Laura Pascual-Banuls 
  
Jiaxin Xu 
email: <jiaxin.xu@avignon.inra.fr>
  
Benoit Biais 
  
Mickael Maucourt 
email: <mickael.maucourt@bordeaux.inra.fr>
  
Patricia Ballias 
  
Stéphane Bernillon 
email: <stephane.bernillon@bordeaux.inra.fr>
  
Catherine Deborde 
  
Daniel Jacob 
email: jacob<daniel.jacob@bordeaux.inra.fr>
  
Aurore Desgroux 
  
Mireille Faurobert 
email: <mireille.faurobert@avignon.inra.fr>
  
Laura Pascual 
email: <laura.pascual@avignon.inra.fr>@jiaxin
  
Benoît Biais 
  
Jean-Paul Bouchet 
  
Yves Gibon 
email: <yves.gibon@bordeaux.inra.fr>
  
Annick Moing 
  
Mathilde Causse 
email: <mathilde.causse@avignon.inra.fr>
  
Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach

Keywords: Systems biology, tomato, fruit, metabolome, proteome

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Identifying the genes controlling the variation of complex traits is a key goal of evolutionary genetics and plant biology. Attempts to identify genetic variants underlying quantitative traits have been achieved by traditional linkage mapping and genome wide association studies using molecular markers. However, quantitative trait loci (QTL) resolution is limited and the identification of the polymorphisms responsible for the variation not straightforward. Furthermore, as several intermediate levels interact between the genotypes and the phenotypes, DNA sequence variation (single nucleotide polymorphisms SNPs or Indel) may not directly affect the traits. Intermediate molecular phenotypes such as gene expression, protein abundance and metabolite concentration also vary in populations and are themselves quantitatively inherited [START_REF] Rockman | Genetics of global gene expression[END_REF]. Nowadays, rapid technological advances in high-density experiments such as next-generation sequencing (NGS), RNA expression analysis through microarray or RNAseq, mass spectrometry (MS) coupled to gas chromatography (GCMS) or to liquid chromatography (LCMS) and nuclear magnetic resonance (NMR) metabolic profiling enable scientists to obtain large exhaustive datasets and analyze biological systems as a whole. Integration of the genome expression products at different levels should help dissecting the genetic variation of a given quantitative trait.

Systems biology proposes to relate the variation analyzed at different expression levels, from phenotype to metabolome and proteome, studying the behavior of all the elements in a biological system [START_REF] Gutierez | Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1[END_REF][START_REF] Saito | Metabolomics for Functional Genomics, Systems Biology, and Biotechnology[END_REF]. A bottom-up systems biology approach consists in integrating 'omic' resources (genomic, transcriptomic, proteomic, and metabolomic) and large physiological datasets, together with statistical network analysis in order to identify candidate genes underlying phenotypes and construct complex regulation networks [START_REF] Kliebenstein | Systems Biology Uncovers the Foundation of Natural Genetic Diversity[END_REF]. This approach was first applied to yeast by combining DNA microarrays and quantitative proteomics to describe the galactose pathway [START_REF] Ideker | A new approach to decoding life: Systems biology[END_REF]. It was then applied to gene expression analysis in E. coli [START_REF] Rosenfeld | Negative autoregulation speeds the response times of transcription networks[END_REF], and to Arabidopsis by [START_REF] Hirai | Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics[END_REF] who elucidated gene to gene and metabolite to gene networks by integrating metabolomic and transcriptomic data. Systems biology has also been used to study the natural genetic variation at different levels, such as metabolomics [START_REF] Keurentjes | Genetical metabolomics: closing in on phenotypes[END_REF]Kliebenstein 2009a), proteomics [START_REF] Stylianou | Applying gene expression, proteomics and singlenucleotide polymorphism analysis for complex trait gene identification[END_REF] and transcriptomics [START_REF] Keurentjes | Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana[END_REF]Kliebenstein 2009b).

Tomato (Solanum lycopersicum) is the model species for the study of fleshy fruit development and composition [START_REF] Giovannoni | Genetic regulation of fruit development and ripening[END_REF]. It is a self-pollinated species and derived from its closest wild ancestor Solanum pimpinellifolium [START_REF] Nesbitt | Comparative sequencing in the genus Lycopersicon: Implications for the evolution of fruit size in the domestication of cultivated tomatoes[END_REF]. Cherry tomato re-examination of the variation and inheritance of agronomical and fruit traits at the intraspecific level.

Systems biology approaches have been used in tomato to study fruit development. [START_REF] Carrari | Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior[END_REF] and [START_REF] Mounet | Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development[END_REF] analyzed transcriptome and metabolome variation along fruit development. [START_REF] Garcia | An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato[END_REF] combined phenotype, metabolome, transcriptome and proteome profiles to study genes related to ascorbate metabolism in three transgenic lines. [START_REF] Wang | Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling[END_REF] compared transcriptome and metabolome to uncover the molecular events underlying fruit set, while Osorio et al. ( 2011) compared enzyme activity, metabolite and transcript profiles to analyze the connectivity between these groups of traits in fruit ripening mutants. However, these studies were only focused on a few mutants or on the effect of introgression in S. lycopersicum of wild species alleles. Little is known about the genetic variation in metabolic, enzymatic and proteomic profiles contributing to phenotypic trait variation inside the species.

In the present study, we aimed at deciphering the complex relationships between several successive levels of omic profiles to characterize the genetic variation and physiological bases of quantitative traits in tomato fruit. For this purpose, we first compared the variation of eight genotypes representing a large range of phenotypic and genotypic diversity (four S. lycopersicum and four S. l. var cerasiforme) and four of their corresponding hybrids at two stages of fruit development (cell expansion and orange-red). We characterized their metabolic, enzymatic and proteome profiles. Genetic variability was analyzed for all traits, and inheritance patterns of traits that were significantly different among genotypes were assessed.

Relationships among traits were analyzed within and between each group of traits at each stage and networks were constructed using sparse partial least square regression. This systems biology approach combining proteome, metabolome and phenotypic analysis gave insights into the diversity and relationships of quantitative traits at different levels.

