

INVENTEURS DU MONDE NUMÉRIQUE

SNP discovery in pea: A powerful tool for academic research and breeding

> Gilles Boutet ¹ Duarte J.² Alves Carvalho S.^{1,3} Lavaud C.^{1,} Uricaru R.^{1,3} Peterlongo P.³ Pilet-Nayel M-L¹ Baranger A.¹ Rivière, N.²

IFLRC VI & ICLGG VII

6th International Food Legumes Research Conference 7th International Conference on Legume Genetics and Gen

¹INRA, UMR1349 IGEPP, 35653 LE RHEU France ²BIOGEMMA, Upstream Genomics Team, 63720 CHAPPES France ³INRIA Rennes – Bretagne Atlantique/IRISA, EPI GenScale, RENNES, France

2014/07/07

Pisum sativum :

- 4.3 Gb complex genome
- Limited genomic and sequencing resources
- Significant challenges against biotic stress
- breakthrough in Marker Assisted Selection needed by french breeders

Pisum sativum :

- 4.3 Gb complex genome
- Limited genomic and sequencing resources
- Significant challenges against biotic stress
- breakthrough in Marker Assisted Selection needed by french breeders

Massive sequencing & SNP markers development Two complementary NGS approaches :

Pisum sativum :

- 4.3 Gb complex genome
- Limited genomic and sequencing resources
- Significant challenges against biotic stress
- breakthrough in Marker Assisted Selection needed by french breeders

Massive sequencing & SNP markers development Two complementary NGS approaches :

1. Sequencing of **full length standardized cDNA** for 8 pea genotypes

Pisum sativum :

- 4.3 Gb complex genome
- Limited genomic and sequencing resources
- Significant challenges against biotic stress
- breakthrough in Marker Assisted Selection needed by french breeders

Massive sequencing & SNP markers development Two complementary NGS approaches :

- **1. Sequencing** of **full length standardized cDNA** for 8 pea genotypes
- **2. Genotyping by Sequencing** of **gDNA** for **48 RILs** segregating for a major biotic stress resistance

.03 2014/07/07

No pea genome reference sequence available

Duarte et al. 2014

No pea genome reference sequence available

De novo assembling

80% reads assembled

(Contig longest: 4,1kb)

69 k contigs

(74% with hit blast on Medicago truncatula)

(98% with a hit blast on the genome of *Medicago truncatula*)

.04 2014/07/07

Distribution of pea contigs along Medicago truncatula physical map

SCIENCE & IMPACT

.06 2014/07/07

Boutet G., Duarte J., Alves Carvalho S., Lavaud C., Uricaru R., Peterlongo P., Pilet-Nayel M-L., Baranger A., Rivière, N.

SCIENCE & IMPACT

1252 bridges between the two genomes

Syntenic relationships between the *P. sativum* LGs and the *M.truncatula* pseudo-chromosomes.

1340 SNPs

1252 bridges between the two genomes

Syntenic relationships between the *P. sativum* LGs and the *M.truncatula* pseudo-chromosomes.

1340 SNPs

Duarte et al. 2014

.06

1252 bridges between the two genomes

Syntenic relationships between the *P. sativum* LGs and the *M.truncatula* pseudo-chromosomes.

1340 SNPs

1252 bridges between the two genomes

Syntenic relationships between the *P. sativum* LGs and the *M.truncatula* pseudo-chromosomes.

1340 SNPs

1252 bridges between the two genomes

Syntenic relationships between the *P. sativum* LGs and the *M.truncatula* pseudo-chromosomes.

1340 SNPs

92 accessions and cultivar diversity panel

biogemma

1538 SNP markers

92 accessions and cultivar diversity panel

1538 SNP markers

Duarte et al. 2014

.07 2014/07/07

92 accessions and cultivar diversity panel

1538 SNP markers

biogemma FIRRA SCIENCE & IMPAC

Duarte *et al.* 2014

.07 2014/07/07

92 accessions and cultivar diversity panel

biogemma INRA

1538 SNP markers

SCIENCE & IMPACT

.07

Aphanomyces euteiches disease

Genotyping By Sequencing on genomic DNA libraries from a <u>48 RILs</u> mapping population segregating for resistance to Aphanomyces euteiches

50 Genomic DNA libraries

(48 Rils + Baccara & PI180693)

INRA Get-Plage platform

Illumina Hiseq2000 sequencing (2 libraries/lane)

