
HAL Id: hal-01208580
https://hal.science/hal-01208580

Submitted on 2 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct Generation of Random Graphs Exactly Realising
a Prescribed Degree Sequence

Darko Obradovic, Maximilien Danisch

To cite this version:
Darko Obradovic, Maximilien Danisch. Direct Generation of Random Graphs Exactly Realising a
Prescribed Degree Sequence. The 6th International Conference on Computational Aspects of Social
Networks, Jul 2014, Porto, Portugal. �hal-01208580�

https://hal.science/hal-01208580
https://hal.archives-ouvertes.fr

Direct Generation of Random Graphs
Exactly Realising a Prescribed Degree Sequence

Darko Obradović
German Research Center for AI (DFKI)

Kaiserslautern, Germany
Email: darko.obradovic@dfki.de

Maximilien Danisch
Sorbonne Universités, UPMC Univ. Paris 6

Paris, France
CNRS, UMR 7606, LIP6, F-75005 Paris, France.

Abstract—This paper intends to extend the possibilites avail-
able to researchers for the evaluation of directed networks with
the use of randomly generated graphs. The direct generation
of a simple network with a prescribed degree sequence still
seems to be an open issue, since the prominent configuration
model usually does not realise the degree distribution exactly. We
propose such an algorithm using a heuristic for node prioritisa-
tion. We demonstrate that the algorithm samples approximately
uniformly. In comparison to the switching Markov Chain Monte
Carlo algorithms, the direct generation of edges allows an easy
modification of the linking behaviour in the random graph,
introducing for example degree correlations, mixing patterns or
community structure. That way, more specific random graphs can
be generated (non-uniformly) in order to test hypotheses on the
question, whether specific network features are due to a specific
linking behaviour only. Or it can be used to generate series
of synthetic benchmark networks with a specific community
structure, including hierarchies and overlaps.

I. INTRODUCTION

Whenever case-studies of social networks are performed and
methods and metrics from Social Network Analysis (SNA) [1]
are used, the evaluation of the findings is a decisive aspect
of the scientific work. One option for such an evaluation is
the comparison of the original graph’s properties to those of
randomly generated graphs with the same degree sequence.
Conforming properties can be considered to be trivial, and
non-conforming ones indicate a distinctive particular feature
or an anomaly of the original graph.

This method had a prominent showcase in a paper of Watts
and Strogatz from 1998 [2], in which they showed that the
famous “small-world phenomenon” is a common phenomenon
in any graph with a small amount of randomness, and thus
a trivial property of real-world networks, not a distinctive
one. This had a lasting effect on social network research,
promoting network evaluation by comparing them with ran-
dom networks. One important finding was the consideration
of degree distribution for these comparisons, as most large
real-world networks show a highly heterogeneous power-law
distribution [3], opposed to the expected Poisson distribution
in the Erdos-Renyi random graph model [4]. Thus, for a sound
analysis of properties it is necessary to sample a random graph
with the same degree distribution.

In this paper we will take a closer look at existing algorithms
for random graph generation and propose a new algorithm,
capable of close-to-uniform sampling of random graphs by

exactly realising the prescribed degree sequence in a direct
way. Thanks to the direct generation, it can be easily tuned to
sample networks with specific linking behaviours, which opens
new possibilities for a more advanced evaluation of directed
social networks and the generation of synthetic benchmark
networks.

After a short summarisation of our graph notations in
Section II we present related work in the field of random
graphs in Section III. Throughout Section IV we present our
algorithm and discuss it. Section V gives a brief outlook on our
ideas for enhancing network evaluations with our algorithm,
before the paper is concluded in Section VI.

II. NOTATIONS

First of all, we summarise the terms and notations we will
adhere to in this paper. A graph G is defined as G = (V,E)
with V being the set of nodes, and E = (V × V) being the
set of edges, directed ones or undirected ones. n = |V | is the
number of nodes in the graph, and m = |E| is the number of
edges.

