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Introduction

The objective of the internship is to investigate the impact of recent Common Agriculture Policy(CAP) reforms on farmers' production, consumption and investment decisions. This is realized by estimating a dynamic stochastic farm model on farm choices, with a specific focus on analyzing the response to exogenous shifts and policy variables.

The Common Agriculture Policy(CAP) is a policy that gives the EU farmers financial support from the resources of the EU annual budget, it aims to ensure the farmers have a stable income to make their living and to improve the agricultural productivity, so that the consumers have a stable supply of affordable food. The agricultural supports today are mostly in forms of subsidies. A major CAP reform in 2003 has implemented a decoupled payment policy that decoupled the subsidy to farm productions, which means the subsidy is no longer linked to the level of production. Moreover, the recent 2014-2020 CAP reform decided a shift of direct payment from land subsidy to active farmer subsidy. If the subsidy is decoupled from production, will the farms have motivation to product more? It is a main question to investigate for this internship.

There is one affirmative answer to this question, that is, if the subsidy is fully decoupled, if we assume a perfect factor market, and if we do not consider the risk attitude of the farmers, the decoupled payment will have no impact on farm productions. The proof to this answer is demonstrated in the next part of this report(see 2.1 Static model without risk aversion). However, the real situation is not like this. For example, the decoupled subsidy may give the farmer more security feelings and thus lower their risk aversion level, they may reduce their saving level and use this amount of money for production. They may have more will to try new technologies. In this way even the subsidy is fully decoupled, it will have an impact on production.

There are already a number of papers modeling the impact of decoupled agriculture subsidy on farm productions. One of the tasks of the internship is to review and summarize these models, so that I have an overall vision of this research filed and I understand deeper on this subject.

The main contribution of this internship is to add farm investment to construct a dynamic stochastic farm model which considers the risk attitudes of the farmers under infinite time horizon. As there is no analytical solution to this model, numerical simulation methods(ex: sequential Monte Carlo simulation) are applied to solve and estimate the model. The learning and application of the numerical simulation methods is the technical highlight of this internship.

What I am interested is whether the estimated risk-aversion level of the farmers is different before and after the CAP reform, or equivalently, without or with decoupled payments. If the point estimate of the risk aversion parameter differs, I could infer that decoupled payments have an impact on farmer decision choices. I am also interested in comparing the depreciation rate at the macro level, to see whether different level of depreciation before and after the CAP reform arise. The structure of this report is organized as follows, First, I briefly review the history of CAP reform. Next, I summarize models from static model with no risk aversion to dynamic model with risk aversion, and I conclude different production impacts giving these models. In part 3, I present my model. In part 4, I discuss the methodology to solve and estimate the model. In part 5, I apply French data to approximate the policy function and to estimate the model.

Literature review

The CAP reform history

According to European Commission, Overview of CAP reform 2014-2010. In 1962, the Common Agricultural Policy(CAP) is born. The essence of the policy is price protection for farmers. From 1970 to 1980, as there is good price for farmers, the farms are producing more food that the market supply exceeds the market demand, the policy turns into supply management. In 1992, the CAP shifts from price support to coupled payments, the subsidy is linked with production. Besides, there is increased emphasis on food quality and environment. In 1999, the CAP is widened to include rural development. The CAP has then two pillars, the first pillar involves the subsidies to farmers and the second pillar has to do with rural development.

The important 2003 reform cuts the link between subsidies and production, it introduces a "Single farm payment(SFP)" policy to decouple the direct payment from production. The subsidies are linked to land use and if the farmers are active in production. The 2014-2020 CAP reform follows the spirit of the 2003 CAP reform with an increased focus on environmental and risky issues, such as introducing more constraints to receive decoupled payments. It better targeted by limiting support to the farmers who are active in productions, thus indicates a shifting from land subsidies to active farm subsidies.

Static model without risk aversion

Consider a simple framework of a farm household using his fixed human capital N , the land use input l and other variable inputs x for production. The farmer wants to maximize his profit, his decision problem is:

max x,l py p x x (p l s l )l + S s.t. y = f (x, l, N ) (1)
where p is the price of output, y is output, l is the rented land, p l is the land rental price, s l is the land subsidy, x is other variable inputs, p x is the price of input, S t is the active-farm subsidy, N is the farmer's human capital which is considered to be constant. 

Cost minimization

= ↵ 0 x ↵x l ↵ l N ↵ N with ↵ x + ↵ l + ↵ N = 1, ↵ N > 0
I solve the cost minimization problem subject to a given production quantity with the method of Lagrange multipliers, the Lagrange function is written as:

L(x, l, ) = p x x + p L l + (y ↵ 0 x ↵x l ↵ l N ↵ N )
Set the gradient of the Lagrange function equations to zero, r x,l, L(x, l, ) = 0, I have the optimal land use and the optimal variable input:

x ⇤ (y, p x , p L ) = ( y ↵ 0 N ↵ N ) 1/(↵x+↵ l ) ( p L ↵ x p x ↵ l ) ↵ l /(↵x+↵ l ) l ⇤ (y, p x , p L ) = ( y ↵ 0 N ↵ N ) 1/(↵x+↵ l ) ( p L ↵ x p x ↵ l ) ↵x/(↵x+↵ l )
(2) This is the land demand function under equilibrium. From Eq. ( 2) we could conclude that @l ⇤ @p L = @l ⇤ @(p l s l )

< 0 which indicates that an increase of land subsidy will induce an increase of the land use.

Profit maximization

The second step is to maximize the profit(Eq.( 1)) given the production cost. Put Eq. (2) into Eq.( 1), then set FOC of y equals to zero we get:

y ⇤ = Kp ( ↵ l /↵ N ) L = K(p l s l ) ( ↵ l /↵ N ) (3) 
where

K = ⇥ 1 p(↵ x + ↵ l ) ( 1 ↵ 0 N ↵ N ) 1/(↵x+↵ l ) p x ( ↵ x p x ↵ l ) ↵ l /↵x+↵ l + ( ↵ x p x ↵ l ) ↵x/↵x+↵ l ⇤ ↵x+↵ l ↵ N > 0
From Eq.(3) we see that:

@y ⇤ @s l = K↵ l ↵ N (p l s l ) (↵ l +↵ N )/↵ N > 0 @y ⇤ @S = 0
The production impact of land subsidy is positive, the production impact of active farmer subsidy is zero when there is no risk aversion.

Land market equilibrium If land supply is fixed, we determine the land rental price by plugging (3) into (2), we obtain the unconditional land demand function,

l d (p x , p L ) = B(p L ) ↵ where ↵ = ↵ l (↵ N 1) ↵ N (↵ x + ↵ l ) < 0, B = constant
When land supply is fixed, then lend rental price p L become exogenous. We have p L = (p l s l ) = 0, and p L = s l . The land subsidy is fully capitalized in land values.

