf (2012). 

Recognizing the importance of the materials balance in modelling the technology that generates 

unwanted outputs, Førsund (2009) recommended the use of the by-production methodology 

proposed in Murty and Russell (2002) and generalized by Murty et al. (2012). This approach, which 

relies on the estimation of two separate frontiers, assumes the cost disposability of bad outputs. This 

assumption is based on the idea that given the level of consumption of some inputs, only a minimal 

level of pollution can be reached and the presence of inefficiency can lead to the generation of more 

quantity than this minimal level. The global technology is viewed in the theory as the intersection of 

the two sub-frontiers. Empirically, Murty et al. (2012) defined this global technology as: 
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Ψ𝑏𝑎𝑑
𝑏𝑦

= (𝑥𝑀, 𝑥𝑁𝑀, 𝑦, 𝑏) ∈ ℝ+
𝐾𝑀+𝐾𝑁𝑀+1+1| 𝑦 ≤ ∑ 𝜈𝑖𝑌𝑖

𝑁

𝑖=1

 ;  

𝑥𝑀 ≥ ∑ 𝜈𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

 ;  𝑥𝑁𝑀 ≥ ∑ 𝜈𝑖𝑋𝑖
𝑁𝑀

𝑁

𝑖=1

 ; 𝑥𝑀 ≤ ∑ 𝜉𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

 ; 

𝑏 ≥  ∑ 𝜉𝑖𝐵𝑖

𝑁

𝑖=1

 ;  ∑ 𝜈𝑖

𝑁

𝑖=1

= 1;  ∑ 𝜉𝑖

𝑁

𝑖=1

= 1;  𝜈𝑖, 𝜉𝑖 ≥ 0; 𝑖 = 1, … , 𝑁] 

(7) . 

As can be seen in (7), the global technology is represented with two intensity factors, each one 

associated to one different sub-technology. As presented in (7) the by-production approach offers 

the advantage of separating the operational performance and the environmental performance. 

However, the model empirically assumes independence between the two sub-technologies. Dakpo 

(2015) then developed an extension of the by-production model by augmenting (7) with some 

dependence constraints relative to the pollution generating inputs. 

 ∑ 𝜈𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

= ∑ 𝜉𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

 (8) . 

In the same line, as Murty et al. (2012), Sueyoshi et al. (2010) and Sueyoshi and Goto (2010) 

proposed a unification strategy that is based on the use of a single intensity factor. To this aim they 

separated the input slacks 𝑠𝑥 into their positive and negative parts which are mutually exclusive 

(𝑠𝑥
−. 𝑠𝑥

+ = 0). The model is specified as follows: 

 

 Ψ𝑏𝑎𝑑
𝑢𝑛𝑖𝑓𝑖𝑒𝑑

= [(𝑥, 𝑦, 𝑏) ∈ ℝ+
𝐾+1+1| 𝑦 + 𝑠𝑦 = ∑ 𝜆𝑖𝑌𝑖

𝑁

𝑖=1

;  𝑏 − 𝑠𝑏 = ∑ 𝜆𝑖𝐵𝑖

𝑁

𝑖=1

 ; (9) . 
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𝑥 − 𝑠𝑥
− + 𝑠𝑥

+ = ∑ 𝜆𝑖𝑋𝑖

𝑁

𝑖=1

;  ∑ 𝜆𝑖

𝑖

= 1 and 𝜆𝑖 ≥ 0; 𝑖 = 1, … , 𝑁;  

𝑠𝑥
−. 𝑠𝑥

+ = 0 ] 

According to the authors, the different parts associated to the inputs define the possible adaptation 

choice made by the firm managers. The negative part 𝑠𝑥
− is related to the natural disposability, 

which reflects a negative adaptation since the manager considered chooses to reduce the levels of 

the consumption of inputs in order to decrease pollution. On the other side, the positive part 𝑠𝑥
+ is 

linked to the presence of managerial disposability (positive adaptation), and in this situation some 

managerial efforts (adoption of new technologies, substitution of clean inputs to polluting ones...) 

can lead the firm to increase its consumption of inputs and simultaneously reduce the volume of 

pollution generated. To go beyond this framework Sueyoshi and Goto (2011) proposed an input 

separation into energy (material) and non-energy (non-material) inputs. In this new framework, the 

energy inputs are associated to both disposability concepts whereas the non-energy inputs are only 

related to the natural disposability. As pointed out in Manello (2012), the non-linearity introduced 

in the unified framework may generate some dominated efficient DMUs and thus may create some 

identification problems of the efficient DMUs since the two technology subsets can generate 

contradictory results. 

2.2. Eco-efficiency assessment and decomposition 

As explained in Section 1, we choose in this paper to consider the maximal production intensity per 

unit of undesirable output as the objective for each of the above-mentioned models. We retain this 

approach because, first, it is in line with the definition of the eco-efficiency (Huppes and Ishikawa, 

2005) and, second, the unicity of the ratio allows the comparison and the discussion of the models 

on the same foundation. Based on these ratios an eco-efficiency score can be computed by 

comparing the attainable optimal ratios to the actual observed ratio. The eco-efficiency can be 

measured by: 

 𝐸𝑐𝑜𝑒𝑓𝑓 =
𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟𝑎𝑡𝑖𝑜𝑜𝑝𝑡𝑖𝑚𝑎𝑙
 (10)  



8 

Based on the work of Hampf and Rødseth (2014) a decomposition of the performance score can be 

obtained relative to the possible choices available to the producers. These choices will be reflected 

by the number of decision variables in the objective function. 

