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We study the formation of viscous fingering and fracturing patterns that occur when air

at constant overpressure invades a circular Hele-Shaw cell containing a liquid-saturated

deformable porous medium—i.e., during the flow of two non-miscible fluids in a

confined granular medium at high enough rate to deform it. The resulting patterns are

characterized in terms of growth rate, average finger thickness as function of radius

and time, and fractal properties. Based on experiments with various injection pressures,

we identify and compare typical pattern characteristics when there is no deformation,

compaction, and/or decompaction of the porous medium. This is achieved by preparing

monolayers of glass beads in cells with various boundary conditions, ranging from

a rigid disordered porous medium to a deformable granular medium with either a

semi-permeable or a free outer boundary. We show that the patterns formed have

characteristic features depending on the boundary conditions. For example, the average

finger thickness is found to be constant with radius in the non-deformable (ND) system,

while in the deformable ones there is a larger initial thickness decreasing to the ND value.

Then, depending on whether the outer boundary is semi-permeable or free there is a

further decrease or increase in the average finger thickness. When estimated from the

flow patterns, the box-counting fractal dimensions are not found to change significantly

with boundary conditions, but by using a method to locally estimate fractal dimensions,

we see a transition in behavior with radius for patterns in deformable systems; In the

deformable system with a free boundary, it seems to be a transition in universality class

as the local fractal dimensions decrease toward the outer rim, where fingers are opening

up like fractures in a paste.

Keywords: two-phase flow, drainage, deforming porous media, viscous fingering, fracturing

Introduction

Multi-phase flow in porous and granular materials are complex processes in nature and industry,
and the understanding of the involved mechanisms is an ongoing challenge. In early research
on the flow of two immiscible fluids in thin cells (Hele-Shaw cells), it was found that the
invasion by a less viscous fluid into a more viscous fluid results in a displacement instability
where viscous fingering patterns form [1]. This means that the invading fluid displaces the more
viscous one in separated finger-like intrusions, while leaving the fluid inbetween the fingers
less or not displaced. Following an increased interest in this phenomenon, two-phase flow have
been widely studied in quasi-2-dimensional porous media confined in thin cells with circular
and rectangular geometries [2–14]. In horizontal cells containing rigid disordered porous media,
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the unstable invasion patterns during drainage are found to
be fractal and either form an invasion percolation cluster [15]
in the capillary fingering regime [16, 17], or long thin fingers
resembling DLA patterns in the viscous fingering regime [18,
19]. The flow regime during drainage of a horizontal porous
medium is dependent on the ratio between the driving and
stabilizing forces involved in flow and pore-invasion, usually
described by the dimensionless capillary number Ca [3, 5]. The
capillary number is the ratio of viscous pressure drop over
capillary pressure drop at the characteristic pore scale, and can be
found by

Ca =
µva2

γ κ
, (1)

whereµ is the viscosity of the saturating fluid, v is a characteristic
velocity (flux/injection cross section), a is the bead diameter,
γ is the interface tension between the invading and defending
fluid and κ is the permeability of the porous medium. For low
capillary numbers (Ca≪ 1) capillary fingering dominates and for
higher capillary numbers (Ca→1) there is a crossover to viscous
fingering. The stabilizing mechanism is provided by a network
of capillary pressure thresholds situated at the pore-necks along
the fluid-fluid interface. The capillary thresholds arise from the
surface tension γ between the immiscible fluids and is described
by

pcap =
γ

R1
+

γ

R2
, (2)

where R1 and R2 are the smallest possible radii of curvature for
the interface meniscus in the vertical and horizontal directions.
In a perfect wetting situation, the radii are half the height of
the pore-neck and half the width of the pore-neck. The capillary
pressure thresholds at each pore is thus determined by the pore
geometry. The consequence of Equation (2) is that the pressure
difference dP between the invading and saturating fluids has to
overcome a certain threshold before a given pore is invaded,
i.e., dP > pcap. At low enough capillary numbers, at very low
constant injection flow, we will see pore-by-pore invasions where
the fluid takes the path of least resistance (larger pores have lower
thresholds), leaving some pores trapped and/or never invaded.
At higher capillary numbers, flow may be driven on a sample
scale by a viscous pressure gradient over the saturating fluid. The
filtration velocity (interstitial fluid velocity times the porosity) v
through a porous medium with permeability κ is described by
Darcy’s law as

