Technical efficiency and determinants of mobility patterns in European agriculture
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A comparative analysis of farm technical efficiency in 8 EU member states, focusing on the relative performance fluctuation over time, i.e. whether poorly performing farms remain always inefficient whilst some farms are always efficient is presented in this paper. Results show that on average 60% of farms maintain their efficiency ranking in two consecutive years, whilst 20% improve and 20% worsen their positions. Due to the unstable economic conditions, farms in NMS are more mobile than those in EU15. Second stage regression of mobility scores upon a set of farm specific explanatory variables offers some explanations of the mobility patterns.

INTRODUCTION

The technical efficiency refers to the situation where it is impossible for a farm to produce more with given technology. There are two possibilities for farmers. First, produce larger output using the same inputs, second, produce the same output with less amounts of inputs. In practice, the research and policy interests are focusing on the relative position in terms of efficiency of particular farm with respect to others. Consequently, the technical efficiency can be described by the relationship between observed output and some ideal or potential production. There is wealth of methodological and empirical literature focusing on the issues in efficiency and productivity (standard theoretical references [START_REF] Coelli | An introduction to Efficiency and productivity analysis[END_REF][START_REF] Kumbhakar | Stochastic Frontier Analysis[END_REF]; while comprehensive overview on empirical research [START_REF] Bravo-Ureta | Technical efficiency in farming: a meta-regression analysis[END_REF]. There exist two main approaches developed over time for analysing technical efficiency in agriculture. (1) The construction of a nonparametric piecewise linear frontier using linear programming method known as data envelopment analysis (DEA); (2) the estimation of a parametric production function using stochastic frontier analysis (SFA). We apply stochastic frontier analysis to measure efficiency. In addition, most studies focus on a single country"s agricultural sector, thus the comparative analysis of the technical efficiency is rather scarce (see recent exceptions [START_REF] Barnes | A report on technical efficiency at the farm level 1989 to 2008[END_REF]Zhou and[START_REF] Zhu | Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden[END_REF]. More importantly, easier availability for research of farm level data, namely FADN data in the EU may provide interesting insights for policy makers on farm level technical efficiency in order to develop more targeted policy, thus improving efficiency in European agriculture.

The aim of this paper is to analyse the stability and mobility patterns od technical efficiency scores for some EU countries including Belgium, Estonia, France, Germany, Hungary, Italy, The Netherlands and Sweden. The availability of long period datasets between 1990 and 2006, allow us to concentrate on the long time trends in technical efficiency especially in the EU15 member states. This study is the first which may provide a comprehensive overview on the development in farm level efficiency across eight European countries.

The rest of this paper is organised as follows. Section 2 presents a brief review on the methodology including stochastic frontier analysis and stability approaches. Section 3 describes the datasets and provides some descriptive statistics on agricultural structures. Section 4 presents the main results of the analysis in two steps. First we outline the results based on the SFA approach. Second, we present stability analysis, and determinants of farm mobility with respect to their position in the distribution of technical efficiency scores. Finally the last chapter summarizes main results of the paper and concludes.

METHODOLOGY 2.1. Stochastic Frontier Analysis

Within the parametric approaches, the Stochastic Frontier Analysis, (SFA) is commonly used. [START_REF] Aigner | Formulation and estimation of stochastic production function models[END_REF] and [START_REF] Meeusen | Efficiency estimation from Cobb-Douglas production functions with composed error[END_REF] have simultaneously yet independently developed the use of SFA in efficiency analysis. The main idea is to decompose the error term of the production function into two components, one pure random term (v i ) accounting for measurement errors and effects that cannot be influenced by the firm such as weather, trade issues, access to materials, and a non-negative one, measuring the technical inefficiency, i.e. the systematic departures from the frontier (u i ):
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where Y i is the output of the i th firm, x i a (k+1) vector of inputs used in the production, f(•) the production function, u i and v i the error terms explained above, and finally,  a (k+1) column vector of parameters to be estimated. The output orientated technical efficiency, (TE) is actually the ratio between the observed output of firm i to the frontier, i.e. the maximum possible output using the same input mix x i . Arithmetically, technical efficiency is equivalent with:
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Contrary to the non-parametric DEA approach, where all technical efficiency scores are located on, or below the efficient frontier (see below), in SFA they are allowed to be above the frontier, if the random error v is larger than the non-negative u.

