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Abstract Five genomic prediction models were

applied to three wheat agronomic traits—grain yield,

heading date and grain test weight—in three breeding

populations, each comprising about 350 doubled

haploid or recombinant inbred lines evaluated in three

locations during a 3-year period. The prediction

accuracy, measured as the correlation between geno-

mic estimated breeding value and observed trait, was

in the range of previously published values for yield

(r = 0.2–0.5), a trait with relatively low heritability.

Accuracies for heading date and test weight, with

relatively high heritabilities, were about 0.70. There

was no improvement of prediction accuracy when two

or three breeding populations were merged into one

for a larger training set (e.g., for yield r ranged

between 0.11 and 0.40 in the respective populations

and between 0.18 and 0.35 in the merged populations).

Cross-population prediction, when one population was

used as the training population set and another

population was used as the validation set, resulted in

no prediction accuracy. This lack of cross-population

prediction accuracy cannot be explained by a lower

level of relatedness between populations, as measured

by a shared SNP similarity, since it was only slightly

lower between than within populations. Simulation

studies confirm that cross-prediction accuracy

decreases as the proportion of shared QTLs decreases,

which can be expected from a higher level of

QTL 9 environment interactions.
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Introduction

With the advance in genomics, particularly with next-

generation sequencing tools, it has become possible to

generate a large number of molecular markers span-

ning a genome. These genome-wide markers have

been used for genomic selection (GS) and genome-

wide association studies (GWAS) for qualitative or

quantitative traits. A condition for success is that a

sufficient level of linkage disequilibrium (LD) exists

between adjacent markers and QTLs.

In their pioneering work, Lande and Thompson

(1990) introduced a theory for optimization of weights

given to each marker associated with a QTL, and they

demonstrated that this index was as efficient for the

genetic improvement of a population as the pheno-

typic score. This marker-assisted selection (MAS)

approach used only markers which had been previ-

ously associated with a QTL. The efficiency of MAS

versus phenotypic selection is optimized when the trait

has a low heritability, the population size is larger and

the QTLs explain a large proportion of the trait

variation. Subsequent studies have shown that effi-

ciency is improved when more QTLs with small

effects are included (Bernardo et al. 2006; Moreau

et al. 1998). Hospital et al. (1997) showed that the use

of the marker index would facilitate early selection,

bypassing a trait evaluation step and shortening

selection cycles, and thus, genetic gain per cycle

would increase. MAS has been used for quantitative

traits (e.g., Eathington et al. 2007; Blanc et al. 2008)

and is currently routinely used by most plant breeding

programs. However, the efficiency of MAS can be

limited by the first step of QTL identification, when

the statistical power has been low for QTL with small

effects in smaller population. For complex traits, like

grain yield, the most likely hypothesis is that they are

controlled by a large number of QTLs with effects

below the detection threshold. Therefore, several

QTLs are not accounted for by the markers included

in the selection index.

A subsequent step was proposed by Whittaker et al.

(2000), who proposed including all markers in the

selection index and bypassing the QTL identification

step. As the number of markers was generally larger than

the number of genotypes, classical fixed effect regres-

sion models gave inaccurate estimates. Therefore,

Whittaker et al. (2000) suggested using ridge regression

models to overcome this over-parameterization

problem. This approach, GS, was first developed by

animal geneticists (Meuwissen et al. 2001) who applied

ridge and Bayesian regression models to animal popu-

lations for predicting breeding values. The breeding

values are calculated from marker effects estimated

from the genotypes and phenotypes of a training

population. The marker effects are used to calculate

breeding values for the target population with only

genotypic data, and selections are based on these

estimates. This method has been used successfully for

dairy cow breeding (Goddard and Hayes 2007). How-

ever, as the LD between markers and QTL and the

relatedness between samples are reduced in cows from

one generation to the next, genomic estimated breeding

value (GEBV) predictions will be less accurate (Habier

et al. 2007). Therefore, new phenotypic measurements

may be needed to re-estimate marker effects in some

species (Heffner et al. 2010).

The most efficient use of GS is to replace costly

and time-consuming phenotyping with a prediction

of the genetic value of the trait under selection.