v = −
κ

µ
∇P ≈

κ

µ

1P

r
, (3)

where µ is the viscosity of the saturating fluid, 1P is the pressure
difference between the invading fluid and the cell outlet, and r
is the distance from the invading fluid to the cell outlet. At high
enough capillary numbers, since the pressure can be considered
constant within the invading fluid cluster [19], Equation (3)
shows that the parts of the cluster that are closer to the outside
of the cell flow faster than less advanced parts. In addition, the

pressure distribution is given by the Laplace equation (∇2P = 0)
such that the longest fingers are “screening” the pressure gradient
from the less advanced fingers [19]. Due to this instability and
the geometry of the pore-space, an invasion bubble will become
perturbed early and we will see the onset of viscous fingers from
the most advanced parts of the interface, growing on expense of
the less advanced parts. In addition, the flow path of fingers is
influenced by random capillary thresholds at the interface.

In similar systems where air is injected with high enough
overpressure into dry and dense deformable porous media in
thin cells, granular fingering patterns emerge as a result of
hydraulic fracturing of the dense packing [20–24]. This granular
fingering is also observed in liquid saturated dense porous media
where the same fluid is injected [25]. An interesting observation
in these cases is that despite the absence of surface tension,
the granular fingering patterns resemble viscous fingering. This
fingering formation is driven by momentum exchange between
the flowing fluid and particles, and becomes unstable like viscous
fingers when the fluid-solid interface is perturbed. The stabilizing
mechanism during granular fingering was found to be particle-
particle and particle-plate friction, which builds up in stress-
chains during compaction of the multi-layered packing and
prevents further particle displacement.

Moreover, combinations of two-phase and granular flow in
thin cells have been studied. In e.g., [26–28] it was found
that a range of different patterns emerge when air is injected
in granular suspensions in thin cells. Invasion patterns such
as frictional fingering, viscous fingering, fluidized fronts and
stick-slip bubbles were observed depending on bead fraction
and injection rate. The resulting patterns depend on whether
the invading fluid overcomes frictional or capillary thresholds
first, i.e., bead displacement occurs when the capillary threshold
is highest and pore-invasion when the frictional threshold is
highest. Experiments with air injection into saturated deformable
porous media placed under a confining pressure was studied in
Holtzman et al. [29]. For a given interface tension γ and friction
coefficient µf , the crossover from fingering to fracturing during
constant flow rates was found to depend only on the confining
pressure Pc and particle size d, and that fracturing tends to occur
if the particle size is below a critical value dc = (γ /µf )Pc

−1. In
other words, opening of pore-necks and fracturing was observed
when capillary forces could overcome frictional thresholds and
rearrange particles. Flow induced deformation in a monolayer of
deformable porous media has also been studied in the absence
of surface tension, during fluid injection into a soft granular
media saturated with the same fluid [30]. During injection, the
beads were observed to be displaced radially outwards due to the
pressure gradient in the flow, and an empty cavity formed around
the injection center. In these experiments, no fingers emerged
and the central cavity stabilized at a certain size since the beads
were confined within the cell.

In this paper we present an exploratory study where we further
experiment with the combination of two-phase and granular
flows by performing air injection into saturated monolayers of
beads. It is part of fundamental research on pattern morphology
in various deforming systems, which is important for increased
understanding of flow in any deformable porous medium.

Frontiers in Physics | www.frontiersin.org 2 October 2015 | Volume 3 | Article 81

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Eriksen et al. Two-phase flow in deformable porous media

By injecting air at a constant overpressure into a deformable
saturated monolayer, we have a system where particles may be
displaced by a viscous pressure gradient and/or capillary forces
between the two fluids. Since it is a single layer of beads without
imposed confining pressure, granular stress is expected to depend
on the boundary condition and number of particles in contact
ahead of the flow, rather than build-up of normal stress against
the plates. The outer boundary can be set to either allow or
prevent decompaction of the medium. As a result of competition
between viscous and capillary forces, and build-up/relaxation
of friction during flow, we expect to see transitions between
finger opening and pore invasion in the viscous fingering regime,
for example during initial compaction or outer decompaction.
We aim to characterize these flow patterns and porous media
deformations, depending on imposed boundary conditions and
injection pressure.