50 Genomic DNA libraries

(48 Rils + Baccara & PI180693)

Illumina Hiseq2000 sequencing (2 libraries/lane) 8.8 G reads / 877 GB

Genotyping By Sequencing on genomic DNA libraries from a 48 RILs mapping population No pea genome reference sequence available

50 Genomic DNA libraries

(48 Rils + Baccara & PI180693)

Illumina Hiseq2000 sequencing (2 libraries/lane) 8.8 G reads / 877 GB

No pea genome reference sequence available

discoSnp method

https://colibread.inria.fr/software/discosnp/

INRIA Genscale team Uricaru & al. submitted

No pea genome reference sequence available

No pea genome reference sequence available

50 Genomic DNA libraries (48 Rils + Baccara & PI180693) INRA Get-Plage platform Illumina Hiseq2000 sequencing (2 libraries/lane) 8.8 G reads / 877 GB

No pea genome reference sequence available

discoSnp method

https://colibread.inria.fr/software/discosnp/

INRIA Genscale team Uricaru & al. submitted

discoSnp module 1

Kissnp2: SNPs detection from sets of reads (based on the de Bruijn Graph)

50 Genomic DNA libraries

(48 Rils + Baccara & PI180693)

INRA Get-Plage platform

Illumina Hiseq2000 sequencing (2 libraries/lane) 8.8 G reads / 877 GB No pea genome reference sequence available

discoSnp method

https://colibread.inria.fr/software/discosnp/

INRIA Genscale team Uricaru & al. submitted

discoSnp module 1

Kissnp2: SNPs detection from sets of reads (based on the de Bruijn Graph)

discoSnp module 2

Kissreads: kissnp2 results improving / each read / each

SNP:

- 1. read coverage calculating
- 2. quality of reads who generated SNP polymorphism

50 Genomic DNA libraries

(48 Rils + Baccara & PI180693)

Illumina Hiseq2000 sequencing (2 libraries/lane) 8.8 G reads / 877 GB No pea genome reference sequence available

discoSnp method https://colibread.inria.fr/software/discosnp/ INRIA Genscale team Uricaru & al. submitted discoSnp module 1 Kissnp2: SNPs detection from sets of reads (based on the de Bruijn Graph) discoSnp module 2

Kissreads: kissnp2 results improving / each read / each SNP:

- 1. read coverage calculating
- 2. quality of reads who generated SNP polymorphism

Post-discoSnp "project-specific" filters :

- 1. SNP "putative false heterozygote" coverage filter
- 2. Minor allele coverage filter

Over 75,000 genomic SNPs considered as robust

Number of SNP

Boutet G., Duarte J., Alves Carvalho S., Lavaud C., Uricaru R., Peterlongo P., Pilet-Nayel M-L., Baranger A., Rivière, N.

.010 2014/07/07

Over 75,000 genomic SNPs considered as robust

Number of SNP

Over 75,000 genomic SNPs considered as robust

Number of SNP

.010

43,000 newly mapped SNPs

Average 100 markers/ LG

43,000 newly mapped SNPs

Distribution of **43k** newly developed mapped markers

Average 100 markers/ LG

Average 6000 markers/ LG

the same distribution pattern

Boutet G., Duarte J., Alves Carvalho S., Lavaud C., Uricaru R., Peterlongo P., Pilet-Nayel M-L., Baranger A., Rivière, N.

Focus on pisum sativum LGI

LGI_Consensus_Duarte&al

LGI_New_BaccxPI

Focus on pisum sativum LGI

LGI_Consensus_Duarte&al

Conclusion

INRA UMR 1349 IGEPP (RENNES)

<u>Susete Alves Carvalho</u> (Genouest Platform)* <u>Raluca Uricaru</u> (INRIA GenScale team)* **Sofiproteol funding on PEAPOL project*

Clement Lavaud Marie-laure Pilet-Nayel Alain Baranger <u>Gilles Boutet</u> Thank You

BIOGEMMA (CLERMONT-FERRAND) Jorge Duarte

Nathalie Rivière

INRA GeT-PlaGe Platform (TOULOUSE) Emeline Lhuillier Olivier Bouchez INRA UMR 320 GV (Gif sur Yvette) Matthieu Falque

INRIA-IRISA (RENNES)

Olivier Collin (Genouest platform) **Pierre Peterlongo** (Genscale team)

The authors acknowledge the

Colib'read

.014 2014/07/07