Thus, the main advantages may be cost and selection

cycle reduction. To benefit from shorter cycles, the

genetic gain per cycle should be close to the

expected gain from phenotypic or combined MAS

and phenotypic selection. The relative efficiency

relies on the accuracy of predicting the observed

genetic value from the marker genotype. The accu-

racy of a prediction is measured by the correlation

between the predicted and observed values, and this

accuracy relies on the level of LD between a QTL

and linked marker. The relevant parameter is the LD

level, r2, which has demonstrated that the sample

size required to detect a QTL by a nearby marker is

1/r2 times the population size required for testing

and validating the putative QTL (Balding et al.

2007). The accuracy of breeding value predictions

will depend on the trait variation captured by the

markers. Marker density should optimize LD

between markers and QTLs. The extent of LD has

been investigated in several animal and plant species

and populations within some species. The LD range

is expected to be high in biparental populations

(Lorenzana and Bernardo 2009) and higher in more

complex mating schemes (Blanc et al. 2008; Ber-

nardo and Yu 2007; Heffner et al. 2009; Jannink

et al. 2010; Iwata and Jannink 2011; Lorenz et al.

2011). The LD pattern may change from one
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generation to the next, since recombination reduces

the range of LD in heterozygotes and varies between

germplasm sources.

The objective of this investigation was to estimate

the reliability of GEBV predictions for three agro-

nomic traits—yield, heading date and test weight—

when using different training and target populations

and the effect of merging different breeding popula-

tions to increase the size of the training panel.

Materials and methods

Plant materials

Three populations each composed of advanced lines

from the breeding programs of the wheat breeders of

French National Institute for Agricultural Research

(INRA) and plant Biotechnology Company Bioplante

were included in this investigation (Bordes et al.

2014). These lines were derived from crosses of the

best yielding breeding lines and the most widely

grown cultivars.

Two doubled haploid populations, DH1 and DH2

(369 and 344 lines, respectively), and one recombinant

inbred population, RIL (341 lines), were investigated

at three locations during 3 years—2009 (DH1), 2010

(RIL) and 2011 (DH2). DH1 and DH2 were developed

by Bioplante with the maize pollination method from

80 F1 progeny from 117 parents, including 66 recently

developed cultivars. Eight to ten lines were randomly

drawn from each of the 80 F1-derived DHs. Recom-

binant inbred lines were developed by INRA between

2000 and 2010 from 55 crosses using 87 parents,

including 52 recently developed cultivars. The RILs

have undergone 7 to 9 generations of selfing, leading

to nearly two times the number of recombinations

expected for DH lines. A smaller set of 38 F8 recent

INRA lines (RIL2) were also used for validation in

2011. It is worth noticing that these populations do not

represent different selection cycles, but rather inde-

pendent samples, although issued from adapted west

Europe germplasm.

Phenotypic evaluation

Each population was grown at three different locations

in France. In 2009, DH1 was grown at Clermont-

Ferrand (45.46N, 3.04E), Cappelle-en-Pévèle (50.30N,

3.10E) and Milly-la-Forêt (48.24N, 2.28E). In 2010,

RIL was grown at Clermont-Ferrand, Cappelle-en-

Pévèle and Estrées-Mons (49.53N, 3.00E). In 2011,

DH2 was grown at Cappelle-en-Pévèle, Milly-la-Forêt

and Rennes (48.06N, 1.40E). The crop management

corresponded to the usual farming practices used at each

location for high-yield objectives, which included a

dense planting and applications of high levels of N

fertilizer (HN) and pesticides. All breeding lines were

grown once in 10 m2 plots. To take into account possible

heterogeneity of the soil, the lines were randomized into

10 sub-blocks that each included four control cultivars.

The experimental design included three locations per

year and approximately 400 plots per location. The

number of genotypes was prioritized over the number of

repetitions.