With imperfect land market The above equilibrium is derived under the assumption of perfect factor market and the assumption of a fixed amount of land supply. In this case, land subsidy is fully capitalized in land values. In reality, the market always has frictions and the subsidies are not fully capitalized into the land rental prices or values in short term. The reasons for such partial capitalization are that, the government regulations, the resistance of the farmers of a fully transmission of the payments to land owners, the non-renegotiable land-leasing contracts, etc. Under the assumption of fully capitalized rental land market, many researches show that the CAP reform(simulated by a reduction of Agenda 2000 direct payments) leads to a reduction in arable crop production. [START_REF] Gohin | Assessing CAP reform: Sensitivity of modelling decoupled policies[END_REF] suggests a model with partial capitalization.

The general land demand function is structured as:

l i = l i (p i , p L i , x i ) = l i (p i , p l cf i • s l i , x i )
where l i the demand or allocation of land, i is the index of arable crop, cf i a coupling factor varies between 0 and 1. We have,

X i l i = L
where L is the total supply of land.

cf i = 0 implies that the direct payment has no effect on land allocation and further more no production effects. cf i = 1 implies the farmers must engage in production to receive payments, and these payments affect production.

Take total derivative of the land demand function we obtain:

dl i = cf • @l i @p L i • ( P i2ac (@l i /@p L i ) • ds l i (@L/@p l ) P i2ac (@l i /@p L i ) ds l i ) dw = cf • ( P i2ac (@l i /@p L i ) • ds l i (@L/@p l ) P i2ac (@l i /@p L i )
)

If @L/@p l = 0 and ds l i = ds l (the land subsidies reduce at the same amount), the coupling factor will have no impact on land use and thus the payments have no production effects. They only changes the land rental price. [START_REF] Gohin | Assessing CAP reform: Sensitivity of modelling decoupled policies[END_REF]'s result shows that with partial capitalization of direct payment, the CAP reform induces a higher reduction in arable crop production than that of fully capitalization. The land use decreases in a similar percentage in both fully capitalization and partial capitalization cases.

Static model with risk aversion

The static model without risk aversion with perfect land market shows that a fully decoupled direct payment have no impact on production. However, if we take the uncertainty and the farmer's risk aversion into consideration, the decoupled payment may have impact on the farmer's production decision. [START_REF] Femenia | The decoupling of farm programs: Revisiting the wealth effect[END_REF] suggest the farmer's utility is based on his wealth, his decision problem is defined as:

max x,y EU(W F ) = EU(W 0 + py p x x + S) s.t. y = f (x, l, N )
where W F is the farmer's wealth, W 0 is the farmer's initial wealth. p is the output price and it is stochastic, p ⇠ N (p, p ). If the farmers' attitudes are characterized by decreasing absolute risk aversion(DARA), the direct payment would have impact on production. Furthermore, if we consider here the initial wealth(W 0 ) is influenced by the direct payment, there will exist a even larger production effect.

The modeling framework is: Assume that the farm household is risk averse with a power utility function

U (w) = x 1 1 ( 0, 6 = 1)
The coefficient of relative risk aversion is wU 00 U 0 = , which is constant. The coefficient of absolute risk aversion is: U 00 U 0 = w , which is decreasing with w, note DARA.

The farmer's decision problem is then:

max x,y EU(W F ) = E[(1 ) 1 (W 0 + ⇡(l, x)) 1 ] s.t. ⇡(l, x) = py p x x p l l + S y = f (x, l)
where is the relative risk aversion coefficient, ⇡ is the current profit.

The risk premium RP is the maximum amount of money an agent is ready to pay in order to get rid of a zero-mean risk:Eu(w + Z) = u(w RP ). The certainty equivalent e of a risk Z is the sure increase in wealth that has the same effect on utility as having to bear risk Z. Eu(w + Z) = u(w + e). The certainty equivalent of a risk Z and its risk premium are related as: e = EZ RP .

The risk premium of this model could be approximated as follows, if we take Arrow and Pratt (1964) approximation of the risk premium:

Eu(W 0 + ⇡) =Eu(W 0 + E(⇡)) + E(⇡ 2 E(⇡))u 0 (W 0 + E(⇡)) + 1/2E(⇡ 2 E(⇡)) 2 u 00 (W 0 + E(⇡)) Eu(W 0 + ⇡) =u(W 0 RP ) =u(W 0 + E(⇡)) RP u 0 (W 0 + E(⇡))
We obtain from above,

RP = 1 2 u 00 u 0 E(⇡ 2 E(⇡)) 2
With the definition of absolute risk aversion,

RP [W 0 + ⇡(l, x)] = 1 2 (W 0 + ⇡) 2 p y 2
After [START_REF] Femenia | The decoupling of farm programs: Revisiting the wealth effect[END_REF], maximizing expected utility is equivalent of maximizing the certainty equivalent.

Given a fixed initial wealth the farmer's decision problem is then:

max x,l [W 0 + ⇡(l, x) 1/2 (W 0 + ⇡(l, x)) 1 2 y 2 ] s.t. ⇡(l, x) = py p x x p l l + S y = f (x, l)
As is done in the first part, we first minimize the cost given production quantity, in this way find the optimal conditional l ⇤ and optimal conditional x ⇤ , then we maximize the certainty equivalent given the production cost, and find the y ⇤ . What is different from the static model without risk aversion is that, we now have the part 1/2 (W 0 + ⇡(l, x)) 1 2 y 2 in the maximization function, which is related to the direct payment S, so now direct payment would have a impact on production( @y ⇤ @S 6 = 0). Furthermore, the model shows that the direct payment has a positive impact on the land rental price. This is in accordance with the previous researches which assume fixed initial wealth, they find that the direct payment influence the production on a limited level and mainly increase the land price.

On the other hand, if we discuss the impact of the price subsidy, we could see that the production impact is always positive even with risk neutral attitude, and the price subsidy always has a higher impact on rental price than direct payments.

Given a non-fixed initial wealth [START_REF] Femenia | The decoupling of farm programs: Revisiting the wealth effect[END_REF] point out that most literature has under estimated the impact of direct payment on the wealth of farmers who own factors(land). In fact, for the farm household who own their lands, land asset is an important composition of the farm household wealth. As the direct payment significantly influence the land values, it would influence their wealth level. The maximization program is now built as:

max y [⇡(y; p, p l ) RP (y; ⇡(y; p, p l )) + W 0 (W N F, p l L p )] where W N F is non-agricultural asset, L p is the land in property.
In extreme case, for a farmer who rents all the land for producing, the wealth effect by the direct payment is zero. But for farmers who own lands, the initial wealth of the farmer (W 0 ) would increase with the direct payment(W 0(S)). When taking this wealth effect into account, the impact on the farmers' wealth would be much larger, and thus leads to a larger production effects.

