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Abstract
The Markov chain model (MCM) has become a popular tool in the agricultural economics
literature to study the impact of various drivers on the structural change of farms, includ-
ing public support. In order to relax the process-homogeneity assumption underlying the
MCM, we consider a mixture of two types of agents, the ‘stayers’ who always remain in
their initial size category, and the ‘movers’ who follow a first-order Markovian process. An
empirical application to a panel of commercial French farms over 2000-2012 shows that
the mover-stayer model (MSM) is a better modeling framework to recover the underlying
transition probability matrix.

Keywords
Structural change, Markov chain model, Mover Stayer model, Mixture model, EM algo-
rithm

1. Introduction

As Zimmermann et al. (2009) show, it has become quite common in the agricultural
economic literature to study the way farms experience structural change thanks to the
so-called Markov chain model (MCM). Basically, this model states that, as the size of
farms changes according to some stochastic process, farms move from one size category
to another over time. This modeling framework has been particularly used in its non-
stationary version, where transition probabilities across categories may vary with time,
in order to study the impact of a variety of factors, including agricultural policies.

Most of these studies have used ‘aggregate’ data, that is, cross-sectional observations
of the distribution of a farm population into a finite number of size categories: such data
are most often easier to obtain than individual-level data, and Lee et al. (1965) and Lee
et al. (1977) have shown that robustly estimating a MCM from aggregate data is possible.
Since then, because estimating a MCM may well be an ill-posed problem as the number of
parameters to be estimated is often larger than the number of observations (Karantininis,
2002), much effort has been dedicated to developing efficient ways to parameterize and es-
timate such models, ranging from a discrete multinomial logit formulation (MacRae, 1977;
Zepeda, 1995), the maximization of a generalized cross-entropy model with instrumental
variables (Karantininis, 2002; Huettel and Jongeneel, 2011; Zimmermann and Heckelei,
2012), a continuous re-parameterization (Piet, 2011), to the use of Bayesian inference
(Storm et al., 2011).

However, even though some of these studies have accounted for heterogeneity across
farms by considering transition probabilities covariates depicting farmer and/or farm char-
acteristics (see Zimmermann and Heckelei (2012) for a recent example), to our knowledge,
none of these studies has questioned so far the assumption of process-homogeneity which
underlies the traditional Markov modeling framework: all of these studies define only
one transition probability matrix for the whole population under study, implying that all
agents follow the same and unique stochastic process. As farm-level data become more
widely available, allowing for the observation of individual transitions across time, we ar-
gue that this homogeneity assumption should be relaxed. To this end, we propose to use
a more general modeling framework than the MCM, namely the mixed MCM (M-MCM).
As an illustration, we apply the simplest version of this extended model, the mover-stayer
model (MSM), to compute the short- and long-run transition probability matrices for an

1



unbalanced panel of 14,298 commercial French farms observed over 2000-2012.
The paper is structured as follows. Section 2 introduces how the traditional MCM

can be generalized into the M-MCM. Section 3 develops the specific MSM specification
along with the method used to estimate the model. Section 4 reports our application to
France, first describing the data used and then presenting the results. Finally, section
5 concludes with some considerations on how to extend further the approach described
here.

2. Generalizing the Markov chain model

2.1. Transition probability matrices

Consider a population of agents which is partitioned into a finite number J of categories or
‘states of nature’. Assuming that agents move from one state to another during a certain
period of time according to a stochastic process leads to defining the number nj,t+r of
individuals in category j at time t+ r as given by:

nj,t+r =
J∑

i=1

φ
(r)
ij,tni,t, (1)

where ni,t is the number of individuals in category i at time t, and φ(r)
ij,t is the probability

of moving from state i to state j between t and t + r. As such, φ(r)
ij,t is subject to the

standard non-negativity and summing-up to unity constraints for probabilities:

φ
(r)
ij,t ≥ 0, ∀i, j, t∑J

i=1 φ
(r)
ij,t = 1, ∀j, t.

(2)

In the following, we restrict our analysis to the stationary case where the r-step transition
probability matrix (TPM), P(r)

t = {φ(r)
ij,t}, is independent from t, i.e., P(r)

t = P(r) for all t.
In matrix notation, equation (1) then rewrites:

Nt+r = Nt × P(r), (3)

where Nt+r = {nj,t+r} and Nt = {nj,t} are row vectors.