Increased knowledge of the mentioned processes may have
applications in earth science and industry where multiphase
flow and solid deformation occur. Examples are oil and gas
production [31–33], carbon sequestration [34], enhancement of
water well- and geothermal energy production [35–37]. There
may also be applications in natural flow, especially in the field
of subsurface sediment mobilization, where formations like sand
injectites, mud diapirs, and mud volcanoes occur due to pore-
fluid overpressure [38–43].

Materials and Methods

Three different types of porous media samples are created by
preparing them with the different boundary conditions referred
to as non-deformable (ND), confined deformable (CD), or open
deformable (OD). These three sample types are presented after
a brief introduction to the general experimental setup which is
common for all the experiments.

Experimental Setup
In general, the porous samples are created by forming a single
layer of 1.0mm diameter glass beads between the transparent
plates of a horizontal and circular Hele-Shaw cell. The bead size
has a tolerance of ±10%, but beads are sifted, resulting in a
distribution between 1.0 and 1.1mm. The diameter of the cell is
40 cm, and the 10mm thick plates are clamped together with a
vertical plate separation of 1.0mm in the ND case and 1.4mm
in the deformable cases. This setup results in obtained volume
fractions of 32.7 ± 0.9% beads in the ND cell, and 29.4 ± 1.8%
beads in the cell for the deformable systems. If we only consider
the volume occupied by the monolayers, the deformable systems
have ∼105 beads with a volume fraction that is 68.2 ± 4.2% of
ηhcp, where ηhcp = 60.5% is the volume fraction of the densest
possible bead configuration in the cell if the plate separation is
1.0mm (i.e., a hexagonal close packing with ∼1.45·105 beads).
The ND systems have ∼8·104 beads and a volume fraction that
is 54.2 ± 1.4% of ηhcp. The reason for the different monolayer
volume fractions arise from the different filling procedures for
the ND and CD/OD systems, which are described in the next
section. The fluid inlet to the sample is a 10mm diameter hole in
the center of the bottom disk, and the outlet is the open perimeter

along the rim of the cell. After a sample is prepared, its pore-space
is saturated with a viscous water-glycerol solution consisting of
20% water and 80% glycerol by mass, with a viscosity of 0.045
Pa·s. The saturating fluid is wetting the beads as well as the
cell disks. Figure 1 shows a cross-sectional illustration of the
experimental setup.

The experimental procedure is also common for all the sample
types; the air overpressure to be applied at the cell inlet is pre-
set with a pressure regulator situated between a pressurized air
reservoir and the cell inlet. The experiment starts when the
inlet valve is opened, allowing air to invade the sample with a
maintained and constant overpressure. As the overpressure is
kept constant at a pressure in the range from 25 to 100 hPa (hPa
= mbar), the air cluster will grow and drain the sample radially
outwards until it breaks through at the rim. Breakthrough of the
air cluster was seen in all our experiments and marks the end of
the experiment. The cell is illuminated by flicker free white light
from below, and a Photron SA5 high-speed camera positioned
above the cell captures optical data at a framerate of 125 frames
per second (fps) during the experiment.

Three Cases of Boundary Conditions
The porous matrix of a ND sample is rigid, single-layered and
disordered. This sample type is prepared on the bottom disk
before assembling the cell; first, the top surface of the bottom
disk is coated with an adhesive, thin and transparent plastic film.
Then, beads are poured onto the adhesive surface, which will
cause them to attach at random positions on the bottom disk.
The process is continued until no more beads are able to hit
the bottom disk surface, i.e., when the longest distance between

FIGURE 1 | Sketch of the experimental setup for the two-phase flow

experiments: The horizontal cell consists of two transparent disks of 40 cm

in diameter, clamped together (not shown) but separated by a small gap. The

gap is big enough to accommodate a saturated porous monolayer of 1.0mm

beads. This sketch represents the non-deformable system, however the setup

is the same for the other boundary conditions as well. A compressed air

source is connected to an injection hole in the center of the bottom disk, and a

pressure regulator is used to adjust the constant injection pressure between

25 and 100 hPa. During air injection, the high speed camera situated directly

above the cell captures the invasion at a framerate of 125 frames per second.

Frontiers in Physics | www.frontiersin.org 3 October 2015 | Volume 3 | Article 81

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Eriksen et al. Two-phase flow in deformable porous media

beads in the monolayer is shorter than a bead diameter. Pores
that are slightly smaller than a bead can occur, so this filling
procedure generates a rather loose packed random layer. After
removing excess beads of a beginning second layer, the top disk,
also adhesive, is put onto the resulting monolayer and clamped
together with the bottom disk. The disk separation therefore
equals the bead diameter of 1.0mm.