 The most restrictive assumption specifies that the producer cannot freely choose nor the 

inputs nor the good output; both variables are given and only the level of the bad output is 

free of choice. The interesting point relative to this assumption is that it can be used to 

assess the technical inefficiency in pollution generation. Let’s denote by 𝑟𝑥,𝑦/𝑓
∗  the optimal 

ratio obtained under this assumption. 

 Under a second less restrictive assumption both outputs are free of choice and are thus 

endogenous in the optimization programs. But the inputs are given and the producer does 

not have a free choice on these variables. Let’s denote by 𝑟𝑥/𝑓
∗  the optimal ratio obtained in 

this case. This ratio can be helpful to evaluate the existence of allocative inefficiency in the 

production of good and bad outputs. 

 A third, more flexible, possibility is to allow the free choice of the amount of inputs, of the 

good output, and of the bad output. This means that all variables in the models are 

endogenously determined in the optimization program. Under this assumption (of free 

choice of all the variables present in the program), all DMUs yield an optimal scale (namely 

the most productive scale size – MPSS). We denote by 𝑟./𝑓
∗  the optimal ratio obtained in this 

situation. 

Based on these possibilities and the degree of adjustment offered to the producer, we can write the 

following relationship between the optimal ratios: 

 𝑟./𝑓
∗ ≥ 𝑟𝑥/𝑓

∗ ≥ 𝑟𝑥,𝑦/𝑓
∗  (11)  

If the eco-efficiency score is computed as 𝐸𝑐𝑜𝑒𝑓𝑓 = 𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑟./𝑓
∗⁄ , the following 

decomposition can be made: 

 𝐸𝑐𝑜𝑒𝑓𝑓 =
𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟./𝑓
∗ =

𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟𝑥,𝑦/𝑓
∗ ×

𝑟𝑥,𝑦/𝑓
∗

𝑟𝑥/𝑓
∗ ×

𝑟𝑥/𝑓
∗

𝑟./𝑓
∗  (12)  
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𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟𝑥,𝑦/𝑓
∗  measures the eco-efficiency level when both inputs and good outputs are held fixed. 

More precisely, as previously stated, it evaluates the presence of technical inefficiencies in the 

generation of detrimental output. This measure was coined the ‘weak ratio efficiency’ in Hampf and 

Rødseth (2014). 
𝑟𝑥,𝑦/𝑓

∗

𝑟𝑥/𝑓
∗  refers to the possible increase in the performance score when allowing more 

flexibility regarding the level of good output. This second component has been termed the 

‘allocative ratio efficiency’. The last component,  
𝑟𝑥/𝑓

∗

𝑟./𝑓
∗ , assesses the amount by which the 

performance can be improved (relative to 𝑟𝑥/𝑓
∗ ) when the manager can freely decide the amount of 

inputs in addition to the amounts of both outputs. Hampf and Rødseth (2014) referred to this third 

component as the ‘input ratio efficiency’. It is worth mentioning that most of the models estimated 

in this paper are based on fractional programming. They can be linearized by using adequate 

transformations and variables changes (Charnes and Cooper, 1962). 

3. Empirical application 

3.1. Data description and environmental impacts’ computations 

The empirical application of the models described in the previous section is conducted on a sample 

of 1,302 farm-year observations between the period 1987 and 2013. The panel consists of 124 

different farms specialized in sheep meat production and located in the centre of France in grassland 

areas. Several bookkeeping and production process characteristics are available in the database. 

Following the literature on farms’ technical efficiency, we have retained three inputs, namely 

utilized land, farm labour and production-related costs. It is worth noting that we do not include the 

herd size in the input variables contrary to some studies on livestock farms’ technical efficiency 

(Karagiannis and Tzouvelekas, 2005, Ludena et al., 2005, Alvarez and del Corral, 2010). One 

reason is the evident and strong correlation of the herd size with some input variables. The idea is to 

keep a sort of ’independence’ between input variables. Another reason is that we performed two 

regressions with the dependent variable being the total amount of meat production, and the 

independent variables being the inputs. In one regression we included the herd size and in the 

second one we omitted it. When introducing herd size in the estimation, surprisingly the utilised 

land displays a significant and negative sign which is counterintuitive since this variable can be 

viewed as an important (positive) input in grazing livestock systems. Also, when looking at the 

Variance Inflation Factor (VIF), the herd size appears to be the source of some multicollinearity 

which might lead to some serious bias in the estimation. When excluding the herd size variable we 

obtained more reasonable results, with all the inputs presenting a positive and significant impact on 
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the meat production. Based on this, we believe that the herd size should be set aside, and possibly 

used in a second stage as a determinant or an environmental factor (Latruffe et al., 2008) to assess 

for instance the effect of farm size on the eco-efficiency score (but this is out of the scope of this 

paper). The production-related costs variable consists of operating expenses and structural costs. 