MATERIALS AND METHODS

Plant materials

Eight tomato lines including four S. lycopersicum accessions (Levovil, Stupicke Polni Rane, LA0147 and Ferum) and four S. l. lycopersicum var. cerasiforme accessions (Cervil, Criollo, Plovdiv24A and LA1420) and four of their corresponding F1 hybrids (Levovil x Cevil, Stupicke Polni Rane × Criollo, LA0147 × Plovdiv24A and Ferum × LA1420) were used in this study (details of the accessions are shown on Supplementary Table S1 andSupplementary Figure S1). Lines were selected, based on a previous molecular characterization of 360 tomato accessions [START_REF] Ranc | A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae)[END_REF], to include the maximum genetic diversity of the species. Xu et al. (2013a) genotyped these lines and the line sequenced to obtain the reference genome (Heinz1706, Tomato genome consortium 2012). From the 139 single nucleotide polymorphism markers (SNPs) characterized, 133 were polymorphic (96%) showing the large range of molecular diversity represented by the eight lines. The range of polymorphism between the lines and the reference genome (Heinz1706) ranged from 27% to 82% (Supplementary Table S2) The genetic distances among the parents of F1 hybrids were variable. According to Xu et al. (2013a) data, Levovil and Cervil were the two most distant accessions (82% SNP polymorphic), followed by LA0147 x Plovdiv 24A (40%), Stupicke Polni Rane x Criollo (34%) and Ferum x LA1420 (27%).

Plants were grown during 2010 spring under greenhouse conditions (16/20°C) in Avignon (South of France). Plants were separated in two blocks, five plants per genotype were included in each block.

For proteome, metabolome and enzymatic measurement two stages of development, cell expansion (CE) and orange-red (OR) stage were selected. CE stage was chosen a representative stage of the growing tomato fruit, OR stage was chosen because it is unequivocally determined and is the key step where enzyme and protein concentrations are changing and will determine the final characteristics of the fruit. The number of days after anthesis to reach cell expansion varied among genotypes depending on their fruit size. Thus CE sampling was done at 14, 20 or 25 days after anthesis for small [Cervil], medium [Criollo, Plovdiv 24A, Stupicke Polni Rane and the four F1 hybrids] or large [LA0147, Levovil and Ferum] fruited accessions respectively. OR sampling was done based on fruit color change.

Three biological replicates by stage were analyzed. Each replicate included 7 to 20 fruits from both greenhouse blocks to buffer environmental variations. Fruit pericarps were collected, immediately frozen, ground in liquid nitrogen and stored at -80 °C until analysis. For fruit 6 phenotypic trait measurements, five fruits were harvested from the ten plants of each 1 genotype at the following six stages: (1) cell expansion stage , (2) cell expansion +7 days, (3) 2 +14, (4) +21, (5) orange-red stage and (6) red ripe. Fruits were evaluated for fresh weight 3 (FW), fruit diameter (FD, measured using a caliper) and dry matter content (DMC). Dry 4 matter content (expressed in g / 100 g FW) was assessed after 5 days in a ventilated oven at 5 80 ˚C. extracts. 1 H-NMR profiling was performed as described in [START_REF] Deborde | Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit[END_REF] with minor modifications. Briefly, polar metabolites were extracted on lyophilized powder (50 mg DW per biological replicate) with an ethanol-water series at 80°C. The lyophilized extracts were titrated to pH 6 and lyophilized again. Each dried titrated extract was solubilized in 0.5 mL D 2 O with (trimethylsilyl) propionic-2,2,3,3-d 4 acid (TSP) sodium salt (0.01% final concentration) for chemical shift calibration and ethylene diamine tetraacetic acid (EDTA) disodium salt (5 mM final concentration for CE and 2 mM for OR stage). 1 H-NMR spectra were recorded at 500.162 MHz on a Bruker Avance III spectrometer (Bruker, Karlsruhe, Germany) using an ATMA inverse 5 mm probe flushed with nitrogen gas and an electronic reference for quantification (ERETIC2). Sixty-four scans of 32 K data points each were acquired with a 90° pulse angle, a 6000 Hz spectral width, a 2.73 s acquisition time and a 25 s recycle delay. Two technological replicates were used per biological replicate. Preliminary data processing was conducted with TOPSPIN 3.0 software (Bruker Biospin, Wissembourg, France). The assignments of metabolites in the 1 H-NMR spectra were made by comparing the proton chemical shifts with values of the MeRy-B metabolomic database [START_REF] Ferry-Dumazet | MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles[END_REF], by comparison with spectra of authentic compounds recorded under the same solvent conditions and/or by spiking the samples. The metabolite concentrations were calculated using AMIX (version 3.9.7, Bruker, Karlsruhe, Germany) software. LC-QTOF-MS profiling of aqueous-methanol-0.1% formic acid extracts was performed from lyophilized powder (20 mg in 1 ml). For each biological replicate, two extractions were performed and two injections per extract were used. An Ultimate 3000 HPLC (Dionex, Sunnyvale, CA, USA) was used to separate metabolites on a reversed phase C18 column ( 150x 2.0 mm, 3 µm; Phenomenex, Torrance, CA, USA) using a 30 min linear gradient from 3 to 95% acetonitrile in water acidified with 0.1% formic acid. Metabolites were detected using a quadrupole time-of-flight (QTOF) mass spectrometer (Bruker, Bremen, Germany).

Electrospray ionization in positive mode was used to ionize the compounds. Scan rate for ions at m/z range 100-1500 was fixed at 2 spectra per second. Methyl vanillate was spiked in the extraction solvent and used as an internal standard. One sample was used as a QC sample and injected each ten injections. Raw data were processed in a targeted manner using QuantAnalysis 2.0 software (Bruker, Bremen, Germany). This resulted in eight compounds identified based on accurate mass measurement and comparison with data from [START_REF] Gomez-Romero | Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit[END_REF].

Ascorbic acid was measured using a spectrofluorometric method and values expressed as total ascorbate (ascorbic acid + dehydroascorbate) as previously described by [START_REF] Stevens | Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations[END_REF].