Given a directed edge e = (s, t), we call the node s the
source of the edge and the node t the target of the edge.
The function succ(v) returns all successors of the node v, the
function pre(v) returns all predecessors of v.

With a prescribed degree sequence for all nodes in an
undirected graph, we initially give each node the correspond-
ing number of stubs, that have to be connected by attaching
edges to the node until the prescribed degree is realised. In
the process of random graph generation, stubs are replaced
by edges. With a prescribed degree sequence for a directed
graph we start with out-stubs and in-stubs for each node. The
functions ost(v) and ist(v) return the number of remaining
out- and in-stubs for the node v.

III. RELATED WORK

In this section we present related work from the fields
of random graph models and random graph generation algo-
rithms, in order to get a better understanding for the benefits
of our suggested approach.

A. Random Graph Models

Initiated by Erdos’ random graph model [4], the disciplines
of mathematics and physics were the first ones to start

the study of random graphs and probabilistic random graph
models. These studies usually focus on solving the graph
with stochastic methods, and investigate global or local graph
properties when n is going towards infinity. See [5] for an
extensive summary of work in this direction.

The biggest problem with Erdos’ random graph in the
modelling of social networks is its Poisson degree distribution.
Studies have shown that nearly all real-world networks have a
highly heterogeneous degree distribution that follows at least
asymptotically a power law in most cases. These types of
networks are termed “scale-free” [6].

These observations and their practical implications lead to
new random graph models, which can be parameterised in
order to make a given degree distribution fit this model well
[7]. And even models with prescribed arbitrary degree distri-
butions and additional properties exist [8]. These models are
very appealing, because they are exactly solvable and hence
can give researchers an idea of global and nodal properties of
such random graphs in their generalised form.

Following the seminal paper of Watts and Strogatz [2], prac-
titioners in SNA are usually interested into the comparison of
real-world network properties with random graph properties,
in order to find uncommon differences. As there is hardly any
software support, parameterising these models for a given real-
world network, or even calculating metrics of interest which
are beyond those already solved, are highly non-trivial tasks.

This is most probably the reason why most practical net-
work studies still use explorative and descriptive methods for
their evaluation, which might be very helpful in the beginning,
but is not strictly conclusive in the end. Using instances of
randomly generated graphs and comparing the metrics of real-
world and random graphs with methods of descriptive statistics
is state-of-the-art in practice and can be considered sufficiently
conclusive, given a large enough number of samples.

By no means we want to discourage the use of network
models, But recognising that their application is extremely dif-
ficult, and that there is still a multitude of properties unsolved
for these models, we concentrate on the easier evaluations with
randomly generated graphs.

B. Random Graph Generation

First of all we have to distinguish two types of random
graph generation. The first one, the generation of instances
of models, serves more general purposes, For example the
empirical evaluation of model properties or model parameter
impacts. For most models, these networks can be generated
very efficiently [9] thanks to the exact mathematical properties
of their degree distributions. The second type of generation
requires a given arbitrary degree distribution of a real-world
network to be exactly realised. As mentioned before, this
is useful for the evaluation of concrete real-world networks,
which is our focus in this paper. This requires a different
approach to network generation, which we will look at in the
following sections.

Milo et al. give a very good overview of this field in [10].
We will follow their methods and terms for the discussion of

a b

dc

Fig. 1. Example network with stubs for edge generation

our algorithm.
1) The Configuration Model: The simplest approach to

this is the configuration model, which is well summarised by
Newman in [11] (see Section IV.B). It is the set of all graphs
with a given degree sequence. The generation algorithm is
fairly easy, by simply choosing pairs of stubs uniformly at
random and connecting them, until all stubs were replaced
by edge endpoints. This algorithm is the default generating
algorithm in most network libraries that offer generation by
degree sequence, e.g. NetworkX1 for Python, while other
packages do not even include this one, e.g. JUNG2 for Java.

