
HAL Id: hal-01208572
https://hal.science/hal-01208572

Submitted on 5 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A rewrite system to build planar subdivisions
David Cazier, Jean-François Dufourd

To cite this version:
David Cazier, Jean-François Dufourd. A rewrite system to build planar subdivisions. Canadian
Conference on Computational Geometry, 1995, Québec, Canada. pp.235-240. �hal-01208572�

https://hal.science/hal-01208572
https://hal.archives-ouvertes.fr


A rewrite system to build planar subdivisions

David Cazier and Jean-Franois Dufourd
Laboratoire des Sciences de l’Image, de l’Informatique et de la Tldtection

LSIIT, URA CNRS 1871
Universit Louis Pasteur, Dp. Informatique

7, rue Ren Descartes 67084 Strasbourg Cedex
{cazier, dufourd}@dpt-info.u-strasbg.fr

Abstract

Algebraic specifications allied to rewriting are more and more used in
design and logical prototyping of programs. We show how these techniques
can be applied to a basic problem in computational geometry, namely the
construction of planar subdivisions. We build up a simple, complete and
convergent system of rules to cope with this problem and suggest a formal
method to study and classify the specified algorithms.

1 Introduction

For about twenty years, an interesting approach in program design has been
relying on the use of formal methods, especially algebraic specifications [1] [2]
allied to rewriting [3]. Firstly, this approach allows designers to focus on concep-
tual and logical aspects of the problems to solve. Formal objects are described
with abstract data type generators, and the behaviour of operations on these ob-
jects is modeled by equations. Secondly, specifications can be made operational
with a correct orientation of equations, and techniques of logical prototyping
are used to point out possible design errors.

The use of these technics has been fruitfull in various areas like langage
for computer graphics [4] [5], mecanical proof in geometry [6], and geometrical
modeling [7] [8]. We show how they can be applied to a basic problem in com-
putational geometry, namely the boolean operations which are fundamental in
geometrical modeling and so deserve a faultless hence formal definition. To be
well understood, we limit the present paper to boolean operations on planar
subdivisions. Such a subdivision is a partition of the plane into vertices, edges
and faces. Boolean operations amount to the refinement of superposed subdi-
visions, as in the Bentley-Ottmann algorithms [9]. In fact, these problems may
be generalized to the self-refinement of embedded combinatorial maps.

1



We place ourselves in a formal and precise algebraic framework, especially
for the definition and manipulation of combinatorial maps. We give a simple but
complete definition of self-refinement and show how this transformation can be
described with a terminating and confluent rewrite system. Finally, we propose
a formal approach to describe and study, in terms of rewriting, concrete and
efficient refinement algorithms that leads us to a classification of such algorithms.

2 Selfrefinement of subdivisions

To compute the union, intersection or difference between two planar subdi-
visions, a convenient way is to construct a new subdivision that contains all
the elements of the two, taking into account the intersections and overlappings
existing between them. Precisely, superposed edges or vertices are merged, in-
tersecting edges are cut at their intersection points and edges that overlap some
vertices are cut at these incidence points. The result of the boolean operations
can then be obtained from the corefinement of the subdivisions by selecting the
required parts.

We generalize this idea through the notion of the self-refinement of a set
of vertices, edges and faces. It consists in transforming it into another one
that represents a subdivision of the plane. In figure 1, two subdivisions (a) are
superposed to form such a set (b), which is self-refined (c).

O O

O O

of vertices, edges and faces
(b) Their superposition as a set

(a) Two subdivisions, O is a common reference point

(c) The selfrefinement of this set

Figure 1: Example of self-refinement

raffinementhtp
It is usual now, for a geometrical object, to distinguish its topology from its

embedding. The topology concerns the parts of the object, that is to say its
vertices, edges and faces, as well as their adjacency relationships. The embed-
ding concerns the position and shape of these parts. These two aspects coexist

2



in the notion of combinatorial embedded maps which supplies an easy, precise
and concise description of subdivisions [10]. Interest of topology was shown in
[11] that presents a good alternative to describe subdivisions and topological
operators.

3 Combinatorial maps and self-refinement

Let us recall here some basic notions on maps. A map is a triplet (B, α0, α1)
where B is a finite set of darts, α0 is an involution on B, that is to say a
permutation such that α0(α0(x)) = x, for all x, and α1 is a permutation on B.