The maximum activity (Vmax) of 26 enzymes of the primary metabolism was assayed using a robotized platform as described in [START_REF] Gibon | A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: Comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness[END_REF] and in [START_REF] Steinhauser | Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii[END_REF]. S3 andS4 present the lists of the primary and secondary metabolites and the enzyme activities analyzed.

Supplementary Tables

Proteome analysis

Methods for protein extraction, two-dimensional gel electrophoresis (2-DE), protein identification and classification were as detailed in Xu et al. (2013b). Briefly, proteins were extracted using the phenol extraction method developed by [START_REF] Faurobert | Major proteome variations associated with cherry tomato pericarp development and ripening[END_REF]. Later, proteins were separated by 2-DE. After Coomassie colloidal staining, image analysis was performed with Samespot software (version 4.1, city, country) and the normalized spot volumes were obtained. Protein identification of 424 variable spots was performed at the proteome platform of Le Moulon (Gif-sur-Yvette) using nano-LC-MS/MS method following the procedure described in Xu et al. (2013b). The database search was run against the International Tomato Annotation Group (ITAG) Release 2.3 of predicted proteins (SL2.40) database (http://solgenomics.net/) with X!Tandem software (http://www.thegpm.org/TANDEM/, version 2010.12.01.1). Fasta sequence of the identified proteins was employed to re-annotate the proteins using the Blast2GO package [START_REF] Conesa | Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[END_REF]. Sequences were compared against the NCBI-nr (version April 9, 2012) database of non-redundant protein sequence using BLASTX with the default settings.

Statistical analysis and inheritance analysis

Metabolite contents and enzyme activities were expressed on a dry weight basis to be comparable. All the analyses were performed using R (R Development Core Team 2012, http://www.R-project.org/). Data were submitted to a two-way ANOVA (P<0.05) with genotype, stage and interaction effect and then to one-way ANOVA with genotype effect at each stage. Besides, to assess the mode of inheritance of the traits, one-way ANOVA was also performed with genotype effect for each cross (two parental lines and their hybrid) and stage.

Means and standard deviations were calculated for each trait (phenotypic traits, metabolite contents, enzyme activities, protein spot volumes) in each genotype and stage. Significantly different (P< 0.05) traits in each cross were selected at each stage to estimate additive (A) and dominance (D) components of genetic variation. A is equivalent to half of the difference between two parental lines. The S. lycopersicum line was systematically the first parent in a cross. D is the difference between the hybrid value and the parental mean. The inheritance pattern of each trait was then assessed by the dominance/additivity (D/A) ratio and classified as over-recessive (OR; D/A <-1.2), recessive (R; -1.2 ≤ D/A ≤ -0.8), additive (A; -0.8 < D/A < 0.8), dominant (D; 0.8 ≤ D/A ≤ 1.2), over-dominant (OD; D/A>1.2).

Means of metabolite contents, enzyme activities and protein spot volumes were centered and scaled to variance unit and used for the rest of the analysis. Principal component analyses (PCA) were performed for metabolites, enzymes and phenotypic traits, as well as for protein spot volumes for both development stages and at each stage, with the "pcaMethods" package [START_REF] Stacklies | pcaMethods -a bioconductor package providing PCA methods for incomplete data[END_REF]. Pearson correlations and p-values were calculated between significantly variable traits at each stage. Correlations were considered to be significant when |r|> 0.7 (p-value <0.01). Significant correlations were plotted using R "corrplot" package (Wei 2012, http://CRAN.R-project.org/package=corrplot). To analyze the relationships among protein spot volumes and other traits, networks were reconstructed and visualized using sparse partial least squares correlation regression (sPLS) analysis with the "mixOmics" package (Lé Cao et al., 2009). An arbitrary threshold of 0.7 was employed for network reconstruction. Nodes represent the different traits and edges represent the relations between variables belonging to different levels. 

RESULTS

To represent a large range of the genetic diversity eight tomato accessions were chosen according to previous studies [START_REF] Ranc | A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae)[END_REF]Xu et. al., 2013a). The eight accessions and their four hybrids were characterized at phenotypic, metabolic and proteomic levels. The final fruit weight of the eight parental lines and the four hybrids ranged from 5.3g to 134.4 g. Fruit weights of the four hybrids were intermediate between the values of their parental lines all along fruit development (Supplementary Figure S2). Fruit diameter (Fig. 1) was highly correlated to fruit weight, as fruits were round. Dry matter content also showed a wide range of variation (Fig. 1 and Supplementary Table S5).

Metabolome, enzyme and proteome profiles strongly differ among accessions

Metabolome profiling by 1 H-NMR and LC-QTOF-MS allowed the quantification of eighteen metabolites from the central carbon metabolism and eight secondary metabolites (Supplementary Table S3). Besides, 26 enzyme activities were assessed by robotized assays (Supplementary Table S4). These analyses provided a detailed characterization of sugars, organic acids and amino acids metabolism pathways, as well as glycoalkaloids and phenolic compounds (Fig. 2). Proteins were isolated from 2-D PAGE. A total of 1230 protein spots were detected. A subset of 424 spots whose abundance was significantly different between genotypes or stages, were sequenced by LC-MS/MS. Four hundred and twenty two spots were identified (Xu et al., 2013b). Supplementary Table S5 lists the mean and standard deviation of every trait for each genotype and stage.

The 12 accessions differed for most of the metabolites and phenotypic traits according to the ANOVAs (Table 1). The means of most of the traits (27/29) were significantly different across stages. The content of glucose, fructose, citrate, asparagine, aspartate and phenylalanine increased from CE to OR while the other amino acids decreased. The interactions between stage and genotype were significant for 93% of 29 metabolite and phenotypic traits and 50% of these traits showed different trend according to the genotype. We thus analyzed the data stage by stage (Table 1). A large range of variability was observed among the 12 genotypes at each stage as all the trait means were significantly different except for the crypto-chlorogenic acid. The fold-change difference between genotypes reached values as high as 5.6 for threonine content at CE or 7.9 for malate at OR. The activity of 26 enzymes from central carbon metabolism, including enzymes of the Calvin cycle, glycolysis, sucrose metabolism, TCA cycle and amino acid metabolism was quantified and expressed relative to dry weight to be comparable with the metabolome and proteome. Enzyme activities exhibited a lower range of variation than metabolites (Table 2). The greatest differences were found between stages, where all the enzyme activities difered except alanine aminotransferase, fumarase and glyceraldehyde-3-phosphate dehydrogenase (NADP) .