Applying SFA methods requires distributional and functional form assumptions. First, because only the w i =v i -u i error term can be observed, one needs to have specific assumptions about the distribution of the composing error terms. The random term v i , is usually assumed to be identically and independently distributed drawn from the normal distribution, ) , 0 ( 2 v N  , independent of u i . There are a number of possible assumptions regarding the distribution of the non-negative error term u i associated with technical inefficiency. However most often it is considered to be identically distributed as a half normal random variable,
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Second, being a parametric approach, we need to specify the underlying functional form of the Data Generating Process, DGP. There are a number of possible functional form specifications available, however most studies employ either Cobb-Douglas (CD):
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(3) or TRANSLOG (TL) specification:
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Because the two models are nested, it is possible to test the correct functional form by a Likelihood Ratio, LR test. The TL is a more flexible functional form, whilst the CD restricts the elasticities of substitution to 1. The model could be estimated either with Corrected Ordinary Least Squares, COLS or Maximum Likelihood, ML. With the availability of computer software, the estimation by ML became less computationally demanding, and the ML estimator was found to be significantly better than COLS (Coelli et al.,1997).

With panel data, TE can be chosen to be time invariant, or to vary systematically with time.

To incorporate time effects, [START_REF] Battese | Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India[END_REF] define the non-negative error term as exponential function of time:
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where t is the actual period, T the final period, and  a parameter to be estimated. TE either increases (η>0), decreases (η<0) or it is constant over time, i.e. invariant (η=0). LR tests can be applied to test the inclusion of time in the model. Since TE is allowed to vary, the question arise what determines the changes of TE scores. Early studies applied a two-stage estimation procedure, first determining the inefficiency scores, and then, in a second stage regressing TE scores upon a number of firm specific variables assumed to explain changes in inefficiency scores. Some authors however showed that conflicting assumptions are needed for the two different estimation stages. In the first stage, the error term representing inefficiency effects, are assumed to be independently and identically distributed, whilst in the second stage they are assumed to be function of firm specific variables explaining inefficiency, i.e. they are not independently distributed [START_REF] Curtiss | Efficiency and structural changes in transition: a stochastic frontier analysis of Czech crop production[END_REF]. [START_REF] Battese | A model for technical inefficiency effects in a stochastic frontier production function for panel data[END_REF] proposed a one stage procedure where firm specific variables are used to explain the predicted inefficiencies within the SFA model. The explanatory variables are related to the firm specific mean μ of the nonnegative error term u i :
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where μ i is the i th firm-specific mean of the non-negative error term; δ j are parameters to be estimated; z ij are i th firm-specific explanatory variables. Using cross-section or panel data may often lead to heteroscedasticity in the residuals. With heteroscedastic residuals, OLS estimates remain unbiased but no longer efficient. In frontier models however, the consequences of heteroscedasticity are much more severe, as the frontier changes when the dispersion increases. [START_REF] Caudill | Frontier estimation and firm-specific inefficiency measures in the presence of heteroscedasticity[END_REF] introduced a model which incorporates heteroscedasticity into the estimation. That is done by modelling the relationship between the variables responsible for heteroscedasticity and the distribution parameter σ u : )
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where x ij are the j th input of the i th farm, assumed to be responsible for heteroscedasticity, and  j a parameter to be estimated.

Within SFA approach it is possible to test whether any form of stochastic frontier production function is required or the OLS estimation is appropriate using a LR test. Using the parameterisation of Battese and Cora (1977), define γ, the share of deviation from the frontier that is due to inefficiency:
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where  2 v is the variance of the v and  2 u the variance of the u error term. It should be noted however, that the test statistic has a "mixed" chi square distribution, with critical values tabulated in Kodde and Palm (1996).