The porous matrix of a CD sample is a random close packed
monolayer of beads which can be displaced within the cell
volume, but are prevented to leave the cell by a semi-permeable
border. This sample type is prepared partially before and after
assembling the cell. First, the rim of the bottom disk is fitted
with a semi-permeable belt made of foam rubber (it can be
seen in Figure 2A). This belt, which is permeable to fluids and
impermeable to beads, is 5mm wide. Next, the top disk is placed
onto the bottom disk and they are clamped together. The disk
separation is controlled with 1.4mm thick spacers between the
disks at the clamp positions, and ensures the possibility of bead
displacement as well as keeping the bead packing approximately
single-layered. The gap above the beads (0.4mm) is still smaller
than the large interparticle nearest distance in the system (1mm),
and we observed no significant invasion occurring over several
bead lengths in the gap above the beads. When clamped between
the plates, the semi-permeable belt with an elastic stiffness
of 1.5 kPa is imposed a 47% compressive strain, and has an
estimated permeability of 10−5 cm2. Finally, beads are injected
into the cell through the central injection hole until they form a
monolayer that fills the confined volume. Since the beads may
rearrange during the filling procedure, this method results in
a more close packed random layer than achieved with the ND
method.

The OD sample is prepared in the same way as the CD
sample, but with a temporary semi-permeable border at the rim
which is removed before experiments. This means that the OD
porous matrix is a deformable monolayer where the beads can be
displaced and also pushed out of the cell at the open perimeter.
Thus, on one side of the scale we have the ND boundary
condition where nothing is deformed in the porous medium, and
on the other end of the scale we have the OD boundary condition
where most of or all of the sample is deformed. Somewhere in
between we have the CD boundary condition.

Performed Experiments
Ten experiments are considered in this study. They lasted
between 0.9 and 9.7 s, where two of them were ND, four were
CD and four were OD. The two ND experiments, used as
reference for no deformation, were both injected with an air
overpressure of 25 hPa and are labeled ND1 and ND2. Patterns
in this system will appear similar for higher injection pressures
since we already are in the viscous fingering regime. The CD
experiments are referred to as CD25, CD50, CD75, and CD100
since the injection pressures were set as 25, 50, 75, and 100
hPa, respectively. The injection pressures in the OD experiments
were selected in the same way, so these experiments are referred
to as OD25, OD50, OD75, and OD100. Approximate capillary
numbers Ca were calculated for each experiment, based on the
equation

FIGURE 2 | The raw data breakthrough image of the confined

deformable experiment with 75 hPa injection pressure (A), and the

resulting binary image after segmentation of the air cluster (B), where

the active pixels belonging to the cluster is shown in white and the

inactive background pixels are shown in black. The dark injection region

where it is difficult to separate saturated and invaded parts is indicated in gray,

and is excluded from our analysis. In the raw data image we can also see the

0.5 cm thick semi-permeable belt surrounding the porous medium.

Ca =
1Pa2

γ R
, (4)

which is obtained by combining Equations (1) and (3), where
a = 1mm is the typical pore size, γ = 65.7 µN/mm is the
interfacial tension between the fluids, R = 20 cm is the cell
radius and 1P is the imposed overpressure. The approximate
capillary numbers are found to be Ca = 0.2, 0.4, 0.6, and 0.8 for
1P = 25, 50, 75, and 100 hPa, respectively, and independent of
boundary conditions. These capillary numbers confirm that the
displacement flow in all our experiments is dominated by viscous
forces (viscous fingering regime), as seen in e.g., Løvoll et al. [3]
for Ca = 0.22. A characteristic permeability for the systems is
estimated with the Kozeny-Carman relation [27],

κ =
a2φ3

180(1− φ)2
, (5)

Frontiers in Physics | www.frontiersin.org 4 October 2015 | Volume 3 | Article 81

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Eriksen et al. Two-phase flow in deformable porous media

where a is the bead diameter and φ is the porosity. For the ND
system with a porosity of 0.673, we get κ = 1.22·10−4 cm2, and
for the deformable systems with a porosity of 0.706 we get κ =

2.26·10−4 cm2 (initially, before deformation). In the CD system,
the permeability of the outer belt is one order of magnitude lower
than the initial permeability of the porous medium, however we
observed no significant influence on the flow regime due to that.
For a characteristic filtration velocity, the pressure drop along a
distance L is given by 1P = µvL/κ . Even if κ is smaller in the
belt than in the cell, its extent L along the flow is much smaller
than the radius of the cell. Thus, the characteristic pressure drop,
which scales like L/κ , is much larger in the cell than in the
belt—explaining why it does not seem to significantly affect the
pattern.