Dynamic model with risk aversion

So far we haven't taken the farmers' consumption decisions into discussion. In fact, the farmers could use part of the direct payments for production, and the other part for consumption and saving for the uncertain future. The farmer's risk attitude plays an important role in their consumption and saving decisions. Based on this consideration, a dynamic model with time dimension is constructed to maximize the discounted expected utility of their consumption stream by [START_REF] Carpentier | Production Effects of Direct Payments to Active Farmers: a Microeconomic Dynamic and Stochastic Analysis[END_REF]. The paper finds that the production impact is much higher in the dynamic model than in the static model with the existence of DARA.

The dynamic framework by [START_REF] Carpentier | Production Effects of Direct Payments to Active Farmers: a Microeconomic Dynamic and Stochastic Analysis[END_REF] is presented as following: Assumptions: the farmer is not credit constrained; he does not own assets (so we do not need to value the assets) and we value only the liquid wealth; during his productive life, he only faces risk on the output price p t and output y t , he knows for certain the current input price and land price.

For the active period of the farm t = 0, • • • , T 1, the farmer's inter-temporal budget constraint is:

w t+1 = pt y t + (1 + r)(w t c t p x,t x t (p l,t s l,t )l t + S t ) s.t. y t = f (x t , l t , N)
For the period t = T, • • • , T 0 , the farmer is retired and lived out of the accumulated wealth. The farmer's program is to:

max ct,lt,xt E 0 T 0 X t=0 t u(c t )
Under the budget constraint and production function constraint. The utility function u is assumed to exhibit decreasing absolute risk aversion (DARA). This system is solved backwards.

• For the period t = T,

• • • , T 0 V T (w T ) = max ct E T P T 0 t=T t u(c t )s.t.w ( t + 1) = (1 + r)(w t c t )
• For the period t = 0, • • • , T 1, the system is solved by recursive method 

V t (w t ) = max ct,yt E T u(c t ) + E t V t+1 (
t = f (x t , l t , N)
Take FOC of c t and y t respectively to achieve the optimization, which are given as,

u 0 (c t ) (1 + r)E t V 0 t+1 ( wt+1 ) = 0 E t [V 0 t+1 ( wt+1 )(p t C 0 (y t ))] = 0
From the two first order conditions, [START_REF] Carpentier | Production Effects of Direct Payments to Active Farmers: a Microeconomic Dynamic and Stochastic Analysis[END_REF] find that: First, the condition involves the derivative of the value function V ( t + 1) 0 ( W( t + 1)) instead of direct utility. Note that the value function is less concave and exhibits less absolute risk aversion than the utility function.

Second, the value function of final wealth depends on endogenous consumption.

From the farmer's problem [START_REF] Carpentier | Production Effects of Direct Payments to Active Farmers: a Microeconomic Dynamic and Stochastic Analysis[END_REF] derive Proposition 1 which theoretically proves:

• The active farm subsidy(or equivalently, the decoupled subsidy) has positive impact on consumption.

• If the value function is DARA, the decoupled subsidy would have positive impact on production. Otherwise, the production effect can be zero, positive or negative.

In the numerical analysis, [START_REF] Carpentier | Production Effects of Direct Payments to Active Farmers: a Microeconomic Dynamic and Stochastic Analysis[END_REF] compare the results of the static model and dynamic model with two periods, and finds that the production effects are much greater in the dynamic model.

The intuition of the greater production effects in dynamic setting is that, under DARA, risk aversion leads the farmers to produce less, so that they will have less risk exposure to price risk; Prudence makes the farmers reduce some production cost and consumptions for saving. Without subsidy, the prudent farmer produces and consumes less to prepare for the risk for the second period. With decoupled subsidy, the farmer exhibit less risk aversion and prudence, because the subsidy induces an increasing in his wealth level. His second period consumption could partly be financed by the subsidy, which makes him spend more for production in this period and he decides to produce more.

Dynamic model with investment

There are previous researches on the impact of the direct payment on the farmers' investment choices, but so far they have not included the multiple period consumption and prudent saving behaviors in their models. Most of them relate the investment choices with imperfect capital market and real option effect.

Imperfect capital market The perfect capital market stands for the market where the agents are rational and are under full information. With perfect capital market, coupled payments stimulate farm investment while a fully decoupled payment does not affect farm investment [START_REF] Sckokai | Modelling the impact of the CAP Single Farm Payment on farm investment and output[END_REF] However, the capital market is not perfect and exists information asymmetry, there are borrowing-lending rate gaps, binding debt constraints, default risks, bankruptcy risks, etc and thus induce additional cost for financing. Under such imperfections, a decoupled payment may affect the investment.

Real options effects With uncertainty of the investment return, the farmer may delay his investment decision because the investment is irreversible.

The model proposed by [START_REF] Sckokai | Modelling the impact of the CAP Single Farm Payment on farm investment and output[END_REF] [START_REF] Sckokai | Modelling the impact of the CAP Single Farm Payment on farm investment and output[END_REF] provide an empirical measure of the impact of direct payments on investment and output decisions.

In their model, the farmer's problem is:

J(•) = max I,x Z 1 0 e rt u(W, 2 W ) s.t. W = W 0 + py p x x p k k + S k = (I k) y = f (x, k, I)
where r the interest rate, the depreciation rate, I the gross investment, k the time derivative of the capital path, and k the unit of capital stock. The output price p is a random variable, the mean of output price p affects the farmer's decision through affecting the assets prices, the variance 2 p is the source of uncertainty regarding the level of farm's asset 2 W = f ( 2 p ). The Hamilton-Jacobi-Bellman equation associated with the maximization problem is:

rJ = max i,x [u + J k (I k)]
where J k is the first derivative with respect to capital. [START_REF] Sckokai | Modelling the impact of the CAP Single Farm Payment on farm investment and output[END_REF] gather the data of the variables for estimation, then use the estimated parameters to simulate three policy scenarios(price intervention; area payments; SFP) to see how the investment and output respond.

The estimation result confirms a risk-averse CRRA coefficient, and it shows that the adjustment rate of buildings and machinery toward its optimal long-run level is negative, indicates that the farmers in the sample tended to be over-capitalized.

The simulation results shows that the price intervention positively affects farm investment, the investment effect is less for the area payment, and even less for the SPF(0.04 and 0.01 respectively for farm building and machinery). The production impact of the three policies are in the same order as the investment.

The model proposed by Huttel et al.(2009) Huttel et al.(2009) try to model the investment reluctance of the farmers, which could extend for analyzing the impact of direct payments on investment. Besides, They have not included the risk attitude in their model.

The farmer's decision model is:

V (k 0 , X 0 ) = max I E 0 1 X t=0 t • [⇡(X t , K t ) C(I t , K t , CF t )] s.t. CF t = ⇡(X t , K t ) + K t K = K t + I t X = µ X (X, t) t + x (X, t) z
where ⇡() is the profit function, C() is the cost function, I t investmemt, X t the stochastic revenue, K t the capital stock, CF t the cash flow. z = ✏ p t, and ✏ ⇠ N (0, 1). The application to the model to German panel data shows that capital market frictions, costly reversibility and uncertainty co-exist. The imperfect capital market induce additional transaction costs to acquire finance, which leads to a inactivity for investment. However, in German market, capital market friction is not solely responsible for low investment rate, cost reversibility and a uncertain future expectation also leads to reluctance in investment.