The activity of 15 enzymes was greater at CE. Two and thirteen enzyme activities were significantly different among accessions at CE and OR, respectively.

The volume of the 424 protein spots was compared among the 12 genotypes. The genes corresponding to most of these spots are identified (Xu et al., 2013b; Supplementary Table S6). They include 133 protein spots related to primary metabolism. Several multi-spot proteins (one gene corresponding to several spots) were detected, such as acid invertase (7 spots), phosphoglucomutase and enolase (5 spots). These multispots may be caused by posttranscriptional and post-traductional modifications or by allelic variations (Xu et al., 2013b).

A large range of variability was observed among genotypes and between stages for all the protein spot amounts (Supplementary Table S6). As for metabolites and enzymes, the main differences were observed between stages (84% significantly variable spots; Supplementary Table S6). with 46% in lower amount and 38% in higher amount at OR. When we analyzed the data stage by stage, 256/424 spot amounts were significantly different among genotypes at CE and 274/424 at OR. The variation among the 12 accessions at the different levels was illustrated by PCA analysis.

When we analyzed the phenotypic traits, metabolite and enzyme profiles at both stages, two main groups corresponding to each stage of development were detected (Supplementary Figure S3A). Similar results were obtained for the protein spot volumes (Supplementary Figure S3B). PCA were thus computed stage by stage (Fig. 3). In every case Cervil (the accession with smaller fruits) was separated from the other genotypes, and the large fruited accessions (Levovil, LA0147 and Ferum) were grouped together. Hybrids were usually located in between their parental lines.

Inheritance of traits is predominantly additive

The four F1 hybrids derived from crosses among the eight lines and corresponded to different distances among parental lines. We assessed the mode of inheritance of the traits that were significantly different for each cross separately (Supplementary Table S7; Fig. 4).

The phenotypic traits, fruit diameter and fruit weight, were additive in the four crosses at each stage. The dry matter content was additive or over-recessive or not significant according to the stage and cross (Fig. 1). Most of metabolic contents were significantly variable at both stages. A large number of additive traits was found in the cross between the most distant lines (Levovil x Cervil) (Fig. 4A). Traits could exhibit different inheritance modes at the two stages for the same cross or in different crosses, as illustrated for citrate content on Fig. 5.

Most of the enzyme activities were not significantly variable within one cross, so the inheritance mode of only a few enzyme activities was assessed. At CE, Ferum x LA1420 was the most variable cross with four significantly variable enzymes, while for the other crosses, only one or non enzyme were variable. At OR, the predominant inheritance mode was additivity for Levovil x Cervil and Stupicke Polni Rane x Criollo but not for the two other crosses.

The number of protein spots significantly variable varied among crosses at CE in relation to the genetic distance between the parental lines (Fig. 4B). As for the metabolites, proteins showed different inheritance patterns at the two stages in the same cross or in different crosses. On average, 40% of the variable traits showed a non additive mode of inheritance without bias against recessivity or dominance.

Dissection of relationships among traits

Relationships among traits were only assessed among the traits significantly different between genotypes at each stage (Supplementary Tables S8, S9, S10). The significant correlations (summarized in Supplementary Table S8) were more frequent than expected by chance, with an excess of positive correlations. Correlations among metabolites, phenotypic traits and enzymes activities are illustrated on Figure 6). At CE, sugars (glucose and fructose) were highly correlated together and negatively with most amino acids, tomatine and dry matter content. Amino acid contents were highly correlated together (Fig. 6A). Very few correlations were detected between metabolites and phenotypic traits at OR (Fig. 6B). For enzyme activities correlations were significant between the glycolysis and TCA cycle enzymes at OR (Fig. 6B). Very few correlations were significant between enzyme activities and metabolite contents.Protein spot volumes were more frequently correlated with metabolite contents at CE and with enzyme activities at OR, where a large number of positive correlations with spots annotated as primary metabolism and stress response was detected. Correlations are summarized 1n Supplementary table S8 and provided on Supplementary Tables S9 andS10.

Correlations between protein spots corresponding to enzymes and their enzyme activities were analyzed at OR . In total 28 spots corresponding to 8 enzymes were analyzed (Supplementary Table S11). Significant correlations, ranging from r=0.877 to 0.715, were detected between enolase activity and the four spots annotated as two enolase genes (Solyc09g009020 and Solyc10g085550), aldolase activity and one aldolase gene (Solyc09g009260) and acid invertase and two spots corresponding to the Solyc03g083910 1 acid invertase gene. For these enzymes, even when correlations were not significant (P<0.01) 2 they were often positive with P-value<0.05 (Supplementary Figure S4). The other enzymes 3 analyzed, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase (NAD), isocitrate 4 dehydrogenase, malic enzyme (NADP) and malate dehydrogenase were not significantly 5 correlated with their corresponding spot volumes.
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Table 3 lists the protein spots whose volume was strongly correlated with fruit weight or dry 7 matter content. The numbers of spots were equivalent at both stages, with seven of the 15 8 spots related to stress response (heat shock proteins, NifU like protein, chaperonin). A larger 9 proportion (13/32) of correlations was detected between dry matter content and spots related to primary metabolism (fructokinase, malate dehydrogenase, acid invertase, enolase). Most of the correlations with dry matter content were positive, on the contrary to those with fruit weight.

Reconstruction of networks integrating metabolic and protein profiles

Due to de large number of traits and correlations, we used sparse partial least square regression (sPLS) for integrating protein expression data and metabolites, enzymes and phenotypes. sPLS is a bidirectional multivariate regression method that allows separate modeling of covariance between two data sets. The main advantage of sparse methods over non-sparse methods is that it sets the contribution of noise variables to zero to improve the prediction or classification performance [START_REF] Filzmoser | Review of sparse methods in regression and classification with application to chemometrics[END_REF]. sPLS networks relating protein spot volumes with phenotypes, metabolites and enzymes were constructed at each stage. We grouped the three levels (phenotypes, metabolites and enzymes) considering they represent a global metabolic-related level to be related to the proteome level.