Two darts are said to be linked with respect to α0 (resp. α1), or 0-linked
(resp. 1-linked), if they belong to the same orbit with respect to α0 (resp. α1).
Darts are generally interpreted as half-edges. So, two 0-linked darts form a
topological edge, and an orbit with respect to α1 defines a topological vertex of
the map. See figure 2 where half-segments are associated with darts.

Example 1 Figure 2 presents drawing conventions and a map with B = {1,. . . ,7,-
1,. . . ,-7} and in cyclic notation α0 = (-1,1) (-2,2) (-3,3) (-4,4) (-5,5) (-6,6)
(-7,7) and α1 = (1, 2) (-2, 3) (-3, -4, 7) (4, -6) (-7, 6, 5, -1) (-5). Thus α0(1)
= -1, α0(-1) = 1, and the orbit 〈α0〉(1) = {1, -1} defines an edge. Similarly,
α1(6) = 5, α1(5) = -1, α1(-1) = -7, α1(-7) = 6, 〈α1〉(6) = {5,-1,-7,6}, and the
vertex dart 6 belongs to contains the darts -7,6,5 and -1. ut

p
0

O−embedding :

c1

1−embedding :

1 −1

2

−2

3 −3 −4
4

5
−5

6
−6

7

−7p

c

One dart : Two 0−linked darts : Three 1−linked darts : Example of map :

0

1

Figure 2: Conventions and graphical representations

excartehtp
The geometry of the subdivisions is formally described by the embedding of

combinatorial maps. This embedding consists in associating each topological
part of the map with a geometrical object having the same dimension. We
associate points with vertices (0-embedding) and Jordan arcs with edges (1-
embedding).

Example 2 In figure 2, dart -2 is 0-embedded on point p, dart 3 is 1-embedded
on curve c and then implicitly that is also the case of dart -3. ut

3



Although that notion can be formally defined, we simply say that a map
is planar if it can be embedded without any self intersection or overlapping.
That way, self-refinement of any embedded map transforms it into a planar
map which is planarly embedded, or in fact that correctly models a planar
subdivision. Then, the result must satisfy the following five conditions : (i)
all the darts of a vertex have to be embedded on the same point ; (ii) two
distinct vertices have to be embedded on distinct points ; (iii) curves on which
edges are embedded must not overlap any 0-embeddings of the vertices ; (iv)
the 1-embeddings of two distinct edges must not intersect themselves ; (v) the
vertices have to be arranged.

Let us explain the condition (v). As edges of a given vertex are examined
following 1-links order, the associated curves have to turn counter-clockwise
around the vertex (see figure 3). Finally, to those necessary conditions, we add
an additional one that leads to a better representation : (vi) the map must not
contain any null edge, that is to say an edge that is embedded on a null curve.

z

y
x

z

y
x

x

y

z

(a) Arranged, α1 = (x, y, z) (b) Not arranged, α1 = (x, z, y) (c) Not arranged,
α1 = (. . . , x, y, z, . . .)

Figure 3: Arranged and not arranged vertices : circle arcs represent 1-links

The self-refinement we have just defined corresponds to a generic description
of all refinement problems. Particular algorithms may be described by restrict-
ing the kinds of sets that are used. The selrefinement operation could be used
on maps coming from superposed maps, as described before, in order to carry
boolean operations. If the starting set is a set of segments, self-refinement cor-
responds to intersections finding algorithms as discussed in [12] [13]. If we limit
to two the number of edges belonging to the same vertex, we have got a polygon
clipping algorithm.

4 Formal specification of subdivisions

The first phase to formalize the refinement is to give an algebraic specification
of combinatorial maps and operations handling them. Maps are defined from
four basic functional generators : v, l0, l1, em0 [7] [8]. Generator v creates the
empty map, l0(M, x, y) and l1(M, x, y) link in map M dart x to y with respect
to α0 or α1. Generator em0(M,x, p) embeds dart x on point p. So, a map is
described by first order equivalent terms. In the following, only 0-embeddings

4



are considered. Thus, an edge is implicitely 1-embedded on the line segment
between the 0-embeddings of its extremities.

A set of functional selectors, destructors and constructors on maps can then
be defined through a first order equational theory. For instance, selectors
eqv(M,x, y), eqev(M,x, y) and eqee(M, x, y) respectively test the equality of
the two vertices, the 0-embeddings of the two vertices, and the 1-embeddings of
the two edges darts x and y belong to. Among the constructors, cutee(M,x, p)
cuts at point p the edge x belongs to and merge(M, x, y) merges the two distinct
vertices x and y belong to, if they are embedded on the same point. Finally, the
destructor dv(M, x) deletes dart x from the vertex it belongs to. Other easily
understandable selectors appear in the rules of section 5.