Farmer's decision problem with investment -My model

The dynamic stochastic general equilibrium(DSGE) model has been well applied in macroeconomics to evaluate the welfare impact of policy changes, to explain the economic growth etc.. Time dimensions and stochastic factors such as technology shock and price shock, are added into the model to generate the general equilibrium condition. One typical DSGE model is the stochastic neoclassical growth model. My model is like a DSGE model.

Consider a farmer who makes production decision on behalf of the farm, his or her goal is to maximize the discounted expected utility

max E 0 " 1 X t=1 t u (c t )
# where c t is the personal consumption. The farmer uses the income from production and subsidy for personal consumption, investment on the farm capital and purchasing other farm's variables inputs. The farmer's resource constraint is

(p yt + s yt )y t = c t + p xt x t + p it i t
where y t is the farm's output, x t is a non-storable farm input, i t is investment in a storable farm capital k t , p • denotes the prices of the respective goods, and s yt denotes the subsidies. The farm has a production function

y t = A t F (k t , x t )
and its capital depreciates at rate t . Thus the investment is implicitly defined by

k t+1 = (1 t ) k t + i t
where k t+1 is the amount of capital available upon exiting period t. c t could be expressed as:

c t = (p yt + s yt )y t p xt x t p it (k t+1 (1 t ) k t )
We consider the problem from the interior choice x t ,k t+1 ,c t . We eliminate c t through direct substitution, leaving us the first-order conditions:

E 0  t u 0 (c t ) @c t @x t = 0 E 0  t u 0 (c t ) @c t @k t+1 + t+1 u 0 (c t+1 ) @c t+1 @k t+1 = 0
The system of equations reduces as:

E 0 [u 0 (c t ) ((p yt + s yt )A t F x (k t , x t ) p xt )] = 0 E 0 ⇥ u 0 (c t ) ( p it ) + u 0 (c t+1 ) ⇥ (p y t+1 + s y t+1 )A t+1 F k (k t+1 , x t+1 ) + p i t+1 (1 t+1 ) ⇤⇤ = 0
or, from the perspective of periode t,

(p yt + s yt )A t F x (k t , x t ) p xt = 1 E t  u 0 (c t+1 ) u 0 (c t ) • (p y t+1 + s y t+1 )A t+1 F k (k t+1 , x t+1 ) + p i t+1 (1 t+1 ) p it = 1
The first condition is the static derivative between consumption and non-storable input, it indicates that the non-storable input is used until it generates no additional marginal product. The second condition is the Euler equation that links the current and future marginal utilities from consumption. It shows the return to capital investment through a dynamic equation.

If we assume production function to be the Cobb-Douglas form and has decreasing returns to scale

y t = A t k ↵ k t x ↵x t , ↵ x + ↵ k < 1 the utility function of the farmer is in the form of power utility u(c) = c 1 1
the first order conditions are given as:

(p yt + s yt )A t ↵ x k ↵ k t x ↵x 1 t p xt = 1 E t " u 0 (c t+1 ) u 0 (c t ) • (p y t+1 + s y t+1 )A t+1 ↵ k k ↵ k 1 t+1 x ↵x t+1 + p i t+1 (1 t+1 ) p it # = 1
The total factor productivity A t and the prices p yt , p xt , p it and the production subsidy s yt follow stochastic processes as: where B, C1, C2, C3, D are the parameters to capture the scaling issues in real data. The correlation coefficient of last period is smaller than 1 so that the model is stationary.

ln A t B = A ln A t 1 B + A e At e At ⇠ N (0,
For DSGE model, the state variables have a steady state where all the variables are constant at this state. The steady states could be easily calculated from the equilibrium conditions and is given as:

x = " pi pi (1 ) ( py + s y ) Ā↵ k (( py + s y ) Ā↵ x px ) ↵ k 1 ↵ k # ↵ k ↵x+↵ k 1 k =  px (p y + s y ) Ā↵ x x↵x 1 1 ↵ k ī = k ȳ = Āk ↵ k x↵x c = ȳ(p y + s y ) + s px x pi ī Ā = B py = C1 pi = C2 px = C3 sy = D
My first objective is to solve this model. Solving for the equilibrium amounts to find two policy functions for consumption c t (k t , Ãt ) and next period's capital k t+1 (k t , Ãt ) that deliver the optimal choices of the variables.

Methodology in solving and estimating DSGE model

Solve the model

A general DSGE model

For all DSGE model, the equilibrium set could give as(Grohé and Uribe, 2004):

E t f (y t+1 , y t , x t+1 , x t ) = 0
The vector x t of predetermined variables is of size n

x ⇥ 1 and the vector y t of non predetermined variables is of size n y ⇥ 1. The state vector x t can be partitioned as x t = [x 1 t ; x 2 t ] 0 . The vector x 1 t consists of endogenous predetermined variables and the vector x 2 t of exogenous variables(further notations would be found in the Grohé and Uribe(2004) paper).

x 2 t is assumed to follow the exogenous stochastic process:

x 2 t+1 = ⇤x 2 t + ⌘ ✏ t+1
The solution to the equilibrium set is of the form:

y t = g(x t , ) x t+1 = h(x t , ) + ⌘ ✏ t+1
Grohé and Uribe( 2004) want to find a second order approximation of the function g and h around the non-stochastic steady state where (x t , ) = (x t , 0). The non-stochastic steady state is defined as:

f (ȳ, ȳ, x, x) = 0
At the non-stochastic steady state, ȳ = g(x, 0) and x = h(x, 0).

Perturbation method

The equation system that gives by the equilibrium condition does not have a known analytical solution, we need to employ numerical methods to solve it. The numerical approaches include perturbation method, projection method and stochastic simulation method.

The idea of the projection method is to minimize the residual of function R by building an approximated policy function. There are two versions of the projection algorithm: the finite elements method and the spectral method(Chebyshev polynomials). Arouba et al.(2005) compare different numerical solution methods, they find that higher order perturbation methods are an compromise between accuracy, speed and program burden, but they are most accurate only around the steady states. The finite elements method is robust, solid but costly to implement and time consuming. Chebyshev polynomials have almost all the good results of the finite elements method, only that the performance of this method is not stable among models.

It is hard to conclude which method is better. Since the program Dynare relies on the perturbation method, I will focus on this approximation method in the following part:

Perturbation method Perturbation methods [START_REF] Aruoba | Comparing solution methods for dynamic equilibrium economies[END_REF]) construct a Taylor series expansion of the policy functions around the steady state and a perturbation parameter(e.x. the standard deviation of the stochastic factor, ).