Test weight (TW, kg h L-1), grain yield (GY,

t ha-1 at 0 % humidity) and heading date (HD, days

from the January 1) were determined for each plot. To

control for intra-block heterogeneity, trait values were

adjusted relative to the four control cultivars repeated

in each sub-block using the glm and ls means

procedures in Statistical Analysis Software (SAS

Institute Inc 1999) in the following model:

Yij ¼ lþ Gi þ Bj þ eij

where Yij represents the value of the trait under

investigation for genotype i in sub-block j, l repre-

sents the general mean, G represents the fixed

genotypic effect, B represents the fixed sub-block

effect, and eij represents the error term of the model.

Analysis of variance was carried out for each trait

using the subplot adjusted values with the following

model:

Yil ¼ lþ Gi þ Locationl þ eil

where Yil represents the value of the trait under

investigation for genotype i at location l, G represents

the random genotypic effect, Location represents the

fixed location effect, and eil represents the error term

of the model.

Genetic markers

The populations were genotyped with 3,299 DArT

markers generated by Triticarte Pty, Ltd. (Canberra,

Australia; http://www.triticarte.com.au), including

2,545, 1,572 and 2,236 polymorphic markers for DH1,

DH2 and RIL, respectively (1,156 markers were
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common to the three populations). The genetic map

was built from the data of Triticarte for about 60 % of

the markers; the others were placed close to the DArT

markers where the LD was the highest. LD was cal-

culated as r2 with a R application (R Development

Core Team 2011). Out of the 3,299 markers, 2,772

have been successfully mapped (Bordes et al. 2013) on

the whole genome. Markers were not selected based

on minor allele frequency.

GEBV estimation

Five statistical methods were used to estimate GEBV

using DArT markers:

• GBLUP assumes pedigree relationships in the

training population, based on marker genotypes,

and then estimates breeding values using a BLUP

animal model (Henderson 1975). Computations

were carried out using the pedigree package in R

(Coster 2010).

• Bayesian ridge regression (BRR) uses a Gaussian

prior distribution with a variance common to each

marker effect (de los Campos and Pérez 2010;

Pérez et al. 2010). The prior residual variance and

degree of freedom were Se = 4.5 and dfe = 3,

respectively, and the prior variance and degree of

freedom of marker effects were SbR = 0.009 and

dfbR = 3, respectively. Estimates of lambda were

based on a heritability, h2 = 0.37. The number of

iterations used as burn-in was 20,000, and the

number of iterations made in the Gibbs sampler

was 60,000. Computations were carried out using

the BLR package in R (de los Campos and Pérez

2010).

• Bayesian LASSO uses a Gaussian prior distribu-

tion with a marker-specific prior variance for a

differential shrinkage of each marker effect (de los

Campos and Pérez 2010; Pérez et al. 2010). The

prior residual variance and degree of freedom were

Se = 4.5 and dfe = 3, respectively, and the prior

variance and degree of freedom of marker effects

were SbL = 0.009 and dfbR = 3, respectively.

Computations were carried out using the BLR

package in R (de los Campos and Pérez 2010).

• Reproducing kernel Hilbert space (RKHS) is a

kernel-based method, which relies on a regulariza-

tion network, support vector regression and support

vector classification. It was implemented in R.

• Random Forest is an ensemble classifier that

consists of many decision trees and outputs the

class that is the mode of the class’s output by

individual trees. The method combines Breiman’s

‘‘bagging’’ idea (Breiman 2001) and the random

selection of features, introduced by Amit and

Geman (1997) in order to construct a collection of

decision trees with controlled variation. The

randomForest package was used (Breiman and

Cutler 2013).

Accuracy and validation

Since the true breeding value was unknown, genomic

prediction accuracies were measured by the Pearson

correlation between GEBVs and the observed pheno-

typic values. Cross-validation methods were as

follows:

• Standard single-population cross-validations used

one breeding population and randomly sampled

80 % of the genotypes for the training population

to estimate marker effects for GEBV of the

remaining 20 % genotypes used as the ‘‘validation

set.’’ The resampling process was iterated 200

times to estimate an empirical mean and standard

deviation using R-language.

• Multi-population cross-validations used a com-

posite breeding population including DH1 ?

DH2, DH1 ? RIL, DH2 ? RIL or DH1 ?