However, it has one serious drawback for practical use
cases. It’s not restricted to simple graphs, it includes graphs
with loops and parallel edges. In real-world networks, these
are often forbidden properties, and hence an evaluation with
this model is not fully accurate anymore. Figure 1 shows an
undirected graph with a given degree sequence, for which we
want to create edges by random. With the configuration model,
any two stubs are chosen by random, which allows eight differ-
ent connections in the first step. If you are however restricted
to simple graphs, there are only five legal connections left,
because (b, b) and (d, d) would directly violate the simplicity
criteria, while (a, c) would inevitably lead to a violation in the
next steps.

This discrepancy decreases with higher n, but when using
the configuration model for evaluations, you nevertheless will
have to discard loops and parallel edges afterwards at the
price of a more or less different degree sequence than initially
prescribed. A usable algorithm based on such a modification
is evaluated by Milo et. al. [10] under the name matching
algorithm. Creations of parallel edges do not stop the gen-
eration, but are just rejected. This increases the chances to
get closer to the prescribed degree sequence, but will not
realise it exactly in most larger networks. This algorithm has
a noticeable bias in the uniformness of its samples. Viger and
Latapy [12] have empirically demonstrated that this introduces
a bias into network properties. On the other hand, Milo et
al. argue that the consequences appear to be relatively small
in their experiments. Still they suggest to use Markov Chain

1http://networkx.lanl.gov/
2http://jung.sourceforge.net/

Monte Carlo Algorithms instead.
2) Markov Chain Monte Carlo Algorithms: As claimed by

Viger and Latapy in [12]:
Although it has been widely investigated, it is still
an open problem to directly generate such a random
graph, or even to enumerate them in polynomial time
[...]

This enumeration has been accomplished by Snijders [13],
but because of the resulting exponential runtime complexities,
most researchers turned towards Monte Carlo methods for
random graph generation.

According to Milo et al. [10], the fastest of these algorithms
are Markov Chain Monte Carlo (MCMC) algorithms. They
have the additional benefit to also enable the creation of
connected simple graphs if desired, at the price of a higher
runtime complexity. These algorithms do not directly create
random graphs, but proceed in the following three steps.

1) Generate a simple graph realising the prescribed degree
sequence.

2) Connect it with edge swaps, if connectivity is desired.
3) Perform a series of edge swaps, until the graph appears

to be a random one. This is called shuffling the graph.
Step 1 can be done with with a Havel-Hakimi algorithm

[14], which exactly realises a degree sequence in a determin-
istic way. When connectivity is not enforced, Viger and Latapy
[12] validate empirically that O(m) edge swaps are sufficient
for nearly perfect uniform sampling, but a proof was still an
open issue. Milo et al. [10] estimate the constant factor of
this bound to be around 100. Furthermore they describe that
a naive implementation with guaranteed connectivity has a
runtime complexity within O(m2). This naive algorithm is
called switching algorithm. Viger and Latapy [12] propose
a speed-up to a runtime complexity of O(m · log(m)) for
undirected graphs, based on a corrolary that also has the issue
of a missing proof, but is backed up with a thorough empirical
validation. The suitability of the speed-up for directed graphs
is not discussed.

While our proposed algorithm will not be in a better
complexity class than the optimised MCMC algorithm, and
will also not generate connected networks only, we still
see two advantages of our proposed algorithm over MCMC
algorithms. First, our algorithm is much simpler to implement,
and might have a better chance to replace matching algorithms
in software packages. Second, it is much easier for researchers
to introduce a specific linking behaviour with a directly
generating algorithm than with edge swaps, where the legal
pairs of edges to be swapped are additionally constrained in
order to prevent non-simple graphs. For these reasons, we will
pursue a direct generation algorithm for our random graph
generations.