2.2. Markov versus mixed-Markov models

The traditional MCM approach consists in approximating P(r) by the 1-step transition
matrix P(1) ≡ Π = {πij} raised to the power r. The econometric model which has to be
estimated thus writes:

Nt+r = Nt ×Πr + Vt+r, (4)

where Vt+r = {vj,t+r} is a row vector of error terms assumed independently and identically
distributed (iid).

In doing so, the MCM approach assumes that the individuals in the population are
homogeneous, i.e., they all move according to the same stochastic process described by
Π. However, in general, Πr proves to be a poor estimate of P(r) (Blumen et al., 1955;
Spilerman, 1972). In particular, the diagonal elements of Πr largely underestimate those
of P(r). With the notation that Π(r) = Πr, this means that, in general, π(r)

ii � φ
(r)
ii . One

way to obtain a 1-step TPM which leads to a more consistent r-step estimate, consists in
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relaxing the process-homogeneity assumption underlying the MCM approach. This leads
to considering a mixture of time homogeneous Markov chains which captures population
heterogeneity in the rate of movement among state (Frydman, 2005).

Considering that agents may follow a discrete number G of elementary Markov pro-
cesses instead of just one, the general form of the mixed Markov chain model (M-MCM)
consists in decomposing P(1) ≡ P = {pij} as:

P =
G∑

g=1

SgMg, (5)

where Mg = {mij,g} is the TPM defining the 1-step Markov process followed by type-g
agents, and Sg = diag(si,g) is a diagonal matrix which gathers the shares of type-g agents
in each state of nature. Since every agent in the population has to belong to one and only
one type g, the constraint that

∑G
g=1 Sg = IJ must hold, where IJ is the J × J identity

matrix.
Under this model, equation (4) rewrites:

Nt+r = Nt ×P(r) + Ut+r = Nt ×
G∑

g=1

SgM
r
g + Ut+r, (6)

where Ut+r = {uj,t+r} is a row vector of iid error terms.
With the so-defined MCM and M-MCM modeling frameworks, it should be noted

that P(1) = Π = P but Π(r) 6= P(r) in general, and that the M-MCM reduces to the
MCM if G = 1.

2.3. Continuous time models

According to the structural change under study, the transition process characterizing each
homogeneous type of agents can be regarded as discrete or continuous with respect to time.
While several authors have used a discrete-time approach (Blumen et al., 1955; Spilerman,
1972; Frydman et al., 1985), a continuous-time approach is preferable if transitions may
occur at any time (Lando and Skodeberg, 2002; Frydman and Kadam, 2004; Frydman
and Schuermann, 2008). In this case, following Singer and Spilerman (1975), the type-g
TPM is given at any time t by:

Mg(t) = exp(tQg), (7)

where Qg = {qij,g} represents the generator matrix of the Markovian process followed by
type-g agents, defined as:

• exp(tQg) =
∑∞

k=0

tkQk
g

k!
,

• qij,g ≥ 0 for i 6= j ∀g,

• and, by convention, qii,g ≡ −
∑

j 6=i qij,g = −qi,g ≤ 0 ∀g.

With the generator matrix Qg so defined, it is worth noting that qij/qi is the proba-
bility that an agent in state i moves to state j, given the occurrence of a transition, and
that 1/qi is the expected total time an agent spends in state i.
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In the agricultural economics literature, farm structural change has been so far studied
mostly using the discrete-time approach. So doing, an arbitrary time interval, generally
one year, is chosen to estimate the unitary, i.e., annual (or 1-year) transition probability
matrix which governs the process. However, even if farm sizes are observed only once
a year in the best case, farms may change their size at any time during the year. Fur-
thermore, as pointed out by Singer and Spilerman (1976), using different unitary time
intervals may lead to different results. Thus, the continuous-time approach has been
preferred here.

2.4. Frydman (2005)’s specification of the M-MCM

As the number of parameters to estimate increases with the number of homogeneous
agent types, the estimation of equation (6) may become difficult because of an identifica-
tion issue. Thus, Frydman (2005) proposed a parameterization of the M-MCM under a
continuous-time approach, assuming that all type-g TPMs are related to a specific one:

Qg ≡ ΛgQ ∀g, (8)

where Λg = diag(λi,g) with λi,g ≥ 0.
The λi,g parameters inform about differences in the rates of movement across homo-

geneous agent types: λi,g = 0 if type-g agents starting in state i never move out of i;
0 < λi,g ≤ 1 if they move at a lower rate than the generator matrix Q and; λi,g > 1 if they
move at a higher rate than the generator matrix Q. The generator matrix Q is chosen
arbitrarily as the intensity matrix for the last homogeneous agent type (Q ≡ QG), i.e.,
ΛG = IJ .