I follow the Grohé and Uribe( 2004) paper to present step by step the processing of perturbing method. Note that we now drop the time subscripts in the equilibrium set, and we will use a prime to indicate variables of the period t + 1.

1. Define the non-stochastic steady state. The definition is given by:

f (ȳ, ȳ, x, x) = 0
At the non-stochastic steady state, ȳ = g(x, 0) and x = h(x, 0). The non-stochastic steady point is (x, ) = (x, 0).

2. Substitute the proposed solution into the equilibrium set.

F (x, ) ⌘ E t f (g(h(x, ) + ⌘ ✏ 0 , ), g(x, ), h(x, ) + ⌘ ✏ 0 , x) = 0 (4) 
Because F (x, ) = 0 holds for any possible values of x and , that is, however x and vary, F is equal to zero. It indicates that the derivatives of any order of F is equal to zero. Formally, F

x k j (x, ) = 0 8x, , j, k 3. Approximate g and h around the non-stochastic steady point (x, ) = (x, 0).

Take first order Taylor approximation as an example:

g(x, ) = g(x, 0) + g x (x, 0)(x x) + g (x, 0) h(x, ) = h(x, 0) + h x (x, 0)(x x) + h (x, 0) (5) 
4. As F x (x, 0) = 0 and F (x, 0) = 0, take successive derivatives of Eq.( 4) with respect to x and , and the derivatives are equal to zero. This system will give us solution to the coefficients. Take first-order approximation as an example, we will have the solution of the coefficients g

x ,h

x ,g and h . 5. Plug the coefficients we found in step 4 into the Taylor approximation system(e.x.

Eq.( 5) for first-order perturbation). Solution to this linear system will give us the policy functions g and h.

I have not listed all the equations for this brief summary, more detail equations of firstorder derivatives, second-order approximation and second-order derivatives could be found in the Grohé and Uribe( 2004) paper. The second-order approximation follows the same logic, it is only more complex to solve the linear system.

In the current researches, second-order and higher-order perturbation methods are preferred to the first-order perturbation method, because second-order and higher-order approximations are more accurate and could be computed without much burden. For our model, I will use a second-order perturbation method to perform the computations.

Estimate the model

Bayesian estimation

Bayesian estimation is nothing but to find the posterior conditional density function of the parameters. Given a model A with a parameter set ⇥, and observations until period T y T , we are interested in the posterior density p(✓|y T

). In Bayesian estimation, first, we have priors p(✓|A) that contains the pre-knowledge of the parameters. Second, we have a likelihood function p(y T |✓, A) that describes the probability that the model fits the observation data given the parameter values. According to Bayes theorem, the posterior density is,

p(✓|y T , A) = p(y T |✓, A)p(✓|A) p(y T |A)
where p(y T |A)is the marginal density of observation data conditional on the model, the posterior distribution is further as,

p(✓|y T , A) = p(y T |✓, A)p(✓|A) R ⇥ p(✓, y T |A)d✓ = p(y T |✓, A)p(✓|A) R ⇥ p(y T |✓, A)p(✓|A)d✓
Finally, the posterior conditional density:

p(✓|y T , A) / p(y T |✓, A)p(✓|A)
From this equation, we are able to update the posterior of the parameters according to the prior information and the likelihood function. The challenge lies in estimating the likelihood function with the help of filtering theory, then simulate the posterior density using a sampling-like Monte Carlo method.

Evaluate the likelihood

The general(or traditional) filtering theory is used to estimate the probability density function of state space conditional on last periods observations. As an extension, Fernandez- [START_REF] Villaverde | Estimating dynamic equilibrium economies: linear versus nonlinear likelihood[END_REF][START_REF] Aruoba | Comparing solution methods for dynamic equilibrium economies[END_REF] and Dynare use the Kalman filter and Particle filter to estimate the likelihood function.

We had the approximated policy function from the solution part, we can write the state space which describes the law of motion of the variables as (Fernandez-Villaverde, 2009) Combine them together we have,

Y t = g(f (S t 1 , W t ; ✓), V t ; ✓)
and we can compute p(Y t |S t 1 ; ✓).

The particle filter If the state space equations f (.) and the measurement equation g(.)

are linear and the shocks W t and V t are normally distributed, we can use Kalman filter to estimate the likelihood function. Aruoba et al.(2005) find that higher order approximation to the state space functions is more accurate, and the higher order terms contain the economic information we are interested. For this reason we use a second order approximation to the policy function and thus the system is not linear. We will need to use a non-linear filter, particle filter, to approximate the likelihood function. Particle filter is also called sequential Monte Carlo filter, because the essential idea of particle filter is to sample a large number of particles(Monte Carlo simulation), and the number of particles obey the law of large numbers. Since it is a sampling based method, the state space could be non-linear and the distribution of the shocks is not required to be Gaussian.

After Fernandez-Villaverde(2010), the likelihood function is written as follows according to the Markov structure of the state space and the law of large numbers,

p(y T |✓) = p(y 1 |✓) T Y t=2 p(y t |y t 1 ; ✓) ⇡ 1 N N X i=1 p y 1 |s i 0|0 ; ✓ T Y t=1 1 N N X i=2 p y t |s i t|t 1 , y t 1 ; ✓ (6) 
The detail iteration steps are (Fernandez-Villaverde,2005[START_REF] Fernández-Villaverde | The econometrics of DSGE models[END_REF]:

1. Initialize the model probability density p (S

t |y t 1 ; ✓) = p(S 0 ; ✓); Sample N particles n s i 0|0 o N i=1
from p(S 0 ; ✓).

Sample N particles

n s i t|t 1 o N i=1 from n s i t 1|t 1 o N i=1
by running the transition equation and by using the exogenous shocks {w i t } N i=1 (draw the shocks from the corresponding distribution function) . In probabilistic language we denote this as sample from the probability density function p(S t |y t 1 ; ✓).

Assign the relative weights {q

i t } N n=1 for each particle ⇣ s i t|t 1
⌘ with the following weighting function:

q i t = p ⇣ y t |s i t|t 1 , y t 1 ; ✓ ⌘ P N i=1 p ⇣ y t |s i t|t 1 , y t 1 ; ✓ ⌘
The particle with which the the probability of the simulated output equals the observations is high, the weight assigned to the particle is high. Otherwise the weight assigned to the particle is low.

The density p

⇣ y t |s i t|t 1 , y t 1
; ✓ ⌘ is obtained from the measurement equation and the distribution of the exogenous shocks or the measurement errors V t . More specifically, it is the likelihood of measurement errors corresponding to the particle, the distribution of the measurement error is:

v i t = y i t,obs y i t|t 1 ⇠ i.i.d.N (0, i 2 )
where v i t is the exogenous shocks in the measurement equation or the measurement errors.