Stability Analysis

Efficiency scores as such, do not reveal much about the fluctuation of farms" relative performance. From policy point of view however, it is an interesting question whether low performing farms are always inefficient and vice versa, i.e. farms with higher TE scores are efficient throughout the period. Policy relevance is given by the fact that chronically lower performing farms may be targeted with specific measures in order to improve their efficiency scores. With large panel datasets however, due to sample attrition it is not feasible to follow the TE scores of given farms through longer time periods, therefore comparisons between consecutive years were done. We follow the stability analysis methodology outlined by [START_REF] Barnes | A report on technical efficiency at the farm level 1989 to 2008[END_REF]. Yearly farm TE scores were classified by terciles, then transition matrices linking two consecutive years were constructed, that indicate whether the considered farm remained in the same tercile, or its relative position has worsened, or contrary, improved.

The degree of mobility in patterns of SFA scores can be summarised using indices of mobility. These formally evaluate the degree of mobility throughout the entire distribution of SFA scores and facilitate direct cross-country comparisons. The first of these indices (M 1 , following [START_REF] Shorrocks | The measurement of mobility[END_REF] evaluates the trace (tr) of the transition probability matrix. This index thus directly captures the relative magnitude of diagonal and off-diagonal terms, and can be shown to equal the inverse of the harmonic mean of the expected duration of remaining in a given cell.
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where K is the number of cells, and P is the transition probability matrix.

The second index (M 2 , after [START_REF] Shorrocks | The measurement of mobility[END_REF][START_REF] Geweke | Mobility indices in continuous time Markov chains[END_REF] evaluates the determinant (det) of the transition probability matrix.
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In both indices, a higher value indicates greater mobility, with a value of zero indicating perfect immobility. The mobility indices as such, can only serve as to rank analysed countries field crop sectors according to their mobility. In order to answer the question of why certain countries technical efficiency scores are more mobile, a second stage regression is performed, regressing mobility scores on a set of explanatory variables. This analysis is however is only performed for the EU15 countries represented in this paper, due to the shortness of NMS"s available dataset.

DATA

We use the EU FADN data. 1 shows that an obvious concentration process happened in all analysed countries during the period. With the exception of Hungary, sample means of farm size for all countries do increase. In some countries, average sample mean increased dramatically (e.g. field crop farm size in Germany1 increased fivefold, Italian field crop farm sizes trebled, Swedish, French field crop farm sizes doubled). The second column for both the starting and end period presents the Gini concentration index. Generally the concentration index also increases between the start and end periods, but by far not as dramatically as farm size means. The highest sample size means and concentration indices are reported for the NMS, Hungary and Estonia. With the exception of these two countries however, interestingly, a higher sample size mean does not translate into a higher concentration index.

RESULTS

Development of farm efficiency

Technical efficiency (TE) estimates obtained with SFA are reported on figure 1. Results are plausible, when mean technical efficiency scores are computed they are largely in line with results obtained by previous studies. 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6
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Some examples found in the literature confirm this. [START_REF] Zhu | Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden[END_REF] employ the longest time-span in their research, and focus on several of the countries represented in this paper, thus may be used as a benchmark to assess our results. The simple visual inspection of the efficiency estimates figures is difficult to determine whether on long run average per country efficiency scores increase or decrease. We have therefore analysed this issue econometrically by regressing the TE scores for each country (for all years pooled together) on a single explanatory variable: the time trend. Table 2 presents the estimates, and their significance levels. Coefficients are significant, small and negative across regressions, suggesting a decreasing average technical efficiency score for each country. The regressions were not performed for NMS since their sample covers only 3 years.