Operating expenses, also called proportional costs, comprise all costs related to animal feeding, 

crop fertilizers, pesticides and all the other costs directly associated to the presence of livestock 

(veterinary costs, mortality insurance, litter straw costs, marketing costs, animal purchase 

expenses…). Regarding structural costs, they are mainly made of mechanization and building costs 

(depreciation, maintenance costs, expenses for fuels and lubricants, costs of related insurances) as 

well as overheads (electricity costs, water costs, costs for miscellaneous insurances, financial 

charges, capital opportunity cost…). The choice of these two types of costs relies on regressions 

that we performed, where specification tests (Ramsey, 1969) showed that the model with combined 

costs performs better. All costs are expressed in constant currency (2005 Euros) to keep relative 

quantity based information. Utilized land represents the total number of hectares available to the 

producer for the sheep farming activity. This is essentially the main fodder area associated to the 

sheep livestock. Labour measures the quantity of full-time workers devoted to sheep meat 

production. 

As for the outputs, the good output is measured by the quantity of meat production expressed in 

kilograms of carcass, and the bad output relate to GHG. The computations of the latter are based on 

the Life Cycle Assessment (LCA) methodology (Guinée et al., 2002), which was used for the 

estimation of the three main GHG generally considered in livestock farming (carbon dioxide, 

methane and nitrous oxide). Since our primary interest is on global warming the three gases were 

aggregated based on their Global Warming Potential (GWP) relative to carbon dioxide. The bad 

output is thus computed as the total GHG emissions expressed in carbon dioxide equivalent. 

However, given the fact that some gases like methane are in some sense “incompressible” because 

associated to animal biology (namely enteric fermentation, see (Martin et al., 2010) we split the 

GHG emissions into two categories: on the one hand, variable GHG emissions, including carbon 

dioxide and nitrous oxide; on the other hand, fixed GHG emissions, consisting of methane only. In 

this case where we consider that methane emissions are fixed, we simply discard the methane 

emissions from the technology constraints. Actually, not including methane emissions in the 

production technology makes more sense since herd size is not included in the analysis while this 

gas is related to the animal bodily processes. A last note on the methodology is that, hen applying 

the LCA we have restrained the system boundary (the perimeter of analysis) from the cradle to the 

farm gate i.e. all upstream processes are considered up to the point where the meat production 
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leaves the farm. It means that we did not take into account the flows associated with the processing 

(slaughtering and transformation) and marketing chains of the meat products. More, we adapted the 

GES’TIM (Gac et al., 2011) and the Dia’ terre® (ADEME, 2011) tools to our sample of meat sheep 

farms. These tools provide us the great majority of emissions factors required for the estimation of 

the global warming impact. The main characteristics of the sample are summarized in Table 1. 

On average, over the period of study, farms in our sample produced around 10 thousand kilograms 

carcass of meat on a land area of 74 hectares. The pollution intensity, which is measured as the ratio 

of the total GHG emissions on meat production, is about 38 kg of carbon dioxide equivalent per kg 

of carcass on average. However when excluding methane from the analysis this pollution intensity 

falls to 14.5 kg carbon dioxide equivalent. Methane is by far the most important GHG and 

contributes to more than 60% of the total emissions. Not shown in the table, the herd size is about 

77 livestock units on average per farm. A look to the relative standard deviation shows some high 

variability in all the data, since the coefficients of variation are all greater than 25% (Tufféry, 2011). 

It can also be seen in Figure1 showing the relation between the pollution intensity (computed with 

the total GHG emissions) and other Key Performance Indicators (KPIs, see (Bogetoft, 2013). On 

the left panel one can see the negative relation between pollution intensity and the stocking rate 

(calculated as the number of livestock units per hectare of utilized land), suggesting that animal 

intensification (per hectare of land) might be a solution of eco-efficiency improvement. On the 

other hand, labour productivity (calculated as the number of livestock units per full-time equivalent 

worker) exhibits, on the right panel, a positive correlation with pollution intensity. However, these 

correlations should not be taken to generalization conclusions to efficiency, given the partial 

character of the indicators used. We thus need to assess the eco-efficiency in a more global way and 

provide more insights about these preliminary findings. 

3.2. Comparison of eco-efficiency between various models: empirical results 

For the estimation, we consider here one single frontier which is estimated for the whole period (by 

pooling all observations together), that is to say we assume no technological change. In addition we 

consider land and labour as non-material inputs that are assumed to generate no GHG emissions. 

Besides, in light of the LCA methodology undertaken for this paper, no emission factors are 

associated to labour. However for the case of land, it is possible to take into account carbon 

sequestration in soils (which is a good output that comes in deduction to the gross GHG emissions), 

but this has not been considered in the current paper. By contrast, still based on the LCA, we 

assume that the production-related costs are pollution generating.  
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The average eco-efficiencies and their components, calculated with all methods described in the 

previous section, are summarized in Table 2. For comparison purposes, we have also estimated a 

classic production technology where pollution is not an issue to the producers who can freely 

choose both the levels of input consumption and also the level of the good output. This pollution 

free technology can shed light on the potential operational efficiency of the DMUs under 

evaluation, independently of the pollution generated. We then evaluate the eco-efficiency for each 

farm given their unchanged pollution emissions. For the sake of simplicity we present the pollution 

intensity instead of the ratio of meat production per unit of GHG emission. As explained above, for 

the approaches that include pollution in the production technology, the eco-efficiency score is based 

on the flexible assumption of free choice of inputs, good output and bad output. We also display, in 

addition to the results for the cases where all the GHG are treated as one variable undesirable 

output, the results where methane emissions are not included in the technology constraints. 