4. Resampling. In Dynare, the default resampling process is Sequential Importance Resampling(SIR). With this method, the particles with very low weights are abandoned, while multiple copies of particles with higher weights are kept. The number of the copy is computed based on their respective weights. The higher the weight of the particle

⇣ s i t|t 1
⌘ , the more copies are generated, such that the total number of particles become N again [START_REF] Van Leeuwen | Particle filtering in geophysical systems[END_REF]. Call the particles from the resampling process

⇣ s i t|t ⌘ . Then go back to step 2 until t = T
The re-sampling process ensures that the particles

⇣ s i t|t ⌘
become closer and closer to the true states given the evolution of time.

For each period t, we have

n p ⇣ y t |s i t|t 1 , y t 1 ; ✓ ⌘o N i=1
computed from step 2, we substitute them into the formula (6), we have an numerical estimation of the likelihood p(y T |✓). Once we have the likelihood function, we can compute the posterior density p(✓|y T ).

McMc and Metropolis-Hastings

The next step is to use Monte Carlo Marlov Chain(McMc) method, specifically the Metropolis-Hastings algorithm to simulate the posterior distribution. The idea of McMc is to produce an ergodic Markov Chain that presents a sequence of parameter estimates, such that the whole domain of the parameter space is explored. Each estimated parameter is associated with its respective frequency, in this way a posterior distribution is drew out.

To start the McMc process, it is important to find a good initial value of the parameter. Specifically, Dynare use the mode of the parameter posterior distribution as the staring point of McMc. The mode of the parameter is obtained by maximize the log posterior density with respect to ✓ using Newton like method or Monte Carlo sampling(again, MH algorithm) based optimization method.

Note that if we don't continue here with a McMc process to draw the posterior distribution, and simply maximize the log likelihood function, we can stop here to have a point estimate result with maximum likelihood estimation.

The 

J(✓ ⇤ |✓ i 1 ) = N (✓ i 1 , c X ✓ m )
where c is a constant, called the scale factor. P ✓ m is the variance of the jumping distribution, obtained from the inverse of the previous estimated Hessian matrix.

3. Compute r, the acceptance ratio of the new proposal parameter estimate over the previous parameter estimate:

r = p(✓ ⇤ |y T ) p(✓ t 1 |y T ) 4.
Accept or discard ✓ ⇤ following the rule:

✓ t = ✓ ⇤ , with probability min(r, 1); ✓ t = ✓ t 1 , otherwise.
If the new posterior density is large than the previous posterior density(r > 1), we will keep the new ✓ ⇤ with probability 1 and discard the previous ✓. However, when 0 < r < 1, the proposed posterior is lower than the previous one, we will not discard the proposal parameter at once, but accept it with the probability r. We do this for the reason that the estimation visits the whole domain of the posterior distribution. It enables the candidate parameter to leave a local maximum and travel to a global maximum, in this way the parameter will not stuck at a local maximum.

Go to step 2 until

i = M .
We can see that the jumping process and the accept/reject of the candidate parameter is essential for McMc, thus the scaling parameter c is a important parameter for the setting. If the scale factor is too low, the jumping variance is low, leading to a high acceptance ratio r, the candidate parameter might not be able to visit the whole posterior distribution and stuck in a local maximum. If the scale factor is too high, the jumping variance is high, leading to a low acceptance ratio r, the candidate might visit the tail of the distribution frequently and have difficulty to find the maximum. The Dynare default for the scale parameter is 0.2, we test from 0.2 to 0.6 to find a proper scale parameter.

After running the iteration a large number of times, we have an empirical approximation of the posteriors of the parameters, characterized by the statistic properties of mean, mode, 5 An application with French data

Data

I collect the annual data of production, variable inputs, investment and their respective prices from 1992 to 2012 from the eurostat website. First, I deflate all the prices with the consumption deflator. Then I divide the series by the total farm number to get production per farm, other variable inputs per farm and investment per farm series. Table 1 and the following figures show the descriptive statistics of the series. We can see from figure 1 that there is an increasing trend for production, consumption, investment and other variable inputs. Although it is possible to detrend the series with Hodrick-Prescott filter or other detrend methods, Fernandez(2010) suggests that pre-filtering the data is strongly not recommended for DSGE model estimation, we should directly map all the variables into the model.

Figure 2 shows intuitively the policy reform process. In 2003, the CAP reform has decided a shift from coupled subsidy to decoupled subsidy, this policy takes into action in around 2006. We could see a sharp drop of production subsidy and a sharp increase of decoupled subsidy around 2006. These two kinds of subsidies could be modeled by introducing a dummy variable, but in order to simplify the model and make the subsidy follow the assumming stochastic process, I add the decoupled subsidy into production subsidy to present s y in my model.

Figure 3 shows that the prices fluctuate around 1(with 2005 as the base year), it confirms that we can model the prices as the stochastic processes. with respected to each variable prices and A is set to 0.95. The calibrated values of the parameters are summarized in Table 2.

To compare the results, I repeat the analysis for 2 other calibrations. I decrease the risk aversion to 0.1, increase the risk aversion to 10.

The steady states of the variables under the calibrated parameters are given in table 3. 

Parameters ↵ k ↵ k Values 2(0.

Policy functions

Following the perturbation method in solving the model part, I use Dynare to perform a second order approximation to the state space functions with the calibrated parameters.

My first result is the policy functions. I plot the decision rules for investment, consumption and production over a capital interval centered on the steady states of capital for the benchmark calibration. Figure 4, figure 5 and fugure 6 present the policy functions.

One highlight of the figures is that the slope of investment function changes when increases from 0.1 to 10. When the farmer has low level of risk aversion, his willingness of investment decreases with the capital stock around steady state. When the farmer has higher level of risk aversion, his willingness of investment increases with the steady capital stock. The intuition is, the higher level of the risk aversion, the more willingness of the farmer to keep his consumption at a smooth level. With the increase of production around the steady capital(see figure 6), the high risk averse agent would raise his investment to keep the consumption at a constant level.

This intuition is confirmed by the consumption function in figure 5. When = 0.1, consumption increases from 3.26 to 3.46(about 6 percent) when capital stock increases from 6.6 to 6.8; when = 10, consumption increases from 3.42 to 3.49(about 2 percent) with the same increase of capital stock. The farmer with higher risk aversion has a more constant level of consumption.

The production and the consumption is always increasing around the steady capital stock with the given three level of risk aversions. Because the more the capital input, the more the production.

The figures also shows that, based on my farm model, the risk attitude of the farmer would affect his investment and consumption choices.

This solution part is essential because it gives me the state space equations, with which I could perform the estimation. 

Estimation

Priors

I perform a first estimation for the series of the whole periods 1992-2012, and a second estimation for the series before the CAP reform 1992-2005. In my progress so far, I use the Kalman filter to approximate the likelihood function, and I generate 100,000 draws from the the posteriors using Monte Carlo Markov Chain(McMc) method to find the optimal posteriors. I choose my priors according to the calibration, see table 4.