3. The model used

3.1. The Mover-Stayer model

In this paper, we stick to the simplest version of the M-MCM, namely the mover-stayer
model (MSM) first proposed by Blumen et al. (1955). In this restricted approach, only two
types of homogeneous agents are considered, those who always remain in the same cate-
gory (the ‘stayers’) and those who follow a first-order Markovian process (the ‘movers’).
Formally, this leads to rewriting equation (5) in a simpler form as:

P(t) = S + (IJ − S)M(t). (9)

With respect to the general formulation (5), this corresponds to setting G = 2 and
defining S1 ≡ S and M1 = IJ for the stayers, and S2 = (IJ − S) and M2 ≡ M for the
movers. With respect to Frydman (2005)’s specification of equation (8), this is equivalent
to imposing Λ1 = 0J for stayers (where 0J is the J × J matrix with all elements set to
zero), and Λ2 = IJ and Q2 ≡ Q for movers.

3.2. Estimation under complete information

Since Goodman (1961) has shown that Blumen et al. (1955) estimators for the MSM are
biased, alternative methods have been developed to obtain consistent ones using maximum
likelihood (Frydman, 1984, 2005) or Bayesian inference (Fougère and Kamionka, 2003).
Based on the findings of Frydman (1984) and using the general formulation of equation (5)
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and the relation established in (8), Frydman (2005) has developed a maximum likelihood
method to estimate the parameters of the M-MCM. We report this strategy, using our
own notations introduced above.

Consider a population of n agents, each k of which being observed continuously on
some time interval [0, Tk] with Tk ≤ T , where T the time horizon of all observations.
According to Frydman and Kadam (2004) and under Frydman (2005)’s specification of
the M-MCM as defined by equation (8), the likelihood that the transition history of agent
k was generated by a specific Markov chain with the generator matrix Qg (i.e., that k
belongs to type g), conditional on knowing that k was initially in state ik, is given by:

lk,g = sik,g
∏
i 6=j

(λi,gqij)
nij,k

∏
i

exp(−λi,gqiτi,k), (10)

where sik,g is the share of type-g agents initially in state ik, nij,k is the number of times
k made a transition from i to j with j 6= i, and τi,k is the total time spent by k in state i
(with τi,k ≤ Tk).

Under the MSM framework where only two type of agents are considered (‘S’ standing
for stayers and ‘M ’ for movers), the log-likelihood function for the whole population then
writes:

logL =
n∑

k=1

(Yk,Sloglk,S + Yk,M loglk,M), (11)

where Yk,g is an indicator variable which equals 1 if agent k belongs to g and 0 otherwise
(with g = {S,M}).

Under complete information, all Yk,g are perfectly known so equation (11) rewrites:

logL =
∑
i

bilog(1− si) +
∑
i

bi,Slog[si/(1− si)] +
∑
i 6=j

nijlog(qij)−
∑
i

qiτi +
∑
i

qiτi,S,

(12)
where si is state-i share of stayers, qij and qi are the elements of the generator matrix
Q of movers as defined in section 2.3, bi is the total number of agents who were initially
in state i, bi,S is the total number of stayers who were initially in state i, nij is the total
number of transitions from state i to state j, τi is the total time spent in state i by all
agents and τi,S is the total time spent in state i by stayers.

Then, maximizing equation (12) with respect to its unknown parameters si, qij and
qi leads to the following estimators:

ŝi =
bi,S
bi
, q̂i =

ni

τi,M
and q̂ij =

nij

ni

q̂i, (13)

where ni is the total number of transitions out of state i and τi,M is the total time spent
in state i by movers (with τi = τi,S + τi,M).

3.3. Estimation under incomplete information

Swensen (1996) has shown that equation (11) is actually difficult to use directly because
it is unlikely that we know beforehand which agents are stayers and which are movers.
This would require that we observed each agent k during a sufficiently long period Tk to
reach complete information on their status.