The results in Table 2 show that all pollution generating models except the by-production 

approaches, yield the same eco-efficiency scores (respectively 0.540 and 0.390 on average 

depending on the specification of methane emissions) and the same pollution intensity (respectively 

19.19 and 5.13 kg CO2-eq/kg meat on average), similarly to when residuals are considered as 

inputs. Hence these models suggest that in the case methane emissions are considered as variable 

bad outputs, farmers could reduce about 46% of their actual pollution intensity on average. In the 

situation of ignoring methane generation in the technology and only focus on variable GHG 

emissions (CO2+N2O), this reduction potential increases to 61%. This result suggests that there is 

more inefficiency in variable GHG generation than in methane emissions. This is quite 

understandable given what has been said earlier that mainly methane emissions are intrinsic to 

animal biology. Another feature of these aforementioned methodologies (pollution as input, weak 

disposability assumption, weak G-disposability, unified model under natural and managerial 

disposability) is that they mainly underline the same source of inefficiency, namely the weak 

inefficiency ratio (the weak ratio efficiency is the lowest of all three ratios). As explained earlier, 

this ratio accounts for the presence of technical inefficiencies in the pollution generation process 

since both inputs and good output are held fixed. However, some small differences can be found for 

the cases of the models of weak G-disposability and unified efficiency under natural and managerial 

disposability, which give more importance to the other sources of inefficiencies. 

The most pessimistic model is the by-production modelling with independence between the two 

sub-technologies. In fact this model leads to seemingly unrealistic results in terms of eco-efficiency 

since more than 97% of inefficiency is found to be present in the sample. These questionable results 
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can be explained by the fact that the model separately optimizes the operational efficiency (with the 

good output frontier) and the environmental efficiency (with the bad output frontier). According to 

these independent estimations, the operational efficiency is 0.300 and the environmental efficiency 

0.123 in the case total GHG emissions are considered, methane included (results not shown in the 

table). When methane is excluded from the analysis, the operational efficiency is still 0.300, but the 

environmental efficiency falls to 0.085. Again this observation confirms what has been said earlier 

that there is more inefficiency in variable GHG emissions. However, when an interdependence 

constraint is imposed along the suggestion of Dakpo (2015), the by-production model yields more 

acceptable results such as an average eco-efficiency score of 26.7% (respectively 21.7% for the case 

of methane exclusion). Besides, by introducing the dependence constraints in the by-production 

model, the three sources of inefficiency seem to play an equal role in the explanation of the 

estimated eco-inefficiency. A closer look at the efficiency scores under each sub-technology given 

the interdependence constraints indicates that in the case where all GHG are treated as one variable 

bad output, the operational efficiency is 0.831 and the environmental efficiency 0.389. In the case 

of methane exclusion, the operational efficiency significantly rises to 1.367 and the environmental 

efficiency falls to 0.197. Actually, as explained in Section 2 under the flexible assumption of free 

choice of all variables (good and bad outputs, inputs), all the DMUs reach an optimal scale, and this 

does not preclude the presence of over-efficient (efficiency greater than one) observations in one or 

the other of the sub-frontier. For instance, in the case where a DMU is above this optimal scale and 

produces more meat, then its operational efficiency is higher than one. In the opposite, in the 

situation where a DMU uses less polluting inputs and generates a lower pollution level than the 

optimal scale, its environmental efficiency is higher than one. Given all these aspects, we can say 

that the efficiency scores obtained (operational and environmental) above also embed some scale 

components.  

A general finding is that in all the situations considered, it appears that environmental inefficiency 

is the major contributor of eco-inefficiency. Another remark is that the inclusion of the dependence 

constraints in the by-production model introduces some kind of trade-offs between the operational 

and the environmental performance. Actually, the presence of super-efficient DMUs (374 farm-year 

observations) in the case of operational efficiency, means that these units could give up some 

operational performance to improve their environmental efficiency. The situation of these super-

efficient DMUs describes the common view of economists that environment comes at a cost 

(Palmer et al., 1995). We also have a few super-efficient farms (22 farm-year observations) in terms 

of environmental performance; these farms could give up a part of this environmental efficiency to 

improve their operational performance. However, a large part of the DMUs (906 farm-year 
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observations) may experience a win-win situation by simultaneously improving their operational 

and environmental performance. These results are related to the case where all GHG are considered 

as one variable bad output. In the case where methane emissions are excluded from the analysis, the 

results are quite different: the number of super-efficient DMUs regarding the operational 

performance is 920, and it is 6 regarding the environmental performance. The DMUs that may 

evidence a win-win situation are 376 in total. 

As explained earlier from the GHG emissions, these models that yield the same results as when bad 

outputs are treated as inputs, show some increase in the non-material inputs like land and labour, 

while the polluting input level is decreased, all this in comparison to the sample average. In this 

case, we can conclude that in these models non-material inputs are substituted to material ones. In 

light of managerial and natural disposability, farmers might exhibit some managerial effort in terms 

of non-material inputs in order to mitigate pollution.  

The aforementioned input substitution in some of the models discussed is also visible in the case of 

by-production modelling under dependent technologies, where the consumption of the non-material 

input land is increased whether methane in included or excluded (by respectively almost 26% and 

4%, in line with the observed sample average of utilised land), while the pollution generating inputs 

are reduced. This leads to lower levels of GHG emissions. In terms of meat production, the 

difference between the two tables is that in Table 3 where all GHG are considered, the optimal 

scale is higher than the sample average, while in Table 4 it is smaller. Thereby, the way methane is 

considered in the modelling of the production technology provides different implications essentially 

in terms of the optimal farm size. 