3) Sequential Sampling: Another algorithm with a sequen-
tial sampling is proposed by Blitzstein and Diaconis [15]. Like
our proposed algorithm, it generates a network sequentially
by enforcing an order for one side of newly created edges,
and a random selection of the other side. In consequence, it

a b

dc

Fig. 2. Example network in the process of being generated

also does not sample strictly uniformly at random. We see
two major points why our proposed algorithm is a viable
alternative. First, their algorithm is currently only described
and proved for undirected networks, though an adaptation for
directed networks might be possible in the future. Second, their
algorithm relies on checking at each step if setting a new edge
will lead to a realisable degree sequence, slowing down the
algorithm to a running time of O(m ·n2), which is inferior to
the other methods.

IV. PRIORITISATION OF THE MOST CONSTRAINED NODES

A. Principle Idea

It is our goal to have a graph generation algorithm that
creates edges in such an order, that the graph will definitely
become a simple graph, and that can be easily tuned to
incorporate specific linking behaviours between nodes. This
last requirement can be easily accomplished by having each
stub select a peer stub at random, while it is allowed to prefer
certain stubs over others.

Concerning the guarantee to end up with a simple graph, we
will impose a certain order on the nodes that select their peers,
which will avoid to run into unresolvable situations during the
generation process. Figure 2 shows a network in the process
of being generated, with four stubs left to be connected.
Obviously, all four nodes are structurally equivalent, thus a
more sophisticated measure for prioritisation than the number
of stubs is required.

B. Nodal Degrees of Freedom

The key for solving the prioritisation problem is the number
of remaining peer nodes for connecting the stubs of a given
node. We therefore define for each node v two sets of
candidate nodes, target candidates tc(v) for v’s out-stubs and
source candidates sc(v) for v’s in-stubs, if v has corresponding
stubs left that need to be connected.

tc(v) = {w ∈ V |w 6= v ∧ w /∈ succ(v) ∧ ist(w) > 0} (1)

sc(v) = {w ∈ V |w 6= v ∧ w /∈ pre(v) ∧ ost(w) > 0} (2)

a b c d

idf ∞ ∞ 0 1
odf 1 0 ∞ ∞
df 1 0 0 1

TABLE I
NODAL DEGREES OF FREEDOM FOR THE EXAMPLE NETWORK FROM

FIGURE 2

With these candidate lists we can now compute for each
node v its degree of freedom with respect to potential peer
nodes. This is done separately for outbound edges with odf(v)
and for inbound edges with idf(v) as follows.

odf(v) =

{
|tc(v)| − sst(v) , ost(v) > 0
∞ , else

(3)

idf(v) =

{
|sc(v)| − tst(v) , ist(v) > 0
∞ , else

(4)

With these two values, we can decide the node order by
prioritising the most constrained nodes (MCN), i.e. those with
the lowest nodal degree of freedom in any of the two cases.
This is expressed by the function value df(v).

df(v) = min(odf(v), idf(v)) (5)

Table I lists the nodal degrees of freedom for the example
network from Figure 2 as defined by our formulas. With
these values it is apparent that either node b or node c
have to be prioritised in selecting a target peer or a source
peer respectively, which will lead to the new edge (b, d) or
(a, c) to be created, and avoids edges that would not allow
the creation of a simple graph. This principle leads to the
algorithm described in the next Subsection.

C. The Algorithm

In this subsection we describe an initial naive implementa-
tion of our algorithm. We use square brackets to distinguish
the two different cases that can occur in the loop. So in each
iteration, either the left part or the right part are applicable
throughout the loop.

1) calculate initial idf and odf values for all nodes
2) repeat m times:

a) randomly use a node with the lowest occuring df
value as mcn

b) distinguish [odf(mcn) < idf(mcn) / else]
c) create candidates list for mcn, using all nodes

with [in/out]_stubs > 0 except mcn and [
succ(mcn) / pre(mcn)]

d) select peer at random from candidates
e) create the edge mcn [-> / <-] peer
f) correct idf of all nodes if [mcn / peer] used

its last source stub
g) correct odf of all nodes if [peer / mcn] used

its last target stub

We have implemented a slightly optimised version of the
described algorithm in our open source network analysis pack-
age SNA::Network, which can be found at Perl’s central
package platform CPAN3.