5 Rewrite system for the self-refinement of maps

We define the self-refinement of maps throughout a set of elementary and inde-
pendent operations that are nicely described as rules of a conditional modulo
rewrite system [14]. In the rules of table 1, numerators represent the starting
map and denominators represent it after one rewrite step. Rules can be applied
only when conditions described after the if are satisfied. Rules are graphically
depicted in figure 4.

R2

y
x

y
x t
z

R5

R3
y

x
z

y’x’
y

x

p p
z

x

R6

x

0

0

0
0

R1yx

p q x

yz

t

R4

i

x’

y’z’

t’
tx

yz

0
0 0

0
0 0

Figure 4: Graphical illustration of the rewrite rules

regleshtp

5



R1 :
M

dee(M,x)
if

{
M = l0(M ′, x, y)
nulledge(M, x) R2 :

M

dee(M, z)
if

{
M = l0(l0(M ′, x, y), z, t)
eqee(M,x, z)

R3 :
M

cutee(M, x, p)
if





M = em0(l0(M ′, x, y), z, p)
¬nulledge(M, z)
s = get1embed(M,x)
incident(p, s)

R4 :
M

cutee(cutee(M, x, i), z, i)
if





M = l0(l0(M ′, x, y), z, t)
s = get1embed(M, x)
s′ = get1embed(M, x)
secant(s, s′)

with i = intersection(s, s′)

R5 :
M

merge(M,x, y)
if





M = em0(em0(M ′, x, p), y, q)
eqp(p, q)
¬eqv(M,x, y)
arrangeable(M, x, y)

R6 :
M

dv(M, x)
if

{
M = em0(M ′, x, p)
¬ arranged− dart(M,x)

Table 1: Rewrite system for embedded map self-refinement

Rule R1 deletes a null edge, represented as a loop in figure 4, when it occcurs.
When two edges are superposed, rule R2 deletes the second one. Rule R3 does
the incidence cutting, that is to say it cuts in two parts an edge incident to a
vertex. Rule R4 realizes the intersection cutting, that is to say it cuts two edges
at their intersection point, if any. The two last rules handle vertices. Rule R5
merges two distinct vertices embedded on equal points, if possible. Finally, rule
R6 deletes a not aranged dart from the vertex it belongs to.

The first expected property for a rewrite system, as for any computation, is
termination. A rewrite system is said to be terminating when there do not exist
infinite sequences of rule applications, whatever starting data were. To prove
the termination of the rewrite system, we make use of a semantic ordering [15]
based on a measure of maps. The measure of each numerator is proven to be
strictly greater than the measure of the corresponding denominator. To do this,
equations of the specification are used, and each representative term of maps is
considered. Hence the rewrite system we have defined is terminating.

6



The second property we could expect for our rewrite system is confluence.
A rewrite system is confluent if the result of any sequence of rule applications
does not depend upon the order the rules are applied. For a terminating system,
confluence is equivalent to local confluence. Here, technical difficulties are due to
the fact that rewriting is made modulo the equational theory E that is defined
by the specifications of the maps[3].

To prove the rewrite system is confluent, we show that if there exist two
ways to rewrite a map M0 in map M1 or M ′

1, then there exist two sequences of
rewrite steps such that M1 rewrites in Mn, M ′

1 rewrites in M ′
m and the maps

Mn and M ′
m are equal in some sense. The last equality is the equality modulo

the equations of E and modulo dart renaming, because darts numbers depend
on the order they are created.

Our terminating and confluent rewrite system is is then convergent [3]. This
implies that, for each map, there exists one unique normal form modulo map
equalities. So, the rewrite system can be seen as a function of map normalization
which projects any map into its self-refinement.

6 Concrete algorithms and complexity

A nave use of the rewrite system described above is to test for each dart and
each couple of darts if a rule can be executed. Such an abstract algorithm is not
deterministic, because darts are randomly chosen. To describe a concrete, that
is to say real and efficient, algorithm, we have to hold a strategy to choose darts.
We achieve this goal adding to the rewrite system a control structure that yields
the dart or couple of darts that is going to be examined. A rewrite rule then
describes the transformations of the map and those of the control structure.