The highest meat production is obtained under the pollution free technology where all inputs are 

increased to produce more than twice amount of meat (compared to the sample average). 

Nevertheless, this situation creates larger levels of absolute GHG emissions (ten times more than in 

the by-production and five times more than the other pollution technologies in the case where all 

GHG are considered
2
). The difference between pollution free technology and by-production 

approach seems to be a matter of trade-off: to produce more good output to compensate for the 

pollution emissions (pollution free technology), or to pollute less by reorganizing inputs and take 

advantage of the possible substitution between material and non-material inputs (by-production 

technology), and try to produce good output as much as possible given the new inputs. This trade-

                                                           
2 In the other case where methane is excluded, this pollution free technology generates a level of pollution 27 times greater than 

the level obtained under the by-production and 7 times for the other technologies. 
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off might imply, for the case of sheep meat producers, a choice between intensification and 

extensification strategies. 

The specification of methane emissions significantly affects the time trend of the eco-efficiency 

measures. In Figure 2, showing the results of the by-production model with dependence constraints, 

there is a clear evidence of eco-efficiency decrease when all GHG emissions are considered as one 

variable bad output (right panel), but this evolution becomes quite steady when methane is excluded 

from the analysis (left panel). Another observation from these plots is the erratic distribution of the 

eco-efficiency during the period of study. This evolution can be correlated to some external factors 

(climate events, diseases, policy reforms, price chocks…) showing the high sensitivity of the eco-

efficiency in the sheep meat sector to these exogenous variables. 

4. Methodologies similarities or differences: a discussion 

Although many of the presented models reach the same average optimal eco-efficiency score, they 

differ in their assumptions. From a theoretical perspective, models that consider pollution as input 

or as output under the WDA produce arbitrary wrong trade-offs and do not capture the real nature 

of undesirable outputs. Murty et al. (2012) estimated these trade-offs and found a negative relation 

between pollution generating inputs and the pollution level, which is definitely in opposition to the 

idea that these inputs are pollution generators. More, they also proved that under some conditions, 

for a fixed level of inputs, there exist large possibilities of good/bad output combinations that are 

efficient. This violates the idea behind by-production that there is only one minimal amount of 

undesirable outputs given the levels of inputs. Other shortcomings of the WDA have been reported 

by Hailu and Veeman (2001). 

To overcome the drawbacks of the previous two models (namely pollution as inputs and WDA), 

Murty et al. (2012) developed the by-production modelling by assuming that the production process 

is made of different sub-technologies, and the global technology is the intersection of the good and 

the bad outputs sub-technologies. However, in the operationalization of the approach the authors 

assumed independence between both frontiers. We have seen here that under this assumption 

inconsistent results are generated. For this reason we prefer the recent by-production modelling 

proposed in Dakpo (2015) which introduces some interdependence constraints linking the usage of 

material inputs in both sub-frontiers. Also, in relation to this multiple frontier framework, Sueyoshi 

and Goto (2011) proposed a unification of the operational and environmental efficiency based on 

the use of one single intensity factor and also by allowing two possible opposite directions for the 
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inputs. However, in light of the previous results, it seems that this interesting approach collapses 

into the model where pollution is considered as an additional input. 

The model assuming the weak G-disposability and the materials balance conditions is supposed to 

reflect the real production process by accounting for the laws of thermodynamics. However, in 

terms of results, this model also reaches the same results as the one in which GHG emissions are 

treated as input.  

Finally, it is worth mentioning that, despite the fact that models which consider pollution under the 

WDA, or under the weak G-disposability, or in the unified model under natural and managerial 

disposability, yield the same results in terms of eco-efficiency as the one where pollution is simply 

an extra input, some small differences can be found in the sources of improvements. 

5. Conclusion 

In this paper we have empirically compared eco-efficiency obtained using the main models 

developed in the literature, for the specific case of sheep meat farms and GHG emissions. Eco-

efficiency is computed as the ratio of good output on bad output and is aimed at providing easily 

interpretable results. To our knowledge this is the first paper that undertakes eco-efficiency models 

comparison in the agricultural case.  

In light of the obtained results, all the models come to the same conclusion of the presence of large 

inefficiencies in sheep meat farms. The results also showed that there is a trade-off between 

intensification and extensification as response to the emissions of GHG in sheep meat production. 

Besides, different implications have been suggested depending on the specification of methane 

emissions. One limitation of this study is that we did not account for carbon sequestration in soils 

which is a specific feature of livestock farming as a potential abatement option. This aspect could 

be explicitly modelled in the by-production technology. Also, a robust estimation is required to 

check the consistency of the results. 
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Tables and Figures 

Table 1: Summary statistics of the sample (period 1987-2013) 

Variables Mean 
Standard 

deviation 

Relative standard 

deviation 
Minimum Maximum 

Utilized land (hectares) 74.1 35.10 0.47 12.40 257.02 

Labour (full-time equivalents) 1.38 0.48 0.35 0.14 3.50 

Production-related costs (2005 

Euros) 
51, 429 21, 297 0.41 33, 65 179, 169 

Meat (kg of carcass) 9, 913 4, 614 0.47 565 33, 028 

Total GHG emissions (kg 

CO2-eq) 
353, 141 149, 533 0.42 35, 777 1, 153, 434 

Variable GHG emissions 

[CO2+N2O] (kg CO2-eq) 
136, 940 67, 203 0.49 8949 561, 580 

Fixed GHG emissions [CH4] 