The raw data from each experiment is a sequence of grayscale
images with a spatial resolution of 1024 × 1024 pixels, where
the side of one pixel corresponds to 0.4mm. The framerate
yields high temporal resolution with a snapshot every 8ms,
and each image contains information about the instantaneous
configuration of the air cluster and the porous medium. A raw
data snapshot is shown in Figure 2A.

Flow Pattern Analysis
The raw images are transformed into binary images of the air
clusters, i.e., every pixel being a part of the air cluster, defined
as having an intensity value above a certain threshold, is given
the pixel-value "1" (white) while all the other pixels are assigned
the pixel-value “0” (black). An example is shown in Figure 2B.
In the images of ND experiments, beads have been removed
by subtracting the graymap field of the initial image from the
graymap field of the current image - a process called image
subtraction technique (as e.g., in Løvoll et al. [3], Niebling et al.
[12]). Later on, trapped liquid clusters within fingers are replaced
by white pixels, considering them as parts of the finger. In the
images of deformable experiments, beads have been removed by
deleting small white clusters not connected to the large white
pattern. A dark central region of 10mm in diameter is caused
by shadow from the injection tubing, so image data here is not
considered (the air cluster cannot be distinguished from the
liquid). There are different features of the flow patterns that
we want to analyze, such as their shape, growth, and fractal
dimension. This information is obtained from the binary images
with various image processing methods.

To get a visual overview of the shape and growth of a flow
pattern over time we create a figure of the breakthrough pattern
where colors indicate the time when a pixel was invaded by air.
Such a figure is made by summing together all the binary images
in the sequence (obtained as explained above), creating a matrix
where the elements indicate the number of timesteps during
which the considered pixel has been invaded: A value more than
1 means that invasion occurred earlier than breakthrough, 1 is at
breakthrough and 0 means that this pixel is never invaded. This
matrix is then converted to a figure where colors represent the
time of invasion at each pixel of the air cluster, and shown in
Figure 3 for each of the experiments.

In addition to a visual characterization of the patterns, we
obtain some quantities to describe the growth of the clusters

over time. To investigate the growth of the clusters we plot
the radius of the most advanced finger and the radial variation
of finger thicknesses as function of time. The longest finger
radius as function of time is found by assigning values to the
pixels in the binary patterns according to their distance from the
injection center, and then record the highest value of each image
in the sequence. For the investigation of radial finger thickness
variation we look at the average finger thickness as a function
of radius from the injection center. This is found by counting
the number of active pixels within a small window (plus minus
one pixel) around each integer radius, giving the total sum of
finger widths per radius. These values are then divided by the
corresponding number of fingers per radius (the number of active
pixel-segments at each radius), giving the average finger thickness
per radius.

Fractal analysis is a commonly used method to describe
a two-phase flow pattern since its fractal dimension, when it
exists, reveals information about how the pattern fills the space
it occupies. There are different ways to estimate the fractal
dimension of a pattern [44, 45]. We will look at the mass- and
box fractal dimensions, and compare them with local fractal
dimensions of intersections at different radii. The mass-radius
relation of a pattern is found by counting the number of active
pixels (mass) contained within each radius from the injection
center. If the log-log plot of the mass-radius relation is linear,
such that it follows a power law

N(r) ∝ rDm , (6)

the fractal mass-dimensionDm of the pattern is found as the slope
of the plot. Figure A1 in the Supplementary Material shows the
mass-radius relations for the breakthrough patterns from each
experiment. The fractal box-dimension of a pattern is estimated
by counting the number of squares needed to cover the pattern
as a function of the side length of the square. As boxes we use
grids of equal squares, where the pattern center is always in the
center of a square. Starting with a square larger than the image
size, a box count is performed before decreasing the box size. This
is repeated until the smallest square covering the entire pattern
is found. Then, the smallest box covering the entire pattern is
divided into equal but increasingly smaller squares for each box
count. The procedure of subsequent box size decreasing and
counting is continued until the lower size limit of one pixel is
reached. For a fractal, the number of boxes N as function of side
length l follows a power law