In the setting of the priors, is supposed to follow an uniform distribution between 0 and 10. is the coefficient that I am mostly interested in, and I don't know what value of should be, so I set the prior of relatively large and with an uniform distribution. The means of the other parameters are set according to their calibrated values. We are expecting a higher value of depreciation rate , because the life durations of farm machines or farm houses in agricultural sector are not as long as in other sectors. For this reason I set the prior mean of a little higher than the common setting in previous literature(ex, 0.015). I set the standard deviation of the shocks higher than the common setting for macro data, because there is no other sectors to balance the shocks, we expect a higher innovation and price shocks in the agricultural sector.

There are two ways of introducing measurement errors. The first way is to introduce the measurement error explicitly as equations of the model:

ox t = x t + e xt oi t = i t + e it
where ox t and oi t are the observed values of other variable inputs and investment. Another way is to introduce the measurement errors by adding standard errors directly to x and i. I have tested many times with these two methods to see which one works better. In the first method, Dynare does not automatically recognize ox t and oi t as measurement errors. They are instead treated as shocks of the model. Although this does not seem to have much impact on 1st order estimation with Kalman filter, but it becomes problematic at 2nd order with particle filter. So I choose the second way for measurement errors.

The mean standard errors of x and i are set to be 10 because the scales of the data x and i are in 10 4 . 9. However, this is just some first results with linear filter, the evaluation of likelihood of Kalman filter is not as trustful as of particle filter, so this result is just for reference and is not the final one.

↵ k ↵ x uniform(0,
What do we learn from this result? First, we need to check if the model is identified. If the model is identified, the majority of the posterior mass comes from the likelihood, not the prior. We know from Bayesian estimation that p(✓|y T , A) / p(y T |✓, A)p(✓|A)

or in word, posterior=p likelihood*prior. As a result, the model is identified means that the difference ratio of posterior and prior is high. We can check it in the posterior figure 8 and figure 9. The grey curve is the prior distribution, the black curve is the posterior distribution, and the green line gives us the estimated value. We can see from these two figures that the posteriors are significantly different from the priors, and the shape of the posteriors are quite sharp. The figures shows that the model, or the parameters are well identified from the estimation.

A second thing to check is if the posterior hits the boundaries. If the posterior is in the boundary, it means that we should enlarger the estimate range in the prior for this parameter. In figure 8 and figure 9, there maybe some problems with D in the 1992-2012 estimation and in the 1992-2005 estimation. Now we turn to the estimated parameters in table 5 and table 6. Table 5 presents the estimated parameters from 1992 to 2012, table 6 presents the estimated parameters from 1992 to 2005. As we know that the CAP reform is in 2003, and it takes into effect in the year of 2006. If there is some parameter variations in 2006 to 2012, the estimation of risk aversion coefficient and depreciation rate on these two dataset may have some difference. However, the other parameters should stay at a stable level because the production function and discount factor are stable.

We can see that the output elasticity of other variable inputs in the production function

↵

x is around 0.58, meaning that a 1% increase in other variable input usage would lead to approximately 0.58% change in production. This value is relatively constant across the two data set, which is good. The output elasticity of capital stock ↵ k is 0.28 in the 1992-2012 estimation and 0.22 in the 1992-2005 estimation. Meaning a a 1% increase in other variable input usage would lead to approximately 0.28% or 0.22%change in production. This parameter should be constant in the production, I'm expecting better estimation for ↵ k . The discount factor is around 0.95, this is not as high as other macroeconomics DSGE estimations(ex, Fernandez-Villaverde, 2010, with = 0.998). However, this estimation result is quite reasonable because we are not estimating the macro data in all sector level, but only with the macro data in agricultural sector. The estimation shows that the discount factor in agricultural sector is around 0.95.

The depreciation rate is 0.0455 with 1992-2012 and 0.0092 with 1992-2005. = 0.0455 in the 1992-2012 estimation is the value of under expectation, but = 0.0092 is too low for agricultural sector. Moreover, although this changing direction of is quite intuitive and is what I am expecting: the increase of depreciation rate means after the CAP reform, the farmer renew their farm machines, farm houses in a much faster rate. But in reality, the shift of depreciation rate couldn't be that large, and as it is shown in the posterior figures, in 1992-2005 has hit the boundaries, there should be some better estimations for .

The estimation of relative risk aversion coefficient is 0.3698 in 1992-2012 and 2.25 in 1992-2005. The different values of risk aversion coefficient means that the farmers' risk aversion level decreases with the introduction of decoupled subsidy in CAP reform. This is the result we are expecting. Because decoupling the subsidy from production gives the farmer security, they will receive a relatively stable subsidy whatever amount of their productions. The change of their risk attitudes will lead to a change in their decisions.

Although the result above is not perfect, we can still see an indication of the reduction in relative risk aversion coefficient after CAP reform, indicating that the farmers have a lower level of risk aversion with decoupled subsidies. But we need the result with particle filter to support this finding. [6.7, 7.9744] [10.9067, 11.6748] Table 6: 

↵

Empirical results with particle filter

From the analysis above with Kalman filter, we find that the estimation is imperfect and the results are not very trustful. That's why I need to go further to use a particle filter for estimation.

More importantly, Fernandez-Villaverde(2005) finds that estimation with second order perturbation is more accurate than under first order perturbation. And some of the effects are actually pure captured in the second order terms, for example, the prudence attitude of an agent. So it is ideal to perform a second order estimation with the help of the nonlinear particle filter.

The estimation with the nonlinear particle filter is more difficult. Dynare implemented the particle filter only from 2013, it is much more time consuming and it is numerical unstable. I have encountered some problems in the estimation with particle filter. In the McMc random search algorithm, the search space is scaled by the covariance matrix of the likelihood function. Dynare uses Cholesky decomposition for this covariance matrix. However, if the solution space is sufficiently flat enough, the Chelesky-decomposition step in the solution can be numerically singular even though it is not singular in reality, and no numerically viable Cholesky decomposition will exist. I need to find a more robust decomposition for this McMc searching step. Instead, I use singular value decomposition which is proved to be numerical robust for the McMc random search process.

The constant scale factor in the McMc is also a very important parameter. If the scale factor is too low, the candidate parameter might not be able to visit the whole posterior distribution and stuck in a local maximum. If the scale factor is too high, the candidate might visit the tail of the distribution frequently and have difficulty to find the maximum. For some prior estimation, I find that the parameter posterior mode doesn't move away from the initial setting value. It might caused by a flat likelihood function so that the estimated parameter get stuck in a local maximum. To enlarge the search space of the parameter, I increase the scale factor to 0.4 instead of using the default 0.2.

To find a good starting value for the parameters, I use firstly a second order maximum likelihood estimation to have some point estimate for the parameters, then I use the result of maximum likelihood estimation as the initial value in the Bayesian estimation. I use 10000 particles and 20000 McMc to generate the final results. 11 shows the estimation results.