DH2 ? RIL

• Cross-population cross-validations used one or

two breeding populations to predict GEBV of

another population. For example, DH1 was used to

predict DH2, DH1 was used to predict RIL, DH2

was used to predict RIL and RIL to predict RIL2.

Simulations

One hundred QTLs with normally distributed additive

effects were generated for a sample of markers

common to the training and validation populations.

Subsets comprising 10–100 % (in increments of 10) of

markers were drawn independently from the common

sample to generate the quantitative trait in the training

and validation populations. This accounted for vari-

able proportions of QTLs expressed according to

interactions. A normally distributed noise was added
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to generate the desired heritability of the simulated

trait.

Estimate of kinship

Kinship coefficients among the breeding lines were

estimated using the Kinship function of the TASSEL

software (http://www.maizegenetics.net/tassel/). The

coefficients were divided by the average value of the

diagonal, 2.34, in order to obtain a value ranging between

0 and 1 for the estimate of coefficient of coancestries.

Results

Phenotypic evaluation

Analysis of variance of the three populations DH1,

DH2 and RIL indicated a significant genotypic effect

(P value\0.001) for the three traits—grain yield, test

weight and heading date (data not shown). For all

traits, a wide range of phenotypic variation was

observed for the three populations (Suppl. Table 1).

Mean ranges for GY (8.61–10.78 t ha-1) and TW

(71.2–80.0 kg h L-1) were expectedly high for elite

breeding lines, and heritabilities higher for HD (0.88),

TW (0.82) and lower for GY (0.70).

Genomic predictions using a single population

Within-year prediction accuracies are presented in

Suppl. Table 2 and Fig. 1. Accuracies vary from one trait

to another and one site to another. For GY, they are highly

variable, both between years and between locations, with

higher average values in 2011 (r = 0.216–0.305), with

the DH2 populations. For TW, accuracies were more

variable between years than between locations, with

higher values in 2010 (r = 0.583–0.702) and 2011

(r = 0.677–0.681) compared to 2009 (r = 0.321–

0.356). DH accuracy was more stable between locations.

The statistical models, LASSO and/or Random Forest,

facilitated higher accuracies than other models in some of

the comparisons (Figs. 1, 2).

Genomic predictions using a multi-populations

cross-validation

Standard cross-validation accuracies from randomly

sampling the training and validation sets obtained on

composite populations are presented in Suppl. Table 3.

The range of accuracies for single populations

(n = 341–382) was r = 0.109–0.409 and for three

merged populations (n = 1,092) was r = 0.238–0.312.

These results suggest that prediction accuracies did not

improve with increased training population sizes, when

unrelated populations from different breeding programs

were merged to increase the population. Instead, the best

accuracies estimated for yield in DH2 for 2011,

r = 0.376–0.409 were somewhat reduced when DH2

merged with any of the other populations (r =

0.238–0.346). For HD, we observed more consistent

results between admixed populations, which was the case

for the single-population cross-validation (n = 341–382,

r = 0.363–0.600), but there were no accuracy

0
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Fig. 1 Mean correlations (from 200 resamplings) between the

observed trait and GEBV from fivefold cross-validations within

a given population (note that GBLUP did not run on the 2011

population, likely due to excessive relatedness between some

lines
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improvements from an increased training population size

(n = 1,092, r = 0.488–0.561.

Genomic predictions using different populations

as training and validation sets

Suppl. Table 4 shows the average correlations

between GEBV and the observed trait when one

population was used for sampling 80 % of its lines for

the training set and another population was used for

sampling 20 % of its lines for the validation set.

Accuracies for yield ranged between -0.12 and 0.015.

Figure 2 summarizes the comparison of accuracies

between the three cross-validation methods—single,

composite and cross-populations. Results indicate that

GEBV estimated from one population did not predict

phenotypes in a different population. Low accuracies

were estimated for all three traits (r ranged between -

0.12 and 0.24).