N(l) ∝ l−Db , (7)

The value of the fractal box-counting dimension Db is found as
the opposite of the slope of the number of boxes as function of
side length in a log-log plot. The slope is fitted between the lower
box size cutoff at 1mm (typical pore size), and the upper cutoff
at the largest box size where at least one box does not cover the
pattern. Figure A2 in the Supplementary Material shows these
plots for each experiment. Finally, a local fractal dimension DL

is estimated as function of radius by intersecting the pattern
with a one pixel thick, concentric ring at each radius and do
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FIGURE 3 | Breakthrough patterns for the non-deformable experiments (A), confined deformable experiments (B), and open deformable experiments

(C). Both ND experiments have an injection pressure of 25 hPa, while for the CD and OD experiments the number in the experiment name (top left corners) gives the

injection pressure in hPa. The color code indicates the time of air invasion in seconds after start, where blue is at the start and dark red is at breakthrough. The green

circles indicate the cell rims.

1-dimensional box counts along the rings. At each radius, the
ring is divided into equal arc segments and the number of arc
segments that intersect the pattern are counted as function of arc
length as the arc length is decreased. The number of arc segments
intersecting the pattern is plotted in a log-log plot as a function
of arc length, and we find the local fractal dimension as the
opposite of the value of the slope as shown in Figure 4. The local
dimension slopes have one upper and one lower cutoff length
at each radius. The upper cutoff length is approximately the
separation distance between fingers along the ring, and the lower
cutoff length is approximately the average thickness of the fingers.
We set the lower cutoff constant as the average finger thickness
for the ND patterns, which is found to be approximately 0.4 cm
(see Section Pattern Characteristics). The upper cutoff length is
set at each radius as the maximum arc length where at least one

of the arc segments does not intersect the pattern and is not
counted. It is assumed that the flow patterns have an isotropic
pattern morphology such that the local fractal dimensions are
independent on the angular offset of the arcsegment cuts. In
order to compare DL with Dm and Db we use Mandelbrot’s rule
of thumb for intersecting fractal sets [46, 47]. It states that the
codimension of a set of intersection points equals the sum of
codimensions of the individual intersecting sets. In our case, in
the image plane (with dimension E = 2), the intersecting sets are
the air cluster of codimension 2-D and a ring of codimension 2-1.
This gives

(2− D) + (2− 1) = 2− DL

⇓

D = DL + 1,
(8)
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FIGURE 4 | Results of 1-dimensional box counts of the ND2 pattern

along a radius of 5, 7.5, and 12.5cm. The slopes that are used to determine

the local fractal dimension are fitted to the data points in the range between

the lower cutoff of 0.4cm (average finger width) and the upper cutoffs where

the pattern appears space filling (indicated by arrows). We see that the upper

cutoff, which is approximately the separation between fingers, increase for

increasing radius. Local dimension as function of radius is found as the

negative value of such slopes, estimated at each pixel radius (approximately

every 0.04 cm) outside the injection region. However, at radii where there

are <10 data points between cutoffs, the local dimensions are not included for

analysis.

whereD is the fractal dimension of the pattern andDL is the local
fractal dimension. In a physical view, if the mass within a circle
of thickness dr is given by dr·α(2πr)DL where α is a constant
pre-factor, the total mass inside a radius R is given by

N(R) = α · (2π)DL

∫ R

0
rDLdr =

α · (2π)DL

(DL + 1)
· RDL+1 ∝ RDL+1,

(9)

if DL is independent of r. For a perfect fractal cluster N(R) ∼
RD, so if DL(r) is constant we have a perfect fractal with fractal
dimension D = DL + 1.