The plots of the 1992-2005 posteriors of particle filter look better than the plots of the Kalman filter, the identifications are sharp, and no posterior hit the boundaries. The 1992-2005 posteriors also show good identification, but some shapes of the posteriors are not gaussian which may lead to biased estimation.

↵ k ↵ x uniform(0,10)
uniform(0,1) uniform(0,1) uniform(0.9,1) However, I find that the estimation results do not move much from the given initial values. It is possible that the mode computed by Dynare is not the real mode. More specifically, the problem is still caused by a too flat or too steep likelihood function, which makes the algorithm difficult to find a global maximum, and only gives us an estimation at the local maximum.

B C 1 C2 uniform(0.
To solve this problem, we could increase the number of the particles so that the likelihood computed is preciser. But increasing the particle numbers will lead to a much longer time in computation. The computation of the recent setting uses 15h47m27s for the 1995-2012 data and 8h19m54s for the 1995-2005 data. It may require parallelization of the algorithm while increasing the number of the particles and McMc. Besides, we could try different modeling for total factor productivity A t to better map the trend into the model.

McMc convergence diagostic

The figures in the appendix present the McMc convergence diagnostic. The idea of McMc convergence diagnostic is that, when I draw more than 2 chains from Metropolis-Hasting(In dyanre 2 chains in default), the diagnosis graph gives the parameter mean, parameter variance, parameter 3rd moments whthin the chains(red lines) and between the chains(blue lines).

If the result is sensible, 1. results between the various chains should be close; 2. results within the iterations of one chain should be close(with sufficient mcmc). So if the result is sensible, the red line and the blue line should be relatively constant and converge. We could see from the figures that we haven't obtained very good convergence yet. 

↵ k ↵ x 1.

Conclusion

The 2003 CAP reform has decided a Single Direct Payment policy to decouple the subsidies from farm production, the 2014-2020 CAP reform follows the spirit of the 2003 reform with an increasing focus on environmental and risky issues. Farmers' major sources of income come from the production and the subsidies, does the reform of decoupling the subsidies affect the farmers choice behaviors in production, consumption and investment? This is the subject I'm interested for this internship.

In order to study farmers' choice behaviors, I reviewed different models in previous literature from static model without risk aversion to dynamic model with risk aversion. Under the static model without risk aversion, and with perfect factor market, the fully decoupled subsidies have no impact on productions. However, if we introduce either the market friction, the farmer's risk attitude or the dimension of time, we arrive at different conclusions that the decoupled subsidies have an impact on farmers' decisions.

Based on previous models, I introduce my dynamic stochastic farm model. The main differences of my model from the previous ones are, first, I include investment in the model. Second, I extend the time dimension into infinite. This dynamic farm model is like a DSGE model. As there is no analytical solution to this model, I need to apply numerical method to solve and estimate the model.

I use the perturbation method in solving the model. I use Bayesian estimation in estimating the parameters. In order to approximate the likelihood function in Bayesian method, the Sequential Monte Carlo method(the particle filter) is implemented. At last, I apply the Monte Carlo Markov Chain(McMc) algorithm to approximate the optimal parameter posteriors.

I apply the French data from 1992 to 2006 to my model. The calibration results plot the policy functions of production, consumption and investment. One interesting finding is that the slope of the policy function of investment changes with the risk aversion level. The intuition is that, the farmer with high risk aversion level has more willing to keep his consumption at a constant level. Some of my first estimation results with Kalman filter show that there is a reduction in risk aversion level after the CAP reform, if this result is trustful, it indicate that the CAP reform has impact on farmers' decisions. I am still processing the estimation with particle filter as the result is not robust yet. 

  In order to solve the profit maximization problem of the farmer, I first minimize the cost of the farmer given a certain production quantity: min C(.) = min x,l p x x + p L l s.t. y = f (x, l, N ) where p L = p l s l , and assume that the production function takes the form of the Cobb-Douglas production function: y
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  (where in Dynare the posterior mode), solve the model for ✓ i and compute the state space functions f (•, •; ✓ ) and approximate p(y T |✓ i ) with the filter. Set i ! i + 1. 2. Draw a new ✓ ⇤ from the jumping distribution

detained MH algorithm steps are(Fernandez-Villaverde,2005; Dynare guild, 2011): 1. Set i ! 0 and an initial ✓ i i ) and g(•, •; ✓ i ). Evaluate p(✓ i

Table 3 :

 3 steady states of the variables

		1,10)	0.3	0.5336 0.975 0.0225	
	Parameters	B	C1	C2	C3	D	a,y,i,x,sy
	Values	4.6037	1.1234 0.9842 1.0522 0.1084	0.95
		Table 2: calibrated parameters		

Table 4 :

 4 Priors5.3.2 Empirical results with Kalman filterThe estimation results are shown in table 5, table 6, figure8 and figure

			10)	beta(0.3,0.1)	beta(0.53,0.1)	beta(0.975,0.1)
				B			C 1		C2
	beta(0.0225,0.05)	normal(4.6,1)	normal(1.12,0.1)	normal(0.98,0.1)
	C3		D			a		py
	normal(1.12,0.1)	beta(0.1,0.05)	beta(0.95,0.1)	beta(0.95,0.05)
	p	i		px			sy		stderr e	a
	beta(0.95,0.05)	beta(0.95,0.05)	beta(0.95,0.1)	inv gamma(0.1,inf)
	stderr e	py	stderr e	p	i	stderr e	px	stderr e	sy
	inv gamma(0.1,inf) inv gamma(0.1,inf) inv gamma(0.1,inf) inv gamma(0.1,inf)
	stderr x	stderr i				
	inv gamma(10,inf) inv gamma(10,inf)			

  Table 7 lists the priors I use for Bayesian estimation. Table 8, table 9, figure 10, figure

Table 7 :

 7 Priors

			001,0.2)	normal(4.6278,1)	normal(1.1063,0.1)	normal(0.9785,0.1)
	C3		D			a		py
	normal(1.0557,0.1)	beta(0.1,0.088)	beta(0.9529,0.04)	beta(0.9493,0.04)
	p	i		px			sy		stderr e	a
	beta(0.9323,0.04)	beta(0.9107,0.04)	beta(0.9560,0.1)	inv gamma(0.0378,2)
	stderr e	py	stderr e	p	i	stderr e	px	stderr e	sy
	inv gamma(0.0525,2)	inv gamma(0.0188,2) inv gamma(0.0315,2) inv gamma(0.1006,2)
	stderr x	stderr i				
	inv gamma(10.0173,2) inv gamma(10.0096,2)			

du maître de stage dans l'organisme d'accueil : Alexandre Gohin Nom de l'enseignant tuteur : decided a Common Agriculture Policy(CAP) reform in 2003 on decoupling farm subsidies, the 2014-2020 reform follows the spirit of the 2003 reform. farmers' production, consumption and