Genomic predictions using cross-population

validation based on simulated traits

For two levels of trait heritability (h2 = 0.3 and

h2 = 0.6), accuracies between predicted and simu-

lated traits decreased as the number of common QTLs

between the training and validation sets decreased. For

traits with both heritabilities (h2 = 0.3 or 0.6), the

prediction accuracies were null at QTL \ 010 for a

proportion of common QTLs of around 10 % (Fig. 3).

Prediction in the INRA validation set

We used an INRA RIL, population with mean pheno-

types over three locations in 2009 for the training set,

and a RIL2 population evaluated in 2011 as the

validation set. The accuracies estimated with LASSO

were r = 0.280 for grain yield, r = 0.305 for heading

date and r = 0.802 for test weight (Fig. 4).
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cross population HD GEBV accuracy
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LASSO
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Fig. 2 Mean correlations (from 200 resamplings) between the

observed trait and GEBV from: (1) single-population cross-

validations (columns 1–3), (2) composite populations CV

(columns 4–6) and cross-populations CV (columns 7–10). Note

that GBLUP did not run on the 2011 population, likely due to

excessive relatedness between some lines
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Fig. 3 Mean correlations of GEBV and simulated traits in

cross-population validation tests, as a function of the percent of

QTLs, drawn from a common set of 100 QTLs, in the training

and validation populations
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Kinship relationships

The average kinship coefficient between lines within

and among populations ranged between 0.329 and

0.42 (Table 1).

Discussion

The use of standard cross-validation led to highly

variable estimates of prediction accuracies between

populations and environments. In our investigation,

each training population was evaluated for a single

year, and the year effect was statistically confounded

with the population effect (i.e., genetic background

pattern of LD between markers and QTLs). However,

three locations were used during each year, which

allows us to partly separate the population and

environmental effects. Generally, we observed more

variation in prediction accuracies between populations

within years than between locations within years,

particularly for a highly heritable trait, like heading

date. This illustrates that the population effect is more

important than the location effect, although there were

exceptions for the less heritable trait, grain yield,

particularly with some statistical methods, like RKHS.

Moreover, the ranking of populations for their average

accuracies is the same for the three traits, with DH1

(2009) having the lowest and DH2 (2011) having the

highest accuracies. This suggests that the population

effect, due to genetic architecture (LD and related-

ness), is greater than the year effect, which is less

likely to be the same for all traits.

Discrepancies in prediction accuracies for the same

population evaluated in different environments have

been reported for wheat (Crossa et al. 2010; Endelman

2011). For example, Crossa et al. (2010) reported the

accuracy for grain yield in four environments ranged

from 0.355 to 0.480 using BLUP and from 0.445 to

0.601 using RKHS. Although our accuracies were

generally much lower, the best values obtained for

grain yield were 0.568 using RKHS and 0.565 using

LASSO. The differences in prediction accuracies

cannot be accounted for with the training population

size because all single populations have similar

population sizes (about 350, with 80 % used for

training) and there was no improvement when a

mixture of two or three populations was included. In

theory, the prediction accuracy is positively related to

the training population size (Daetwyler et al. 2008,

2010). The lack of relationship found in this study may

demonstrate that mixing different breeding popula-

tions was not appropriate for building a larger and

more efficient training set.

Fig. 4 Plot of observed versus predicted value for test weight in

the validation set RIL2 (r = 0.802)

Table 1 Mean and range

of coancestry coefficient

among breeding lines

within and between

populations

DH1 RIL DH2 RIL2

DH1 0.42

0.107–0.99

0.341

0.030–0.992

0.387

0.027–0.987

RIL 0.34

0.034–0.99

0.329

0.0–0.832

0.338

0.035–0.962

DH2 0.381

0.027–0.998

0.335

0.027–0.840

RIL2 0.357

0.106–0.962
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For the same trait/population combination, very

similar accuracies were obtained with the different

prediction methods, at least for the two traits with high

heritabilities. This has already been reported by Heslot

et al. (2012), who analyzed three wheat populations

for GEBV using ten statistical models, estimating

small differences between the populations, with

RKHS being the most accurate and support vector

machine the least accurate methods. For yield, accu-

racies ranged from 0.22 to 0.37, which compares to the

accuracies estimated in our study. For test weight,

Heffner et al. (2011) reported an accuracy of 0.5 using

ridge regression on biparental wheat populations. The

lower accuracies for yield, compared to other traits,

may be due to a lower heritability or to a more

complex genetic architecture (i.e., many small QTLs)

with information not being totally captured by imper-

fect marker coverage what about GxE? It seems

several studies, including Storlie and Charmet (2013),

have suggested G 9 E is a major confounding factor.