(kg CO2-eq) 
216, 201 90, 560 0.42 26, 473 602, 287 

Pollution intensity (kg CO2-

eq/kg meat carcass) 
37.8 10.6 0.28 19.2 104.9 

Pollution intensity with 

variables GHG (kg CO2-eq/kg 

meat carcass) 

14.5 4.67 0.32 5.1 48.4 

Herd size (livestock units) 76.65 31.46 0.41 10.89 200.00 

Number of farm-year 

observations 
1,302 - - - - 

Notes: CO2-eq: carbon dioxide equivalent. The gases are carbon dioxide (CO2), methane (CH4) and nitrous oxide 

(N2O). The relative standard deviation is computed as the ratio of the standard deviation on the mean and can be seen as 

the coefficient of variation. 
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Figure 1: Pollution intensity vs. stocking rate and labour productivity 
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Table 2: Eco-efficiencies for different pollution generating technologies models: sample’s 

average over the period 1987-2013 

 
   

Three sources of efficiency (equation 

12) 

Models 
Treatment of the 

bad outputs 

Minimum 

pollution 

intensity (kg 

CO2-eq /kg 

meat carcass) 

Eco-

efficiency 

score 

Weak ratio 

efficiency 

𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟𝑥,𝑦/𝑓
∗  

Allocative 

ratio 

efficiency 
𝑟𝑥,𝑦/𝑓

∗

𝑟𝑥/𝑓
∗  

Input 

ratio 

efficienc

y 
𝑟𝑥/𝑓

∗

𝑟./𝑓
∗  

No pollution in 

the technology: 

free choice of 

good output 

and inputs 

All GHG as one 

variable bad output 
10.69 0.300 - - - 

Methane excluded 

from the constraints 
4.15 0.300 - - - 

Pollution as 

input (model in 

2) 

All GHG as one 

variable bad output 
19.19 0.540 0.585 0.947 0.981 

Methane excluded 

from the constraints 
5.13 0.390 0.454 0.915 0.965 

WDA with 

uniform 

abatement factor 

(model in 5) 

All GHG as one 

variable bad output 
19.19 0.540 0.574 0.971 0.981 

Methane excluded 

from the constraints 
5.13 0.390 0.449 0.929 0.965 

WDA with non-

uniform 

abatement factor 

All GHG as one 

variable bad output 
19.19 0.540 0.566 0.969 0.998 

Methane excluded 

from the constraints 
5.13 0.390 0.442 0.917 0.998 

Weak G-

disposability 

(model in 6) 

All GHG as one 

variable bad output 
19.19 0.540 0.708 0.854 0.899 

Methane excluded 

from the constraints 
5.13 0.390 0.616 0.877 0.737 

By-production 

modelling with 

independent 

technologies 

(model in 7) 

All GHG as one 

variable bad output 
1.08 0.030 0.610 0.615 0.085 

Methane excluded 

from the constraints 
0.27 0.021 0.511 0.615 0.069 

By-production 

with an 

interdependenc

e constraint 

across 

technologies 

(constraint 8) 

All GHG as one 

variable bad output 
9.50 0.267 0.610 0.616 0.748 

Methane excluded 

from the constraints 
2.86 0.217 0.511 0.615 0.728 

Unified model 

under natural and 

managerial 

disposability 

without input 

separation 

(model in 9) 

All GHG as one 

variable bad output 
19.19 0.540 0.789 0.857 0.805 

Methane excluded 

from the constraints 
5.13 0.390 0.695 0.843 0.687 

Unified model 

under natural and 

managerial 

disposability 

with input 

separation 

All GHG as one 

variable bad output 
19.19 0.540 0.711 0.853 0.899 

Methane excluded 

from the constraints 
5.13 0.390 0.626 0.870 0.735 

Notes: CO2-eq: carbon dioxide equivalent 
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Table 3: Optimal scale for eco-efficient DMUs when the three GHG are variable 

 Utilized 

land 

(hectares) 

Labour 

(full-time 

equivalents) 

Production-

related 

costs (2005 

Euros) 

Meat 

production 

(kg) 

GHG emissions 

(kg CO2-eq) 

Sample average (actual observed 

levels) 
74.1 1.38 51, 429 9, 913 353, 141 

Models 

No pollution in the technology: 

free choice of good output 

and inputs 

87.1 2.17 179, 169 33, 028 1, 153, 434 

Pollution as input (model in 2) 36.1 0.98 46, 040 12, 124 232, 701 

WDA with uniform abatement factor 

(model in 5) 
36.1 0.98 46, 040 12, 124 232, 701 

WDA with non-uniform abatement 

factor 
36.1 0.98 46, 040 12, 124 232, 701 

Weak G-disposability (model in 6) 36.1 0.98 46, 040 12, 124 232, 701 

By-production 

modelling with 

independent 

technologies (model in 

7) 

Good output 

technology 87.1 2.17 179, 169 33, 028 - 

Bad output 

technology - - 3, 544 - 35, 777 

By-production with an 

interdependence constraint across 

technologies (constraint 8) 

93.6 1.32 29, 426 11, 937 113, 342 

Unified model under natural and 

managerial disposability without input 

separation (model in 9) 