At CE, a network was constructed between, metabolites, phenotypic traits and enzyme activities (variable among genotypes) on one hand, and 77 variable protein spots related to primary and secondary metabolism and vitamin synthesis on the other hand. The network reconstructed connected 8 traits and 26 proteins by more than 50 edges (Supplementary Figure S5 and Supplementary Table S12), among which two fructokinase spots were connected to glucose, fructose and dry matter content.

A network connecting variable metabolites, phenotypic traits and enzymes activities with 87 protein spots ( related with primary and secondary metabolism and vitamin synthesis) was also constructed for OR stage. Two main networks were obtained, with more connections than for CE stage (Supplementary Figure S6 and Supplementary Table S13). Sucrose and dry 1 matter content played a pivotal role. They were linked to 11 and 17 proteins, including spots 2 corresponding to acid invertase , enolase , malate dehydrogenase and malic enzyme 3 As the variation of proteins expressed during CE may influence the metabolome and activome 4 at a later stage, we analyzed the connections between protein variations at CE and fruit 5 composition and enzyme activities at OR (Fig. 7, Supplementary Table S14). We detected a 6 relation between sucrose content at OR and the volumes of two spots corresponding to 7 fructokinase at CE. Besides those spots were also related with the fructose content at CE 8 (Supplementary Figure S5). An isocitrate dehydrogenase spot was related to isocitrate 9 activity at OR, and phosphoglycerate kinase from the Calvin cycle to shikimate dehydrogenase activity, an enzyme downstream the erythrose-4P produced in that cycle. The amounts of cysteine sysnthase and fructokinase 3 proteins had a pivotal role, each being connected to several traits.

Networks were also constructed between phenotypes, metabolites and enzyme activities and the proteins corresponding to other functions (data not shown). The most interesting relationship involved a Chaperonin (JX383) that played an important role at CE, as it was related to six enzymes activities, and to glucose and fructose content at OR.

DISCUSSION

The variation of tomato fruit composition has been widely studied, due to its role in sensory and nutritional value. However, until now the variation of metabolic compounds has been studied in tomato either along fruit development or according to environmental perturbations, mainly in one accession or in lines resulting from the introgression of genome fragments from a unique wild species [START_REF] Schauer | Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement[END_REF][START_REF] Steinhauser | Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii[END_REF]. Results are subsequently supposed to represent the variation of the species. In the present study, we aimed to analyze the actual variation of the species, by comparing eight accessions selected to represent a large part of the phenotypic and molecular diversity of S. lycopersicum [START_REF] Ranc | A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae)[END_REF]. We described the variation, the inheritance and the relationships among metabolic, enzymatic and proteomic traits assessed at two developmental stages.

A large range of genetic variation is detected at all levels

A large range of variation was observed for most of the phenotypic and metabolic traits at least at one stage. Usually, the ratio of maximum to minimum values among genotypes varied in the range of two to three, showing the wide variation present in the species. The secondary show heterosis in the F1 when distant cultivated accessions or cultivated and wild species are crossed [START_REF] Springer | Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize[END_REF][START_REF] Li | Dominance, Overdominance and Epistasis Condition the Heterosis in Two Heterotic Rice Hybrids[END_REF]. The molecular origin of heterosis has been studied for years and is usually related to a combination of dominance or over-dominance effects and to epistatic interactions [START_REF] Stuber | Heterosis in plant breeding[END_REF].

In tomato, fewer traits than in maize, a highly heterotic crop, show a systematic heterosis trend (Lipman and Zamir, 2007). [START_REF] Steinhauser | Identification of Enzyme Activity Quantitative Trait Loci in Version postprint Comment citer ce document[END_REF] studied the enzyme activities in introgression lines derived from the wild species S. pennellii and found approximately equivalent ratio of QTL showing additive, recessive and dominant modes of inheritance, with only 5% showing overdominance. In the present study, the number of traits significantly variable within each cross (one hybrid and its two parents) differed from one cross to the other and was related to the genetic distance at the proteomic level. Regarding to phenotypic traits, in accordance with the absence of heterosis, fruit weight and diameter were additive in the four crosses. Around 60% of the other traits showed an additive inheritance, with a number of traits exhibiting an over-dominant or over-recessive mode of inheritance, but no specific trend towards one of them. The higher rate of additivity in this study compared to previous studies involving S. pennellii introgression lines [START_REF] Schauer | Mode of inheritance of primary metabolic traits in tomato[END_REF][START_REF] Steinhauser | Identification of Enzyme Activity Quantitative Trait Loci in Version postprint Comment citer ce document[END_REF] may result from the lower distance between the parental lines, which are all from the same species.

The inheritance mode in one cross was not systematically the same in another cross and appeared relatively independent from one stage to the other, as a consequence of the complex genetic control of the traits studied. Enzyme activities for example are suggested to be controlled by a network of trans-acting genes [START_REF] Steinhauser | Identification of Enzyme Activity Quantitative Trait Loci in Version postprint Comment citer ce document[END_REF], thus dealing with different genetic backgrounds that carry different combinations of haplotypes, may lead to different inheritance modes.

Systems approach revealed complex connectivity among the different levels analyzed

We dissected the genetic variation at several levels, from phenotype to metabolite and proteome profiles, in eight unrelated tomato accessions and four F1 hybrids at two developmental stages. In such experimental design, a significant correlation may reveal the effect of a polymorphic gene acting on two related traits, but also fortuitous association, as a correlation between two traits may not be due to a causal relationship but to linkage disequilibrium between genes controlling the variation of both traits. Nevertheless, Osorio et al. ( 2011) in a similar approach described co-varying genes or proteins as "guilty by association", as closer the functions implicated more meaningful the relationships. Besides,

The network constructed at OR revealed the key role of invertase in sucrose breakdown, as already documented [START_REF] Faurobert | Major proteome variations associated with cherry tomato pericarp development and ripening[END_REF]. Two spots corresponding to this function were strongly related to the content in sucrose and dry matter content. Besides, they were also correlated with several enzyme activities and with fruit weight. [START_REF] Schauer | Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement[END_REF] have also detected an association between phenotypic traits and metabolic compounds in tomato.