Alternatively, Fuchs and Greenhouse (1988) and van de Pol and Langeheine (1989)
suggested that the MSM parameters can be estimated using the Expectation-Maximization
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(EM) algorithm developed by Dempster et al. (1977). Following Frydman and Kadam
(2004), the EM algorithm in our case consists of the four following steps:

(i) Initialization: Arbitrarily choose initial values s0i for the share of stayers and q0i for
the diagonal entries of the generator matrix Q of movers.

(ii) Expectation: At step p of the algorithm, compute the probability of observing k
as generated by a stayer, Ep(Yk,S). If at least one transition is observed for k then set
Ep(Yk,S) = 0, otherwise set it to:

Ep(Yk,S) =
spi

spi + (1− spi )exp(−q
p
i τi,k)

.

Then compute:

Ep(bi,S) =
n∑

k=1

Ep(Yk,S), Ep(τi,S) =
n∑

k=1

Ep(Yk,S)τk,i and Ep(τi,M) = τi − Ep(τi,S).

(iii) Maximization: Update spi and qpi as follows:

sp+1
i =

Ep(bi,S)

bi
and qp+1

i =
ni

Ep(τi,M)
.

(iv) Iteration: Return to step (ii) using sp+1
i and qp+1

i and iterate until convergence.
When convergence is reached, ŝ∗i and q̂∗i so obtained are considered as the optimal esti-
mators, and q̂∗ij derives from q̂∗i as in equation (13).

4. Empirical application

4.1. Data used

When empirically applying the modeling frameworks presented above to the agricultural
sector, ‘agents’ are usually farms and ‘states of nature’ are defined with respect to some
size variable.

We applied the standard Markov (MCM) and the Mover-Stayer models (MSM) to
the French strand of the EU-wide Farm Accounting Data Network (FADN) database.1
Individual farm level data were available from 2000 to 2012 for the full sample surveyed,
i.e., around 7,000 farms each year. Since the FADN database is a rotating panel, farms
which enter (respectively, leave) the sample a given year cannot be considered as repre-
senting actual entries into (exits from) the agricultural sector.2 Therefore, we chose to
work on size change of on-going farms, i.e., without considering entries nor exits. In order
to observe at least one transition for each agent, we kept only farms present during at
least two consecutive years in the database. Our unbalanced panel thus counted 14,298
farms, that is 87.64% of the full sample.

1The French FADN is called ‘Réseau d’Information Comptable Agricole’ (RICA) and is produced and
disseminated by the statistical and foresight service of the French ministry for agriculture. To learn more
about RICA, see http://www.agreste.agriculture.gouv.fr/. To learn more about FADN in general,
see http://ec.europa.eu/agriculture/rica/index.cfm.

2In this respect, around 10% of the French FADN sample is renewed each year.
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Table 1. Distribution by economic size (ES) class and average ES for the
studied sample.a

Years Number of farms by ES class Total Average ES

(0-50) (50-100) (100-150) (150-250) (+250) (std. dev.)

2000 682 1,909 1,383 1,543 1,170 6,687 169.88 (183.56)
2001 730 2,147 1,571 1,757 1,320 7,525 170.51 (181.48)
2002 692 2,056 1,600 1,762 1,366 7,476 175.72 (194.42)
2003 663 1,922 1,503 1,647 1,335 7,070 175.32 (192.47)
2004 689 1,877 1,488 1,652 1,371 7,077 176.66 (187.81)
2005 707 1,869 1,467 1,653 1,388 7,084 177.00 (181.07)
2006 736 1,874 1,444 1,636 1,420 7,110 179.81 (208.74)
2007 747 1,789 1,507 1,646 1,437 7,126 180.73 (188.34)
2008 761 1,819 1,474 1,684 1,528 7,266 184.47 (199.12)
2009 752 1,774 1,493 1,694 1,570 7,283 187.45 (202.93)
2010 637 1,848 1,512 1,733 1,563 7,293 189.78 (198.67)
2011 627 1,828 1,438 1,755 1,612 7,260 194.08 (207.43)
2012 579 1,637 1,274 1,653 1,498 6,641 197.69 (248.16)

a ES in 1000 Euros of standard output

Source: Agreste, FADN France 2000-2012 – authors’ calculations

As we considered all farms in the sample whatever their type of farming, we chose
to concentrate on size as defined from an economic perspective. In accordance with the
European regulation (CE) Nº1242/2008, FADN farms are classified into 14 economic size
(ES) categories, evaluated in terms of total standard output (SO) expressed in Euros.3 In
France, the FADN focuses on ‘commercial’ farms, that is, farms whose SO is greater than
or equal to 25,000 Euros; this corresponds to ES category 6 and above. We aggregated
the 9 size categories available in the French FADN into 5: ES6 and below (less than
50,000 Euros of SO);4 ES7 (between 50,000 and 100,000 Euros of SO); ES8 divided in two
categories (between 100,000 and 150,000 of SO and between 150,000 and 250,000 of SO);
ES9 and above (more than 250,000 Euros of SO). This led to observe 78,600 individual 1-
year transitions from 2000 to 2012. Table 1 presents the evolution over the whole studied
period of farm numbers by ES categories and average ES in thousand of Euros of SO for
the studied panel.