36.1 0.98 46, 040 12, 124 232, 701 

Unified model under natural and 

managerial disposability with input 

separation 

36.1 0.98 46, 040 12, 124 232, 701 
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Table 4: Optimal scale for eco-efficient DMUs when methane is excluded from the GHG 

emissions 

 Utilized 

land 

(hectares) 

Labour 

(full-time 

equivalents) 

Production-

related 

costs (2005 

Euros) 

Meat 

production 

(kg) 

Variable GHG 

emissions 

(kg CO2-eq) 

Sample average (actual observed 

levels) 
74.1 1.38 51, 429 9, 913 136, 940 

Models 

No pollution in the technology: 

free choice of good output 

and inputs 

87.1 2.17 179, 169 33, 028 561, 580 

Pollution as input (model in 2) 85.3 1.50 43, 502 14, 960 76, 778 

WDA with uniform abatement factor 

(model in 5) 
85.3 1.50 43, 502 14, 960 76, 778 

WDA with non-uniform abatement 

factor 
85.3 1.50 43, 502 14, 960 76, 778 

Weak G-disposability (model in 6) 85.3 1.50 43, 502 14, 960 76, 778 

By-production 

modelling with 

independent 

technologies (model in 

7) 

Good output 

technology 87.1 2.17 179, 169 33, 028 - 

Bad output 

technology - - 3, 365 - 8, 949 

By-production with an 

interdependence constraint across 

technologies (constraint 8) 

77.0 1.00 15, 412 7, 247 20, 708 

Unified model under natural and 

managerial disposability without input 

separation (model in 9) 

85.3 1.50 43, 502 14, 960 76, 778 

Unified model under natural and 

managerial disposability with input 

separation 

85.3 1.50 43, 502 14, 960 76, 778 
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Figure 2: Eco-efficiency evolution depending on the specification of methane emissions 

 

 

  



24 

References 

 

ADEME (2011). Guide des valeurs Dia’terre. Version référentiel 1.7  

Alvarez, A. and del Corral, J. (2010). Identifying different technologies using a latent class model: 

extensive versus intensive dairy farms. European Review of Agricultural Economics 37: 231-250. 

Bogetoft, P. (2013). Performance Benchmarking: Measuring and Managing Performance. 

Chambers, R. G. (1988). Applied production analysis: a dual approach. Cambridge University 

Press. 

Charnes, A. and Cooper, W. W. (1962). Programming with linear fractional functionals. Naval 

Research Logistics Quarterly 9: 181-186. 

Chen, C. M. (2014). Evaluating eco-efficiency with data envelopment analysis: an analytical 

reexamination. Annals of Operations Research 214: 49-71. 

Chung, Y. H., Fare, R.and Grosskopf, S. (1997). Productivity and undesirable outputs: A directional 

distance function approach. Journal of Environmental Management 51: 229-240. 

Coelli, T., Lauwers, L.and Van Huylenbroeck, G. (2007). Environmental efficiency measurement 

and the materials balance condition. Journal of Productivity Analysis 28: 3-12. 

Dakpo, H. K. (2015). On modeling pollution-generating technologies: a new formulation of the by-

production approach. EAAE PhD Workshop. Rome, Italy. 

Dyckhoff, H. and Allen, K. (2001). Measuring ecological efficiency with data envelopment analysis 

(DEA). European Journal of Operational Research 132: 312-325. 

Färe, R. and Grosskopf, S. (2003). Nonparametric productivity analysis with undesirable outputs: 

comment. American Journal of Agricultural Economics 85: 1070-1074. 

Färe, R. and Grosskopf, S. (2004). New Directions: Efficiency and Productivity. Springer 

Science+Business Media, Incorporated. 

Färe, R. and Grosskopf, S. (2012). Regulation and Unintended Consequences. Centre for 

Environmental and Resource Economics Department of Economics. 

Färe, R., Grosskopf, S., Lovell, C. K.and Pasurka, C. (1989). Multilateral productivity comparisons 

when some outputs are undesirable: a nonparametric approach. The review of Economics and 

Statistics 71: 90-98. 

Färe, R., Grosskopf, S., Noh, D.-W.and Weber, W. (2005). Characteristics of a polluting 

technology: theory and practice. Journal of Econometrics 126: 469-492. 

Färe, R., Grosskopf, S.and Pasurka Jr, C. A. (2007). Environmental production functions and 

environmental directional distance functions. Energy 32: 1055-1066. 

Førsund, F. R. (2009). Good Modelling of Bad Outputs: Pollution and Multiple-Output Production. 

International Review of Environmental and Resource Economics 3: 1-38. 



25 

Gac, A., Cariolle, M., Deltour, L., Espagnol, S., Flénet, F., Guingand, N., Lagadec, S., Le Gall, A., 

Lellahi, A., Malaval, C., Ponchant, P.and Tailleur, A. (2011). Greenhouse Gases and Carbon 

Sequestration – Contributions for the environmental assessment of the agricultural activities. 

Innovations Agronomiques 17: 83-94. 

Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A.and 

Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions 

and mitigation  opportunities. Food and Agriculture Organization of the United Nations (FAO). 

Rome. 

Guinée, J. B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R.and De Koning, A. (2002). 

Handbook on life cycle assessment. Operational guide to the ISO standards: 1-708. 