Previous studies on Arabidopsis suggested that the relations between transcript modifications and enzyme activities showed greater agreement at long term [START_REF] Osuna | Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings[END_REF]. We thus analyzed the relationships between protein amounts at CE and the other traits at OR. We then detected relationships between isocitrate dehydrogenase enzyme activity and the protein spots corresponding to this protein. Besides, the interconnections suggested a possible role of regulator for cysteine synthase whose amount at CE is correlated with several enzymes, glucose and fruit diameter at OR. This enzyme has been suggested to play a key role in highly metabolically active cells [START_REF] Wang | Differential display analysis of gene expression in the cytoplasm of giant cells induced in tomato roots by Meloidogyne javanica[END_REF]. Those facts should be taken into account when trying to modify gene expression or protein contents in order to alter metabolite contents.

According to our finding this approach will just work for a small subset of metabolites, so researchers should focus on proteins like fructokinase, or cysteine synthase that affect several metabolites instead of just the enzymes that regulate the direct synthesis of a target compound.

Our analysis provided a detailed characterization of fruit metabolism, at several levels in a set of accessions representing a wide range of genetic variation and led to interesting conclusions.

First, the contents in primary and secondary metabolites are quite variable depending on the genetic background, while enzyme activities seem to be less variable, particularly at CE. Besides, significant genotype by stage interactions showed that the trends observed in one genotype at a physiological level may change in another genotype. In agreement with this, the inheritance modes varied between crosses and stages, showing the multigenic nature of the traits studied, although additivity was predominant. The network reconstruction revealed associations between different levels of expression and provided information on several key proteins that might be targets for improving metabolite contents. This study is the starting point of a broad experiment including the development of a multi-allelic population derived from the eight parental lines. QTLs for fruit composition will be mapped in the population and will be related to the variations observed at various levels in the parental lines. Annotation of spots is detailed in Supplemental Table S14.
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 LEGENDS12 FIGURE LEGENDS Figure 1. Fruit size (FD) and dry matter content (DMC) of the 8 tomato accessions studied and their four hybrids (measured at Orange-Red stage) Figure 2. Assignment of the metabolites and enzymes studied to pathways. A total of 26 metabolites are indicated in continuous line squares, 26 enzymes are highlighted in dot squares.

Figure 3 .

 3 Figure 3. First plans of the principal component analysis showing the variation of 12 genotypes based on (A) metabolite contents, enzyme activities and phenotypic traits at cell expansion stage; (B) proteins at cell expansion; (C) metabolite contents, enzyme activities and phenotypic traits at OR and (D) proteins at orange-red stage. Values along the axes indicate the percentage of total variation accounted for each component. Genotypes are indicated with different symbols, S. lycopersicum squares, S. lycopersicum var cerasiforme circles and F1 triangles. Levovil x Cervil (1), Stupicke Polni Rane x Criollo (2), LA0147 x Plovdiv 24A (3), Ferum x LA1420 (4).

Figure 4 .

 4 Figure 4. Inheritance mode of the two groups of traits in the four crosses: (A) metabolite contents, enzyme activities and phenotypic traits; (B) protein spot volumes. From top to bottom overrecessive, recessive, additive, dominant and over-dominant. Left panels: cell expansion stage, right panels: orange-red stage.

Figure 5 .

 5 Figure 5. Inheritance of citrate content in tomato fruit at (A) cell expansion stage, (B) orange-red stage. Genotypes are indicated with different symbols, S. lycopersicum squares, S. lycopersicum var cerasiforme circle and F1 triangle. From left to right Levovil x Cervil, Stupicke Polni Rane x Criollo, LA0147 x Plovdiv 24A, Ferum x LA1420.

Figure 6 .

 6 Figure 6. Correlations among significantly variable phenotypic and metabolic traits, and enzyme activities at (A) cell expansion stage and (B) orange-red stage. Only correlations where |r|>0.7 (p-value<0.01) are shown. Red or dark gray indicates positive correlations, green or light gray negative correlations.

Figure 7 .

 7 Figure 7. Network reconstruction based on sPLS between protein spot volumes at cell expansion stage (circular nodes) and metabolite contents, phenotypes and enzyme activities at orange-red stage (square nodes). Positive and negative relations are shown in continuous and dot lines.

  

  

  

  

  

  

Table 1 .

 1 Analysis of variation for phenotypic and metabolite contents in 8 tomato accessions and 4 F1 (see Supplementary TableS2for metabolite abbreviations).