D. Space and Time Complexity

The complexity for storage space is linear, i. e. O(n+m),
as we are operating on a single graph instance, without multi-
dimensional data structures.

For runtime complexity, step 1 can be performed in O(n),
by first counting all possible source and target nodes, and
then iterating over all nodes and setting the idf and odf
values. Steps (f) and (g) are executed at most n times each,
independently from the loop in step 2, as each node can only
use its last out- or in-stub once. The resulting correction of
idf and odf values requires the same cost as in step 1 in each
such case. Thus the cost for these two steps is in O(n2). The
loop in step 2 is executed exactly m times, and steps (b),
(d) and (e) can all be performed in O(1). Step (a) requires
a linear search in the node list, which can be done in O(n).
Step (c) requires an iteration over all nodes, with resulting
costs in O(n). For the complete loop the summed up runtime
cost is within O(m · n), and the total runtime complexity for
the complete algorithm applied on networks without isolated
nodes is thus in:

O(n+ n2 +m · n) = O(m · n) (6)

E. Uniformness

By restricting the random order in which nodes are selected
for connections, we violate the requirement for uniformness.
This is more a problem in the initial phase of the algorithm,
when df values are highly heterogeneous. These values will
balance out over time and then allow a close to real random
selection.

We evaluate the uniformness of the samples with exactly the
same experiment as performed by Milo et al. [10]. Figure 3
displays the two possible topologies for a simple toy network
consisting of an out-hub with ten outgoing edges, an in-hub
with ten incoming edges, and ten nodes with one incoming and
one outgoing edge each. There is only one way to form the
topology in (a), but 90 different ways to form the topology in
(b). A uniformly sampling algorithm would thus sample each
of the 91 configurations in 1.099% of all cases.

Using our algorithm we sampled 1,000,000 networks with
this degree sequence and counted how often each of the con-
figurations occured. Restricting the node selection to the two
hub nodes for the first edge creations introduces a measurable
bias in the sampling frequency of the configuration (a), which
was sampled in 1.45% of all cases. This is an oversampling
of about 32%. The 90 configurations of the topology type (b)
are sampled uniformly. The oversampling can be explained by
the prioritisation of the two hub nodes, which does not give
the inner nodes equal chance to connect early with each other,

3http://www.cpan.org/

Fig. 3. Test of the uniformness of our proposed algorithm (compare with
[10] p.3)

but only later, when they reach equally low df values as the
two hubs.

The matching algorithm evaluated by Milo et al. sampled
the configuration (a) in under 0.3% of all cases [10], which
is an undersampling of more than 70%. But even for this
algorithm, the measurable bias in this extreme degree sequence
does usually not result in a heavy bias for large real-world
networks. In the tests we conducted, we also did not see
noticeable discrepancies for our algorithm.

F. Connectivity

Just like the matching algorithm, our algorithm does not
guarantee weak connectivity for the graph. But the set of
all connected configurations is also uniformly sampled when
ignoring disconnected samples and repeating the sample.

In evaluations with descriptive statistics, for which a specific
number of connected random graph samples is requested, we
can partially work around this problem. The probabilities for
a uniformly sampled random graph to be connected can be
exactly calculated, as shown by Molloy and Reed [16]. Having
an a priori estimation on how many iterations are required.
such a set of connected random graphs can be created by
iteratively sampling until the requested number of connected
samples is generated. This highly depends on the resulting

probabilities for the given degree sequence though.

G. Missing Proof for Correctness

Our suggested algorithm uses a heuristic for the order of
edge generation, that guarantees the realisation of the degree
sequence if it is realisable. However, we have no formal proof
for this claim. All our empirical tests on real-world networks
were successful and we were also not able to construct a graph
in which obeying to the MCN prioritisation heuristic leads
to an unrealisable graph state. Instead, all such problematic
edges, determined by Snijders [13] as definitive 0 entries in the
matrix, are effectively avoided, as both corresponding nodes
have relatively high df values in the beginning.