For instance, rules R1 and R3 become :

R1 :
S,M

d(d(S,x),y),dee(M,x)
if

{
x=f(S)

nulledge(M,x)

y=α0(M,x)

R3 :
S,M

i(i(S,x′),y′),cutee(M,x,p)
if





(x,z)=f(S)

¬nulledge(M,z)

p=gem0(M,z)

s=get1embed(M,x)

incident(p,s)

where S is a classical data structure such as a list or a tree, f is a function
that searches in S the darts that have to be examined, i(S, x) and d(S, x) are
functions that insert and delete a dart in S. Darts x′ and y′ are the new darts
created by the edge cutting. Some other rules are added to the rewrite system.
They describe the changes on the control structure when refinement rules cannot
be used.

We have proposed the generic mechanism to describe a concrete self-refinement
algorithm. Different control structures lead to different algorithms. If lists are
used, the system corresponds to the algorithm that steps through the darts with

7



two imbricated loops. If more complex structures such as trees, heaps or dictio-
naries are used, we can describe, through of variant of our rewrite system, plan
sweep algorithm like those proposed in [12] [13].

A classification of refinement algorithms can thus be done. It is based upon
the kind of structures and the kind of research functions that are used. The
interest of this kind of classification is the clear separation between data struc-
tures used to handle maps and data structures used to improve control and thus
complexity of the algorithms.

7 Conclusions

We have defined topological and geometrical operations for the construction and
the handling of planar subdivisions. To achieve this, we base our approach on
the combinatorial map mathematical model. The use of algebraic specifications
makes definitions more precise and makes us capable to clearly define integrity
constraints on objects and functions. The joint use of rewriting techniques
leads us to express a complex problem as a set of elementary and independent
transformations. So we describe completely in a formal way map self-refinement.
Moreover, the use of techniques proper to rewriting, allows us to prove the
termination and confluence of this normalization.

Operations on maps and rewrite rules have been implemented in Prolog.
Using this logical prototyping, we were able to quickly verify, in a practical way,
the validity of our specifications. So, the specification formalism allied to the
rewriting expressiveness conduct to a safe and rigorous design of algorithms,
even in computational geometry. Finally, those techniques can also be used to
study algorithms complexity. In our case, the prototype we made in Prolog
allowed us a practical study of the different strategies and control structures for
the application of rules.

References

[1] H. Ehrig and B. Mahr. Fundamentals of algebraic specification 1. Equations and
initial semantics, volume 6 of EATCS Monograph on Theoretical Computer Sci-
ence. Springer-Verlag, 1985.

[2] M. Wirsing. Algebraic specifications. In Formal models and semantics, Handbook
of Theoretical Computer Science, chapter 13, pages 675–788. Elsevier, 1990.

[3] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In Formal models and
semantics, Handbook of Theoretical Computer Science, chapter 6, pages 243–
320. Elsevier, 1990.

[4] W.R. Mallgren. Formal specification of interactive graphic programming lan-
guages. ACM Dist. Dissertation. MIT Press, USA, 1982.

[5] D.A. Duce, E.V. Fielding, and L.S. Marshall. Formal specification of a small
example based on GKS. ACM Trans. on Graphics, 7(3):180–197, 1988.

8



[6] B. Brüderlin. Using geometric rewrite rules for solving geometric problems sym-
bolically. Theoretical Computer Science, 116:291–303, 1993.

[7] J.F. Dufourd. Algebraic map-based topological kernel for polyhedron modellers:
algebraic specification and logic prototyping. In Proc. of Eurographics, pages
649–662, 1989.

[8] Y. Bertrand and J.F. Dufourd. Algebraic specification of a 3D-modeler based on
hypermaps. CVGIP : Graphical Models and Image Processing, 56(1):29–60, 1994.

[9] J.L. Bentley and T. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Computer, 28:643–647, 1979.

[10] P. Lienhardt. Topological models for boundary representation: a comparison with
n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82, 1991.

[11] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation of Voronöı diagrams. ACM Trans. on Graphics, 4(2):74–123,
April 1985.

[12] J. Nievergelt and F.P. Preparata. Plane-sweep algorithms for intersecting geo-
metric figures. Com. of ACM, 25(10):739–747, 1982.

[13] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line
segments in the plane. Journal of ACM, 39(1):1–54, 1992.

[14] N. Dershowitz and M. Okada. A rational for conditional equational programming.
Theoretical Computer Science, 75:111–138, 1990.

[15] E. Bevers and J. Lewi. Proving termination of (conditional) rewrite systems. A
semantic approach. Acta Informatica, 30:537–568, 1993.

9