			Global analysis		CE/OR			CE stage				OR stage		
	Traits	Fs	Fg	Fgxs	min	max	Fg	min	max max/min	Fg	min	max max/min
	FW	***	***	***	0.10	0.41	***	1.26	30.84	24.41	***	5.33	134.36	25.22
	FD	***	***	***	0.46	0.74	***	14.19	42.50	3.00	***	22.73	69.95	3.08
	DMC	***	***	ns	1.12	1.42	***	6.16	10.59	1.72	***	4.95	8.81	1.78
	Glc	***	***	***	0.42	0.90	***	68996.30	193536.82	2.81	***	158574.12 233208.35	1.47
	Suc	***	***	***	0.31	1.08	***	6417.25	11856.59	1.85	***	7596.82 28049.81	3.69
	Fru	***	***	***	0.38	0.85	***	65853.14	198775.33	3.02	***	173280.21 238532.61	1.38
	Ala	***	***	***	0.79	5.51	***	288.06	1356.30	4.71	***	171.01	492.55	2.88
	Asn	***	***	***	0.31	0.95	***	752.84	2461.92	3.27	***	1200.65	4593.94	3.83
	Asp	***	***	***	0.20	0.41	***	579.58	1278.39	2.21	***	1564.39	3598.28	2.30
	Abu	***	***	***	0.80	2.25	***	4099.47	8485.63	2.07	***	2130.82	5854.16	2.75
	Gln	***	***	***	0.48	1.45	***	5976.22	26264.35	4.39	***	6605.55 24155.80	3.66
	Ile	**	***	***	0.57	3.30	***	168.70	865.48	5.13	***	232.59	687.61	2.96
	Leu	***	***	***	0.40	1.26	***	306.62	927.64	3.03	***	401.47	1042.48	2.60
	Phe	***	***	***	0.35	0.94	***	1209.44	4905.71	4.06	***	1988.74	7429.73	3.74
	Tyr	***	***	***	0.50	2.20	***	153.13	760.58	4.97	***	185.86	656.84	3.53
	Val	***	***	***	1.15 10.95	***	206.82	1004.13	4.86	***	91.66	396.69	4.33
	Thr	***	***	***	0.38	2.12	***	125.21	745.30	5.95	***	221.38	768.59	3.47
	Asc	***	***	***	0.48	1.13	***	1304.64	2236.94	1.71	***	1509.86	3021.01	2.00
	Cit	***	***	***	0.37	0.57	***	26295.26	62463.29	2.38	***	49525.87 149942.47	3.03
	Mlt	ns	***	***	0.59	3.78	***	13562.91	25447.13	1.88	***	3894.13 30910.20	7.94
	Fum	***	***	***	0.88	NA	***	5.54	18.71	3.38	***	0.00	12.75	NA
	Tom*	***	***	***	22.16 154.19	***	983224.09 4556008.75	4.63	***	16992.93 98910.75	5.82
	DHTom*	***	***	***	9.15 63.02	***	196588.35 2644852.27	13.45	***	7239.96 80840.49	11.17

Max: maximum average values for each variable among the 12 genotypes CE/ OR ratio value to cell expansion stages and orange-red (min and max) for each genotype *: 0.01 <P <0.05. **: 0.001 <P <0.01. ***: P<0.001. ns: P>0.05 NA: non available

Table 2 .

 2 Analysis of variation for enzyme activities in 8 tomato accessions and 4 F1 (see Supplementary TableS3 forenzyme abbreviations) Fg: significance level of the ANOVA for genotype factor Fs: significance level of the ANOVA for the stage factor Fgxs: significance level of the ANOVA for the interaction between genotype and stage Min: minimum average values for each variable among the 12 genotypes Max: maximum average values for each variable among the 12 genotypes CE/ OR ratio value to cell expansion stages and orange-red (min and max) for each genotype *: 0.01 <P <0.05. **: 0.001 <P <0.01. ***: P<0.001. ns: P> 0.05

	1												
			Global										
			analysis		CE/OR		Cell expansion stage			Orange-red stage
	Enzymes	Fs	Fg	Fgxs	min	max	Fg	min	max max/min	Fg	min	max max/min
	PEPC	***	ns	ns	1.63 5.01	ns	4743.07	10166.94	2.14	ns	1393.72	3988.74	2.86
	ALS	***	*	ns	1.11 6.96	ns	23342.95	39076.09	1.67	*	4955.98	27286.39	5.51
	G6PDH	***	ns	ns	1.41 3.22	ns	1948.75	2991.71	1.54	**	736.48	1494.57	2.03
	PGM	***	ns	ns	1.56 3.58	ns	18767.93	31388.58	1.67	ns	6272.80	14070.21	2.24
	PK	***	ns	ns	0.98 3.04	ns	4214.45	7365.46	1.75	*	1736.57	4838.01	2.79
	Ppi-PFK	***	ns	ns	1.42 5.97	ns	7380.06	13238.75	1.79	***	1778.74	6372.06	3.58
	ACO	***	ns	ns	0.85 11.98	ns	1115.56	3838.66	3.44	**	125.70	1940.54	15.44
	ATP-PFK	***	ns	ns	0.71 2.05	ns	922.01	1640.44	1.78	ns	709.66	1295.85	1.83
	FRK	***	*	**	1.29 8.99	*	1027.06	5020.16	4.89	ns	309.56	1373.80	4.44
	InvN	***	***	**	0.12 1.60	ns	881.42	4517.10	5.12	***	1798.65	13163.36	7.32
	InvA	***	ns	ns	0.12 1.03	ns	1769.30	5805.68	3.28	*	3542.76	22718.43	6.41
	NAD-MDH	***	ns	ns	1.57 4.69	ns	212499.39	372186.20	1.75	**	65345.21	186895.32	2.86
	AlaAT	ns	ns	ns	0.30 2.83	ns	8355.30	27841.06	3.33	ns	3908.25	60730.09	15.54
	FH	ns	ns	ns	0.59 10.56	ns	2227.13	7340.03	3.30	ns	266.42	5426.77	20.37
	AspAT	***	ns	ns	0.63 2.75	ns	31619.55	88013.71	2.78	ns	23952.50	55452.74	2.32
	NAD-ME	**	ns	ns	0.89 3.06	ns	4699.19	10772.77	2.29	ns	3248.43	9464.11	2.91
	NADP-ME	***	***	**	0.59 4.00	**	1585.95	5869.58	3.70	**	960.60	3947.79	4.11
	GAPDH (NAD)	***	ns	ns	1.33 5.27	ns	22716.25	37476.27	1.65	ns	7059.38	24964.31	3.54
	GAPDH (NADP) ns	ns	ns	0.43 7.19	ns	4232.25	11154.22	2.64	*	966.42	22461.89	23.24
	GK	***	ns	ns	2.57 7.59	ns	979.49	1914.96	1.96	ns	166.27	443.60	2.67
	IcDH	***	**	***	0.39 1.54	ns	1210.69	3118.82	2.58	***	1482.13	4029.86	2.72
	ENO	***	ns	*	1.79 7.08	ns	3420.96	6643.23	1.94	**	773.15	2156.06	2.79
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Comment citer ce document : Pascual, L., XU, J., Biais, B., Maucourt, M., Ballias, P., Bernillon, S., Deborde, C., Jacob, D., Desgroux, A., Faurobert, M., Bouchet, J.-P., Gibon metabolites showed a higher range of variation, some of them being present in one line and almost absent in another. This may be due to the inclusion in the study of S. lycopersicum var cerasiforme accessions which are not fully domesticated, as domestication caused great alterations on those compounds (reviewed by [START_REF] Meyer | Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops[END_REF]. Among enzyme activities, we detected significant differences between stages, and the genetic variation was less significant at CE. [START_REF] Steinhauser | Identification of Enzyme Activity Quantitative Trait Loci in Version postprint Comment citer ce document[END_REF] observed the same tendency, with enzyme activities having a lower heritability than metabolites, suggesting that metabolites have a tight regulation, while enzyme activities can be compensated by coordinated changes in other enzymes.