Stability Analysis

Following the technique outlined in the methodology section, we performed the stability analysis for Belgium, Estonia, France, Germany, Hungary, Italy, The Netherlands and Sweden respectively. Our findings suggest a surprising stability of results across countries over time. Table 3 presents the mean values of the percentage of farms in consecutive years that remain in the same tercile, along those increasing or decreasing their respective terciles. As suggested earlier, results are surprisingly stable: about 60% of all farms remain in the same tercile two consecutive years, whilst about 15-20% of farms decrease and increase their performance moving down or up a tercile. Results obtained here, are completely in line with those of [START_REF] Barnes | A report on technical efficiency at the farm level 1989 to 2008[END_REF] for crop farming in England, Scotland, Wales and Northern Ireland. On average, 15% (Estonia) to 24% (Germany) of field crop farms remained in the top tercile each year, 13% (Estonia and Hungary) to 17% (Belgium, Germany) in the middle tercile and 17% (Estonia, Hungary) to 22% (France) in the lower tercile (table 4). It is probably more interesting the percentage of farms that changed their terciles over the year. An average of 10% (France, Germany) to 15% (Estonia, Hungary) improved their performance by shifting into a higher (2 to 1 or 3 to 1) tercile, whilst almost the same, on average 10% (France) to 16% (Hungary) fell from the top or middle tercile to the lowest. It is interesting to note, that New Member States (Estonia and Hungary) register the highest average percentage of farms either dramatically increasing or decreasing their terciles, suggesting a highly unstable yearly performance. These countries also register the lowest percentages of farms that are stable in the same tercile during the year. The mean of yearly mobility indexes, M1 and M2 (see equations 9 and 10 are presented in table 5. For both indices a higher value indicates greater mobility, whilst a value close to zero indicates perfect immobility. Index means are remarkably similar across countries in this research. It is important to notice, that the M2 index ranks countries in the same way as M1 does, implying consistency of results. M1 ranges from 0.52 to 0.63 whilst M2 from 0.81 to 0.88, indicating a similar degree of mobility. M1 and M2 indices are significantly higher for New Member States (Estonia and Hungary). M2 reaches 0.97 and 0.99 in Hungary and Estonia, suggesting higher mobility of SFA scores throughout the entire distribution. The lowest mobility scores are recorded for Sweden.

Some determinants of farm mobility

An obvious research question is whether one can identify some factors influencing the mobility indices. An obvious set of explanatory variables would be the farm structure and organisational form (e.g. family, corporate or cooperative farms) however these data is only available in national FADN databases. Instead, in this paper we use input ratio variables, available in EU FADN database. A number of explanatory variables were regressed using different specifications (e.g. nominal, log-log, etc.) here we present the panel regression output with the most significant results. Since M1 and M2 indices are qualitatively similar, but regressing M2 yields more significant results, we focus on M2 only. Table 6 presents the panel regression results of the mobility index upon farm size (measured in UAA), land per labour and capital (measured in total assets) per labour input ratios, normalised by their mean. Except farm size, all explanatory variables and the constant are highly significant. The sign of the coefficients rather than the magnitude is important for the analysis. Regression results emphasise, that the higher the land per labour and capital per labour farm input ratios, the less likely is that corresponding technical efficiency score changes the position within the distribution during two consecutive years. Further research could include farm organisation and managerial attribute variables amongst explanatory variables to better capture the endogenous determinants of technical efficiency scores changing their relative positions in time.

CONCLUSIONS

The aim of this paper is to present and analyse the stability over time, and the determinants of mobility of the field crop farm technical efficiency indicator for Belgium, Estonia, France, Germany, Hungary, Italy, The Netherlands and Sweden. The availability of long period datasets between 1990 and 2006, allows us to concentrate on the long time trends in technical efficiency. This study is the first which may provide a comprehensive overview on the development in farm level efficiency across eight European countries. Our main results are following. Generally, all countries have relatively high levels of mean efficiency ranging from 0.72 to 0.92. A slightly decreasing trend of efficiency may be observed for all countries. Technical Efficiency estimates are largely in line with those obtained by previous studies.

We investigate the issue of how relative performance of farms fluctuates in terms of technical efficiency over time. We may hypothesise that many poorly performing farms remain inefficient over time and some farmers are performing always very efficiently. We can identify farms which are usually at the bottom or top of the efficiency ranking. However, the FADN data has an inherent problem for long time period analysis arising from its rotated panel nature, namely that not all the farms are observed for the whole period. Thus we needed to calculate transition matrices in each consecutive year. Surprisingly stability analysis revealed that in average 60% of farms maintain their efficiency ranking in two consecutive years, whilst 20% improve and 20% worsen their positions for all countries. However, these ratios slightly fluctuate around these values for one year to next year. Mobility analysis ranks countries according to the mobility of SFA scores within the distribution. Farms in New Member States are more mobile than those in EU15. This may be due to the unstable economic conditions of farms in these countries, where e.g. inputs access is not always secured or is costly. Finally, some insight into the possible determinants of farm technical efficiency mobility is offered, emphasising the importance of the input mix ratio used.