V. NON-UNIFORM RANDOM PEER SELECTION

The initial motivation for this work was the desire to
bring statistical evaluations of social networks with randomly
generated graphs one step forward. As shown in Section III,
state-of-the art network generation algorithms for prescribed
degree sequences all work in a non-deterministic way, with
back-tracking, reverse steps, etc. And also with indirect edge
generation, like the Markov Chain class of algorithms.

This makes it quite hard to introduce a specific bias in
uniformness in an exactly controlled way, which is required to
simulate real-world linking behaviour. With a direct selection
of peers for a given node, this becomes a lot easier, as different
classes of nodes can be weighted differently in the random
selection of step (2d) of our algorithm (see Section IV-C).

In this section, we want to give a brief outlook on the
applicability and benefits of this idea, by focusing on two
problems in the evaluation of networks.

A. Assortative Mixing in Political Blogs

A first example of application originates from a study
by Adamic and Glance [17], in which they analysed the
linking patterns in the 2004 U.S. political blogosphere. They
aggregated a blogroll network of over 1,000 blogs, partly
conservative ones, partly liberal ones. They observed that the
two groups each form a subcommunity by preferring blogs of
their own class by roughly 90%.

This phenomenon is called a mixing pattern in network
theory [18], and assortative mixing in social networks. The
preference weights in link selection can be derived from the
mixing matrix and will generate a random network with an
assortativity coefficient expected to be the same as in the
original network.

That way, the political blog network’s properties could
be compared statistically to random networks with the same
degree sequence and the same assortativity coefficient, and
possibly reveal structural differences that would have remained
unnoticed otherwise, or prove properties to be a trivial conse-
quence of the mixing pattern.

B. Synthetic Community Structure

A second example of application is the generation of
sample networks with an a priori defined synthetic community
structure. A community is generally modeled by a group of
nodes that are more probably linked to one-another than to the
outside. The community structure can be seen as a partition,
as hierarchical or as overlapping. Being able to generate
benchmark graphs with community structure, while keeping
other common complex networks’ properties like the exact
power-law degree distribution is necessary for the evaluation
of community detection algorithms.

However we could find only one method to generate such
networks with a non-overlapping community structure [19].
This method consists in applying the configuration model
with the additional constraint of connecting nodes preferably
to nodes belonging to the same community rather than to
nodes belonging to other communities. The method was then
extended to directed networks with an overlapping community
structure in [20]. However in this model most nodes should
belong to only one community and the rest of the nodes should
all belong to the same number of communities. While these
methods are the only ones being able to generate networks
with communities while keeping a prescribed degree sequence
and are widely used, they are limited by the fact that they
are using the configuration model with additional constraints.
They thus only roughly keep the prescribed degree sequence.
They are also limited by the constraints on the number of
communities nodes can belong to and by the overlap of
the communities, which is not a tunable parameter. On the
contrary, our algorithm, not suffering from these defects, can
be used to generate all combinations of plain, hierarchical and
overlapping communities that can be described in blocks and
linking preferences between them.

VI. CONCLUSION

In this paper we presented a fast and very simple algorithm
to directly create random graphs exactly realising a prescribed
degree sequence nearly uniformly, which was an open issue
before. The matching algorithm has issues with the exact re-
alisation, and the switching algorithm works indirectly, which
makes changes in the linking behaviour much more difficult.

Using descriptive statistics, such a tunable linking behaviour
can be used to compare real-world networks to random net-
works with specific linking behaviour, and provide network
analysts with new insights. In contrast to network models,
an evaluation with random graph samples can be directly
applied to any metric that is computable on a given network
instance. Hence, we see a huge potential for practitioners in
this methodology.

The algorithm is also well-suited for the generation of
networks with synthetic community structure of any kind that
you can describe in blocks and linking preferences. This opens
new applications for benchmarking.