Hailu, A. (2003). Nonparametric productivity analysis with undesirable outputs: reply. American 

Journal of Agricultural Economics 85: 1075-1077. 

Hailu, A. and Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: 

An application to the Canadian pulp and paper industry. American Journal of Agricultural 

Economics 83: 605-616. 

Hampf, B. and Rødseth, K. L. (2014). Carbon Dioxide Emission Standards for US Power Plants: 

An Efficiency Analysis Perspective. Darmstadt Discussion Papers in Economics 219. 

Hoang, V.-N. and Alauddin, M. (2012). Input-Orientated Data Envelopment Analysis Framework 

for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An 

Application to OECD Agriculture. Environmental and Resource Economics 51: 431-452. 

Huppes, G. and Ishikawa, M. (2005). A Framework for Quantified Eco‐efficiency Analysis. Journal 

of Industrial Ecology 9: 25-41. 

Karagiannis, G. and Tzouvelekas, V. (2005). Explaining output growth with a heteroscedastic non-

neutral production frontier: the case of sheep farms in Greece. European Review of Agricultural 

Economics 32: 51-74. 

Kuosmanen, T. (2005). Weak disposability in nonparametric production analysis with undesirable 

outputs. American Journal of Agricultural Economics 87: 1077-1082. 

Kuosmanen, T. and Podinovski, V. (2009). Weak disposability in nonparametric production 

analysis: reply to Färe and Grosskopf. American Journal of Agricultural Economics 91: 539-545. 

Latruffe, L., Davidova, S.and Balcombe, K. (2008). Application of a double bootstrap to 

investigation of determinants of technical efficiency of farms in Central Europe. Journal of 

Productivity Analysis 29: 183-191. 

Ludena, C. E., Hertel, T. W., Preckel, P. V., Foster, K.and Nin Pratt, A. (2005). Disaggregate 

productivity growth in livestock: A directional Malmquist Index approach. American Agricultural 

Economics Association Annual. 

Mahlberg, B., Luptacik, M.and Sahoo, B. K. (2011). Examining the drivers of total factor 

productivity change with an illustrative example of 14 EU countries. Ecological Economics 72: 60-

69. 



26 

Manello, A. (2012). Efficiency and productivity analysis in presence of undesirable output: an 

extended literature review. In University of Bergamo-Faculty of Engineering (ed), Efficiency and 

productivity in presence of undesirable outputs. 

http://aisberg.unibg.it/bitstream/10446/26695/1/A.Manello%20-%20PhD%20thesis.pdf, 127 pages. 

Martin, C., Morgavi, D.and Doreau, M. (2010). Methane mitigation in ruminants: from microbe to 

the farm scale. animal 4: 351-365. 

Murty, S. and Russell, R. R. (2002). On Modeling Pollution Generating Technologies. Department 

of Economics, University of California, Riverside. 

Murty, S., Russell, R. R.and Levkoff, S. B. (2012). On modeling pollution-generating technologies. 

Journal of Environmental Economics and Management 64: 117-135. 

Palmer, K., Oates, W. E.and Portney, P. R. (1995). Tightening Environmental Standards - the 

Benefit-Cost or the No-Cost Paradigm. Journal of Economic Perspectives 9: 119-132. 

Pittman, R. W. (1983). Multilateral Productivity Comparisons with Undesirable Outputs. Economic 

Journal 93: 883-891. 

Podinovski, V. V. and Kuosmanen, T. (2011). Modelling weak disposability in data envelopment 

analysis under relaxed convexity assumptions. European Journal of Operational Research 211: 

577-585. 

Prior, D. (2006). Efficiency and total quality management in health care organizations: A dynamic 

frontier approach. Annals of Operations Research 145: 281-299. 

Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regression 

analysis. Journal of the Royal Statistical Society. Series B (Methodological): 350-371. 

Silva, E. and Stefanou, S. E. (2003). Nonparametric dynamic production analysis and the theory of 

cost. Journal of Productivity Analysis 19: 5-32. 

Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M.and De Haan, C. (2006). Livestock's 

long shadow. FAO Rome. 

Sueyoshi, T. and Goto, M. (2010). Should the US clean air act include CO2 emission control? 

Examination by data envelopment analysis. Energy Policy 38: 5902-5911. 

Sueyoshi, T. and Goto, M. (2011). DEA approach for unified efficiency measurement: Assessment 

of Japanese fossil fuel power generation. Energy Economics 33: 292-303. 

Sueyoshi, T. and Goto, M. (2011). Methodological comparison between two unified (operational 

and environmental) efficiency measurements for environmental assessment. European Journal of 

Operational Research 210: 684-693. 

Sueyoshi, T. and Goto, M. (2012). Data envelopment analysis for environmental assessment: 

Comparison between public and private ownership in petroleum industry. European Journal of 

Operational Research 216: 668-678. 

Sueyoshi, T., Goto, M.and Ueno, T. (2010). Performance analysis of US coal-fired power plants by 

measuring three DEA efficiencies. Energy Policy 38: 1675-1688. 

http://aisberg.unibg.it/bitstream/10446/26695/1/A.Manello%20-%20PhD%20thesis.pdf


27 

Tufféry, S. (2011). Data Mining and Statistics for Decision Making. Wiley. 

Zhou, P., Ang, B. W.and Poh, K. L. (2008). A survey of data envelopment analysis in energy and 

environmental studies. European Journal of Operational Research 189: 1-18. 

 

 