Before proceeding with the results of our analysis, it should be noted that because
we chose to work with a subset of the full sample, the transition probabilities reported
in the next section should be viewed as size change probabilities conditional on having
been observed at least two consecutive years during the whole period under study, and
should not be considered as representative for the whole population of commercial French
farms. Furthermore, because we cannot identify entries into and exits from the sector in

3SO is being used as the measure of economic size since 2010. Before this date, economic size was
measured in terms of standard gross margin (SGM). However, SO calculations have been retropolated
for 2000 to 2012, allowing for consistent time series analysis (European Commission, 2010).

4Even if the French FADN focuses on commercial holdings, farms with less than 25,000 Euros of SO
may be present at some point in the database because they are kept in the sample from year to year even
if they fall below the threshold once in a while.
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Table 2. Observed TPMs and size distribution in 2009.

ES class

(0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.920 0.075 0.003 0.002 0.000
(50-100) 0.035 0.894 0.064 0.005 0.002

ES class (100-150) 0.003 0.064 0.851 0.080 0.002
(150-250) 0.002 0.004 0.054 0.882 0.058
(+250) 0.000 0.002 0.005 0.052 0.941

a) 1-year TPM (P(1))

ES class

(0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.772 0.158 0.042 0.023 0.005
(50-100) 0.132 0.609 0.206 0.034 0.016

ES class (100-150) 0.022 0.135 0.569 0.248 0.026
(150-250) 0.010 0.032 0.094 0.639 0.226
(+250) 0.009 0.013 0.020 0.123 0.836

D2009 All 0.103 0.244 0.205 0.233 0.216

b) 9-years TPM (P(9)) and size distribution in 2009 (D2009)

Source: Agreste, FADN France 2000-2009 – authors’ calculations

the FADN database, the distribution of farms will be analyzed in terms of shares of farms
by size categories and not in terms of absolute numbers.

4.2. Results

In order to test the usefulness of the MSM and to compare its merits with respect to the
MCM, we divided the database into two periods. First, we used observations from 2000
to 2009 to estimate the parameters of both models. Then, observations from 2010 to 2012
were used to compare out-sample predictions.

For the estimation phase, nine subsamples could be constructed according to the
minimum number of consecutive years a farm remains present in the database, from two
to ten. It appeared that the optimal subsample was the one where farms remained at
least nine years in the database (not reported): with this subsample, the estimated 8-years
TPM and the predicted distribution were closest to the observed ones for both model,
as measured by the sum of marginal errors (SME), defined as (Frydman, 1984; Cipollini
et al., 2012):

SME =
∑√(

Obs− Pred
Obs

)2

.

The corresponding observed 1-year and 9-years TPMs were then computed (Table
2). As has been usually found in the literature, we observe that these TPMs are strongly
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Table 3. Stayer shares and mover generator matrix.

Stayers Movers Q

sii (0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.534 -0.140 0.131 0.005 0.003 0.001
(50-100) 0.425 0.058 -0.176 0.106 0.009 0.003
(100-150) 0.169 0.004 0.079 -0.184 0.098 0.003
(150-250) 0.344 0.002 0.006 0.075 -0.163 0.080
(+250) 0.631 0.001 0.005 0.010 0.110 -0.126

Source: Agreste, FADN France 2000-2009 – authors’ calculations

Table 4. Predicted 9-years TPMs and size distributions in 2009.