We have two urgent points for future work on this subject,
apart from the missing proof for the determinism. Although
related work indicates that the bias in uniformity should be no

issue in real-world degree sequences, an extensive evaluation
similar to the one described by Milo et al. [10] still has
to be performed. Concerning efficiency, we see room for
improvement by exploiting the monotony and relative stability
of df values with more sophisticated data structures than plain
arrays. This however would happen at the price of a more
complicated implementation.

ACKNOWLEDGEMENTS

This reasearch was funded by the German Ministry of Education
and Research (BMBF) in the NEXUS project, grant 01IW11001.

REFERENCES

[1] S. Wasserman, K. Faust, and D. Iacobucci, Social Network Analysis :
Methods and Applications (Structural Analysis in the Social Sciences).
Cambridge University Press, 1994.

[2] D. Watts and S. Strogatz, “Collective dynamics of small-world net-
works,” Nature, no. 393, pp. 440–442, 1998.

[3] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in SIGCOMM ’99: Proceedings of the
conference on Applications, technologies, architectures, and protocols
for computer communication. ACM, 1999, pp. 251–262.

[4] P. Erdos and A. Renyi, “On random graphs,” Publ. Math. Debrecen,
vol. 6, p. 290, 1959.

[5] B. Bollobas, Random Graphs. London: Academic Press, 1985.
[6] A. L. Barabasi and R. Albert, “Emergence of scaling in random

networks,” Science, vol. 286, pp. 509–512, 1999.
[7] S. Wasserman and G. L. Robins, “An introduction to random graphs,

dependence graphs, and p*,” in Models and methods in social network
analysis, P. J. Carrington, J. Scott, and S. Wasserman, Eds. Cambridge
University Press, 2005, pp. 148–161.

[8] M. Newman, D. Watts, and S. Strogatz, “Random graph models of
social networks,” Proceedings of the National Academy of Sciences USA,
vol. 99, pp. 2566–2572, 2002.

[9] V. Batagelj and U. Brandes, “Efficient generation of large random
networks,” Physical Review E, vol. 71, no. 3, p. 036113, March 2005.

[10] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon,
“On the uniform generation of random graphs with prescribed degree
sequences,” Arxiv preprint cond-mat/0312028, 2003.

[11] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, pp. 167–256, 2003.

[12] F. Viger and M. Latapy, “Efficient and simple generation of random sim-
ple connected graphs with prescribed degree sequence.” in Proceedings
of the 11th international conference on Computing and Combinatorics,
ser. LNCS, vol. 3595. Springer, 2005, pp. 440–449.

[13] T. Snijders, “Enumeration and simulation methods for 0-1 matrices with
given marginals,” Psychometrika, vol. 56, no. 3, pp. 397–417, September
1991.

[14] S. L. Hakimi, “On the realizability of a set of integers as degrees of
the vertices of a linear graph,” Journal of the Society of Industrial and
Applied Mathematics, vol. 10, no. 3, pp. 496–506, 1962.

[15] J. Blitzstein and P. Diaconis, “A sequential importance sampling algo-
rithm for generating random graphs with prescribed degrees,” Internet
Mathematics, vol. 6, no. 4, pp. 489–522, 2011.

[16] M. Molloy and B. Reed, “A critical point for random graphs with a
given degree sequence,” Random Structures and Algorithms, vol. 6, pp.
161–179, 1995.

[17] L. A. Adamic and N. Glance, “The political blogosphere and the 2004
u.s. election: divided they blog,” in Proceedings of the 3rd international
workshop on Link discovery (LinkKDD), 2005, pp. 36–43.

[18] M. E. J. Newman, “Mixing patterns in networks,” Physical Review E,
vol. 67, 2003.

[19] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical Review E, vol. 78,
no. 4, p. 046110, 2008.

[20] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Physical Review E, vol. 80, no. 1, p. 016118, 2009.