Deformation Analysis
We quantify the deformation of a porous medium by processing
the sequence of raw images with a Digital Image Correlation
(DIC) software called Ncorr, which by cross-correlation of
subsequent frames estimates both direction and magnitude of
bead displacements. Closer discussions of this DIC algorithm
is found in Blaber et al. [48], Hariral et al. [49]. A qualitative
assessment of deformations in the different sample types is
done by comparing figures representing the porous media
where values of radial displacement components at each pixel
is represented by a color code. In addition, areas of compaction
or decompaction are identified in figures where the volumetric
strains εv are represented at each pixel. The volumetric strains
are found by Vable [50]

εv = εxx + εyy, (10)

assuming that εzz = 0 in the direction normal to the plates,
corresponding to the fixed character of the side plates. The strains
εxx and εyy at a pixel are estimated from the gradients of the
displacement fields around that pixel. In order to reduce noise,
least-squares fits are made to the displacement fields within an
approximate 2mm radius around the evaluated pixel, and the
slopes of the fits are considered as the displacement gradients.

Results

Pattern Characteristics
The flow patterns from all ten experiments are shown in
Figure 3, where the color of a pixel indicates the time taken from
experiment start until the area of the pixel became invaded by air
(For readers who wants a closer look, a larger image is included
in the Supplementary Material). In Figure 3A, we see that the
flow patterns in ND media have long and thin fingers, and the
thickness of the fingers appears constant at all radii outside the
injection center. The flow patterns in CD media are shown in
Figure 3B, and they typically feature centrally few and thick
fingers that cross over to thinner and more numerous fingers
with increasing radius. For the flow patterns in ODmedia, shown
in Figure 3C, we see centrally few and thick fingers that cross
over to more numerous and thinner fingers at intermediate radii,
which then cross back to few thick fingers near the cell outlet.
The intermediate region where the fingers are thinner seems to
decrease in length for increasing injection pressure. In all the
systems the growth of fingers is mainly in the radial direction,
favored on the finger tips, and more advanced fingers grow on
expense of less advanced fingers.

Figure 5 shows plots of the longest finger radius as function
of time for all the experiments, as well as breakthrough
times as function of overpressure. The experiments and their
breakthrough times are also listed in Table 1.

Both the ND experiments were performed with a constant
injection pressure of 25 hPa, and we see that the time required
to reach breakthrough of the air cluster is similar for both
experiments. In the CD experiments we see that the time until
breakthrough decreases for increasing injection pressure. This is
also seen in the OD boundary condition, except for OD100 which
breaks through slower than OD75. The patterns seem to grow
with a roughly constant rate over time with some deviations, e.g.,
a faster growth rate initially for the CD25 and CD50 cases, and
OD75 with an increasing growth rate in the second half of the
experiment.

In Figure 6, plots of the average finger thickness as function
of radius are shown in several snapshots during the experiments.
For both the ND experiments in Figure 6A we see that, over
time, the average finger thickness approaches a limiting curve
with a more or less constant value around 0.4 cm. For the
CD experiments in Figure 6B we again see the average finger
thickness approach a limiting curve over time, but in this
system there is a continuous decrease in average finger thickness
with increasing radius. For the CD25, CD75, and CD100
breakthrough patterns the average finger thickness starts at 1.0–
1.5 cm near the injection center and quickly decreases to the
ND value of 0.4 cm. The CD50 breakthrough pattern already has
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FIGURE 5 | Radius of longest finger as function of time for all the experiments, grouped by boundary condition. From top left to top right: non-deformable,

confined deformable, and open deformable. The injection pressure in both ND experiments is 25 hPa, while the number in the experiment names for the CD and OD

experiments gives the injection pressure in hPa. In the bottom plots below the deformable experiments, time is divided by breakthrough time to compare the shape of

the curves, and the bottom left plot shows the breakthrough times as function of overpressure for all the experiments.

TABLE 1 | Breakthrough times for the experiments.

ND experiment Breakthrough time [s] CD experiment Breakthrough time [s] OD experiment Breakthrough time [s]

ND1 9.7 CD25 7.7 OD25 4.1

ND2 9.1 CD50 2.6 OD50 1.8

CD75 1.3 OD75 1.0

CD100 0.9 OD100 1.3

an average finger thickness of 0.4 cm initially. However, for all
the patterns, when the average finger thickness has decreased to
0.4 cm it will continue to decrease slowly toward 0.2 cm over the
remaining radial length of the sample. In the plots for the OD
experiments in Figure 6C, we also see that the average finger
thickness approach a limiting curve over time. In this system,
the limiting curves have initially larger average finger thicknesses
which decrease and approach the ND constant value of 0.4 cm
with increasing radius. Then, after remaining at a thickness of
around 0.4 cm over an intermediate range, the average finger
thickness increases again when approaching the cell rim. The
intermediate range where the average finger thickness is similar
to the ND flow patterns seems to decrease in size for increasing
injection pressure.