Using 41,371 SNP markers from genotyping-by-

sequencing 254 advanced breeding lines from CI-

MMYT, Poland et al. (2012) reported an improvement

of 0.1 to 0.2 for yield prediction accuracy over that

obtained with 1,726 DArTs. This illustrates that 1,726

DArT markers do not provide sufficient genome

coverage to capture all the QTL information. When

reducing the SNP markers to the same number as

DArT, they still observed an improvement, suggesting

that the distribution of DArT markers rather than their

number is the main source of lack of accuracy.

Predicting breeding values in a population (grown

during a respective year) as a validation set using

another population (grown during a respective year) as

training set was inaccurate, regardless of the training

population size. In this study, there were two possible

caveats: There were different populations and differ-

ent years of evaluation. Heffner et al. (2011) used the

phenotype of 1 year for training set and the phenotype

of another year as the training set. Accuracies of

r = 0.199 for grain yield, r = 0.560 for test weight

and r = 0.748 for heading date were estimated

(Heffner et al. 2011). For yield, we used separate

training and validation sets based on years and showed

accuracies were significantly reduced compared to

standard cross-validation methods (Storlie and Char-

met 2013). These accuracies were higher than the

accuracies reported in this study (0.23 vs. 0.00).

Therefore, the reduced predictability seems to have

causes other than G 9 E interactions.

Few GS studies have included different populations

for training and validation. Lorenz et al. (2012)

included one barley population evaluated during

2 years as the training set and another barley popula-

tion evaluated during a third year as the validation set.

Accuracies for Fusarium head blight (FHB) associated

traits ranged between r = 0.4–0.75 using one popu-

lation for the training and validation sets, and these

accuracies were nearly halved when different popula-

tions were used for the sets (Lorenz et al. 2012).

Similar results have been reported for similar FHB-

related traits in wheat (Rutkoski et al. 2012).

The inaccuracies of cross-population cross-valida-

tion in our study may be caused by a lack of genetic

relatedness between lines of the training and the

validation sets. The coefficient of relatedness between

lines of the same breeding population ranged between

0.35 and 0.47 (with 0.50 also measuring full sib

families). The two DH populations had higher relat-

edness levels than the RIL populations, possibly due to

fewer parents. The range of relatedness levels did not

differ significantly for lines between populations. The

relatedness level differed slightly between respective

breeding populations (DH1–DH2: 0.387 or RIL1–

RIL2: 0.338) versus (DH1–RIL1: 0.341 or DH2–

RIL1: 0.329). Relatedness levels may not explain

prediction accuracy differences. In another investiga-

tion, Zhao et al. (2013) suggested that the prediction

accuracy (r = 0.28–0.42) was 44 % lower for hybrid

wheat when the training and validation sets were not

related versus having at least one common parent. One

explanation for the reduced accuracies when predict-

ing unrelated populations is the presence of different

alleles. Our simulation results suggest a linear rela-

tionship between shared alleles and accuracy. Our

different populations have a coefficient of relatedness

of about 0.3. The relatedness level may correlate with

the number of shared alleles and may explain the

accuracies of cross-population predictions.

Conclusion

The elite breeding lines proved to be an interesting

support to GS of important traits in wheat. Populations

created from lines obtained by several breeders,
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although of limited size, do present potentially useful

accuracy in within-population cross-validation, par-

ticularly for the most heritable traits. However,

although they were on average similarly related to

each other, no gain in accuracy was obtained by

mixing one or two breeding populations to make a

larger training set. Even more disappointing was the

failure of cross-populations validation. This shows

that more research is needed and more effort must

devoted to design optimal training populations, with a

sufficient level of relatedness with the target popula-

tions to achieve a good accuracy.
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