Until now proteome variation in tomato fruit and protein amount inheritance were poorly documented (reviewed by [START_REF] Faurobert | Proteomics and Metabolomics[END_REF]. [START_REF] Faurobert | Major proteome variations associated with cherry tomato pericarp development and ripening[END_REF] described the proteome variation of tomato pericarp in one line along fruit development. They identified could identify the function of 90 spots. We studied 424 protein spots that were variable among stages or genotypes (Xu et al., 2013b). Thanks to the release of the tomato genome sequence, we identified the function of almost every spot and detected 307 unique proteins corresponding to 424 spots. Most of the spots variable at both stages showed the same tendency (increase or decrease along fruit development) in all the genotypes. Nevertheless 57% of the spots revealed significant Genotype by Stage interactions, indicating that the trend observed in one genotype at a given physiological level (stage) may change in another genotype.

The observed variation may be related to the genetic distance among accessions. In the PCA analysis, all the large-fruited lines closely related at the molecular level were grouped together, while the small cherry tomatoes, genetically more diverse, were more spread.

Besides, Cervil, the most distant line from all others at the molecular level, presented a very specific profile for every trait, leading to most of the extreme values (lowest fruit weight, highest dry matter, sugar and acid contents). It was also specific in terms of secondary metabolites, with high content in chlorogenic acid, dehydrotomatin and rutin. The large variation detected and the differences between genotypes along fruit development showed the important effect of genetic diversity in fruit composition and enhances the value of the presented dataset.

Diversity in the modes of inheritance among crosses and traits

Hybrids are widely used in modern agriculture, either for heterosis (the advantage of a hybrid compared to both parents) or for the combination of dominant traits. Agronomical traits often the two stages studied in the present study correspond to very distinct physiological processes [START_REF] Gillaspy | Fruits -A Developmental Perspective[END_REF][START_REF] Giovannoni | Genetic regulation of fruit development and ripening[END_REF], increasing the complexity but also the impact of the study.

At every expression level, we detected more significant correlations than expected by chance.

The bias towards positive correlations among enzyme activities and metabolites suggested a coordinated regulation of these traits. Some of the detected relationships were already established in previous studies, as for instance the coordinated variation between several amino acids and sugars (fructose and glucose) at CE [START_REF] Prudent | Genotype-dependent response to carbon availability in growing tomato fruit[END_REF].

Different studies have tried to uncover the relationships between different levels of traits (phenotypes, metabolites, enzymes and transcripts) in tomato [START_REF] Schauer | Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement[END_REF][START_REF] Carrari | Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior[END_REF]. As the enzyme activities assessed correspond to Vmax, and thus mainly reflect the corresponding protein amount, one might hypothesize that proteins and enzyme activities should be correlated. We only found correlations between three out of eight enzymes and the protein spot amount corresponding to the same function at OR, all of them showing a positive correlation, as expected from a causal relationship. This lack of relationship between enzyme activities and their protein amounts is consistent with the results obtained when comparing enzyme activities and their corresponding gene expression [START_REF] Gibon | Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes[END_REF], Morcuende et al., 2007;[START_REF] Steinhauser | Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii[END_REF]. This may be due to the fact that enzyme activities result from a combination of several proteins (subunits) or that most of the primary metabolism enzymes belong to multigene families. Besides, protein spots may also be the product of complex post-translational modifications, where only one of the forms will be the functional one [START_REF] Faurobert | Major proteome variations associated with cherry tomato pericarp development and ripening[END_REF].

One problem when dealing with omic data is that the number of traits is much larger than the number of samples. Sparse methods were developed for dealing with high-dimensional data.

Such method sets the contribution of noise variables to zero and thus improve the prediction of correlations or classification performance [START_REF] Filzmoser | Review of sparse methods in regression and classification with application to chemometrics[END_REF]. The networks reconstructed with SPLs methods showed complex patterns of connectivity, relating several nodes together and different pathways or metabolisms. In each network, a few hubs could be identified relating many different compounds or proteins.

At CE, several correlations with dry matter content and metabolite contents involved two of the protein spots coding for fructokinase, an enzyme participating in the sugar phosphorylation. Fructokinase plays a role in sugar import and in starch biosynthesis [START_REF] Dai | LeFRK2, the gene encoding the major fructokinase in tomato fruits, is not required for starch biosynthesis in developing fruits[END_REF]. Several isoforms were detected, being correlated with the variation of sugars. S1. Accessions origins. S2. Polymorphism rate between the eight parental lines and Heinz1706 (the tomato reference genome) detected with 139 SNP (from Xu et al., 2013a) Supplementary Table S3. List of the 19 primary metabolites and 8 secondary metabolites* analyzed. S4. List of the enzyme activities analyzed. S5. Means and standard deviations for all the traits studied Supplementary Table S6. Annotation and analysis of variation of protein spots Supplementary Table S7. Analysis of variation cross by cross at each stage Supplementary Table S8. Overview of the number of significant correlations within and among different levels of analysis Supplementary Table S9. Correlations at cell expansion stage. S10. Correlations at orange-red stage. S11. Correlations between enzyme activities and the spots coding for those enzymes at orange-red stage. S12. Annotation of spots included in the cell expansion stage network (Supplementary Figure S5) Supplementary Table S13. Annotation of spots included in the orange-red stage network (Supplementary Figure S6) Supplementary Table S14. Annotation of spots included in the cell expansion and orange-red network (Figure 7) 
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