Figure 1 .

 1 Figure 1. Technical efficiency scores for field crop farms

Table 1 .

 1 Due to their relative importance and large number of available observations compared to other sectors, field crop farms (TF1) are considered in this paper. Data source is the FADN database from 1990 to the latest available year (2006) in case ofEU15 and 2004-2006 for NM. Inconsistent data and outliers were removed from the initial datasets. Descriptive statistics and concentration index of field crop farms (UAA)

		Field	Utilised Agricultural Area
		Crop			
			start period		end period
		mean	Gini coefficient	mean	Gini coefficient
	Belgium	54.00	0.2975	73.87	0.3159
	Estonia	230.11 0.4754	240.27	0.4824
	France	80.89	0.3436	135.88	0.3323
	Germany	47.11	0.3501	252.02	0.6358
	Hungary	255.45 0.6671	240.05 0.6360
	Italy	19.61	0.5081	50.96	0.6503
	Netherlands 62.34	0.3220	82.81	0.3684
	Sweden	83.61	0.2939	120.19 0.4515
	Source: authors" calculations		
	Tables				

Table 2 .

 2 OLS regression of efficiency scores on a time trend

		Field Crop
	Belgium	-0.003***
	France	-0.007***
	Germany	-0.005***
	Italy	-0.003***
	Netherlands -0.002***
	Sweden	-0.005**
	Note: ***, **, * significant on 1, 5 and 10% respectively.
	Source: authors" calculations

Table 3 .

 3 Stability analysis results: percentage of farms in the same tercile during two consecutive years

			Field Crop	
		increase remain decrease
	Belgium	0.20	0.61	0.19
	Estonia	0.26	0.46	0.28
	France	0.19	0.61	0.20
	Germany	0.20	0.61	0.19
	Hungary	0.26	0.48	0.26
	Italy	0.20	0.59	0.21
	Netherlands	0.20	0.58	0.21
	Sweden	0.18	0.65	0.17
	Source: authors" calculations	

Table 4 .

 4 Average change in technical efficiencies for field crop farms depending on their tercile movement Belgium

Estonia France Germany Hungary Italy Netherlands Sweden Farms remaining each year tercile

  

	1	0.224	0.150	0.222	0.243	0.173	0.211	0.226	0.226
	tercile 2	0.174	0.133	0.164	0.169	0.134	0.160	0.155	0.181
	tercile 3	0.208	0.173	0.222	0.202	0.171	0.215	0.201	0.240
				Farms increasing each year			
	tercile 2-1 0.081	0.093	0.082	0.083	0.100	0.089	0.084	0.078
	tercile 3-1 0.030	0.058	0.022	0.025	0.057	0.031	0.026	0.017
	tercile 3-2 0.091	0.115	0.089	0.084	0.103	0.083	0.094	0.083
				Farms decreasing each year			
	tercile 1-2 0.076	0.102	0.086	0.088	0.103	0.091	0.087	0.082
	tercile 1-3 0.035	0.053	0.023	0.022	0.060	0.031	0.030	0.013
	tercile 2-3 0.082	0.124	0.089	0.084	0.099	0.089	0.097	0.081
	Source: authors" calculations						

Table 5 .

 5 Means of M1 and M2 mobility indices for field crop farms

		Field Crop	
		M1	M2
	Belgium	0.59	0.82
	Estonia	0.81	0.99
	France	0.59	0.86
	Germany	0.58	0.85
	Hungary	0.78	0.97
	Italy	0.62	0.88
	Netherlands	0.63	0.86
	Sweden	0.52	0.81
	Source: authors" calculations	

Table 6 .

 6 Panel regression of M2 mobility index upon input ratios

	Variables	coefficient
	Farm size	0.000
	Land/labour	-0.056***
	Capital/labour	-0.025***
	constant	0.927***
	Note: own calculations, *** significant at 1%

This is mostly due to the effects of the German reunification process, by the inclusion of the large scale former GDR state owned agricultural holdings in the sample.