ES class

(0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.523 0.336 0.094 0.035 0.011
(50-100) 0.160 0.477 0.229 0.103 0.031

ES class (100-150) 0.051 0.232 0.352 0.273 0.093
(150-250) 0.018 0.075 0.188 0.446 0.274
(+250) 0.007 0.030 0.071 0.251 0.641

DMCM
2009 All 0.115 0.241 0.203 0.236 0.204

a) MCM TPM (Π(9)) and size distribution in 2009 (DMCM
2009 )

ES class

(0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.708 0.167 0.079 0.035 0.012
(50-100) 0.093 0.639 0.157 0.083 0.029

ES class (100-150) 0.046 0.152 0.525 0.200 0.078
(150-250) 0.018 0.060 0.141 0.620 0.162
(+250) 0.006 0.021 0.050 0.129 0.794

DMSM
2009 All 0.113 0.248 0.203 0.236 0.204

b) MSM TPM (P(9)) and size distribution in 2009 (DMSM
2009 )

Source: Agreste, FADN France 2000-2009 – authors’ calculations

diagonal, meaning that their diagonal elements exhibit by far the largest values and that
probabilities rapidly decrease as we move away from the diagonal. This means that,
overall, farms are more likely to remain in their initial size category.5

In order to estimate the stayers proportions, S, and the generator matrix of movers,

5Which does not mean no size change at all but, at least, no sufficient change to move to another
category as we defined them.
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Q, defining the MSM, we implemented the continuous-time specification and the EM
algorithm estimation method developed in section 3. Table 3 reports the corresponding
shares of stayers by size category and generator matrix of movers. The estimated stayer
shares confirm that, for 4 categories out of the 5 ones considered, more than one third of
farms do not move away from their initial category; for the intermediate category, i.e.,
farms whose SO lies between 150,000 and 250,000 Euros, this share is less than 20%.
Movers from the latter category remain about 5 years in this state while movers with less
than 50,000 or more than 250,000 leave these categories after 7 to 8 years on average.6
Such a result also shows that farms remaining in a particular state during a long time
period are not necessarily stayers.

Then, Table 4 reports both the MCM 9-years TPM, Π(9) ≡
(
P(1)
)9, and the MSM 9-

years TPM, P(9), obtained from S, Q and equations (7) and (9), and both corresponding
estimated size distributions in 2009. While both models quite compare in predicting
the distribution of sizes, TPMs are obviously different, especially with respect to their
diagonal elements. In particular, when compared to the actually observed 9-years TPM,
P(9) (see Table 2b), we find as expected that π(9)

ii � φ
(9)
ii while p(9)ii is much closer to φ(9)

ii .
Overall, the MSM matrix thus appears as a better approximation of the observed matrix
than the MCM matrix, which is confirmed by the respective sum of marginal errors (SME)
computed with respect to the observed 9-years TPM.

Finally, out-of-sample predictions for 2010-2012 confirm the superiority of the MSM,
which becomes even relatively more accurate with respect to the MCM as the projection
horizon increases (not reported).

5. Concluding remarks

The empirical analysis provided in the previous section reveals that relaxing the homo-
geneity assumption which grounds the traditional Markov chain model (MCM) leads to
a better modeling of the underlying economic process. Using a more general framework,
the decomposition of the 1-year transition probability matrix into, on the one hand, a
fraction of ‘stayers’ who remain in their initial size category and, on the other hand, a
fraction of ‘movers’ who follow a standard Markovian process, allows to derive a closer
estimate of the observed short- and long-run transition matrix as well as farm distribution
across size categories.

Still, such a mover-stayer model (MSM) is quite a restricted and simplified version
of the more general model which was presented in section 2. Even though we improved
Blumen et al. (1955)’s calibration process by using the continuous-time approach and the
elaborate expectation-maximization estimation method of Frydman (2005), extending
Blumen et al. (1955)’s framework could lead to even more economically sound, as well
as statistically more accurate models for the farming sector. We briefly mention some of
such extensions which we think are promising. Firstly, more heterogeneity across farms
could be incorporated by allowing for more than two types of agents, and the quite strong
assumption of a ‘pure stayer’ type could be relaxed. Secondly, with either of these two
extensions put in place, Frydman (2005)’s assumption regarding the structural relation
across generator matrices could be also revisited, especially in such a way that the process
of structural change in the farming sector would be better represented.

Finally, the last direction towards which we would like to extend our modeling frame-
work consists in accounting for entries and exits and developing a non-stationary version

6Recall that the time spent by movers in a particular category is given by −1/qii (see section 2.3).
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of the model. Indeed, we think that such a generalized version of the MSM approach
could certainly prove very insightful for analyzing structural change in the farming sec-
tor, in particular to get a better understanding of the impact of agricultural policies on
the development of farm numbers and sizes.
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