The different fractal dimensions found for the breakthrough
patterns are shown in Figure 7; Table 2.

Having used Equation (8), the local dimensions are plotted as
DL(r) + 1, and the mass dimensions Dm and box dimensions

Db are indicated as lines with uncertainties. The uncertainty
intervals for the fractal dimensions are determined as the
difference between the steepest and least steep slope that can
be fit within a 95% confidence interval around the best fits in
the log-log plots. In Figure 7A, we see that the ND1 and ND2
mass dimensions are virtually equal to their corresponding box
dimensions since they have overlapping uncertainty intervals.
The mass and box dimensions also correspond well with the
local fractal dimensions according toMandelbrot’s rule of thumb,
since DL(r) + 1 fluctuates around the corresponding Dm and Db

values. A sharp decrease in local dimensions is seen close to the
rim, and is due to finite size effects of the clusters. In Figure 7B

we see the fractal dimensions found for the CD patterns. Except
for the CD50 pattern where the mass dimension is equal to the
box dimension within the uncertainties, the mass dimensions are
significantly lower than the obtained box dimensions. The box
dimensions correspond better to the local dimensions than the
mass dimensions do. As for the ND patterns the CD25 and CD50
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FIGURE 6 | Average finger thickness as function of radius plotted at several snapshots for the non-deformable experiments (A), confined deformable

experiments (B), and open deformable experiments (C). The injection pressure in both ND experiments is 25 hPa, while the number in the experiment names for

the CD and OD experiments gives the injection pressure in hPa.

local dimensions fluctuate around the box dimension values,
before the outer finite size effects make the local dimensions
decrease. For the higher injection pressures, CD75 and CD100,
we see an inner region with higher local dimensions, before
the local dimensions approach values fluctuating around the
corresponding box dimensions, and finally decrease due to
the finite size effects. The obtained dimensions for the OD
breakthrough patterns are plotted in Figure 7C. All of the
patterns show a decreasing trend in local dimensions for
increasing radius. The mass dimensions are significantly lower
than the obtained box dimensions, and the box dimensions seem
to best correspond to the local dimensions for intermediate radii.
Inner regions show higher local dimensions, with DL(r) + 1
starting on 1.8–1.9, indicating emptier inner structures.

Figure 8A shows examples of mass-radius relations at several
snapshots of growing clusters in each boundary condition. For
the boundary conditions probed, the mass-radius relations are
seen to grow toward a limiting curve over time. The flat regions
seen at larger radii are outside the current pattern, and they
give the total mass at that time. We check whether the mass
dependence on time and radius can be collapsed onto a master
curve according to a Family-Vicsek relationship [51]. Indeed,
such a relationship is common in many growth phenomena, as

e.g., in rough interface evolution during two-phase flow in Hele-
Shaw cells [52], interface depinning models [53], fracture front
growth [54] and thermal roughening of dipolar chains [55, 56].
Figure 8B shows Family-Vicsek scaling of the same mass-radius
relations as in Figure 8A, and show how they scale over time.
We have assumed that the total mass N and longest finger r of
a pattern scales with time as

N(t) = Nb · (t/tb)
α , r(t) = rb · (t/tb)

β , (11)

where Nb, rb, and tb are breakthrough values of mass, radius
and time, respectively. It is a reasonable assumption once the
fingering instability is established, i.e., after the patterns had
grown to a mass of around 10% of Nb. The plots are shown in
Figure A3 in the Supplementary Material. Since, in addition, the
mass-radius relation is assumed to follow Equation (6), the scaled
mass-radius relation should be on the form

N(r, t)

Nb · (t/tb)α
=

(

r

rb · (t/tb)β

)Dm

, (12)

where Dm is the mass dimension of the pattern. We find the
scaling exponent α from the slope of the log-log plot of (N(t)/Nb)
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FIGURE 7 | The blue dots represent local fractal dimensions plotted as (DL + 1) as function of radius for the non-deformable breakthrough patterns

(A), confined deformable breakthrough patterns (B), and open deformable breakthrough patterns (C). The estimated mass dimensions Dm are indicated as

solid red lines with uncertainties shown as light red bands, and the box dimensions Db are indicated as dotted green lines with uncertainties shown as light green

bands. Overlaps of the Dm and Db uncertainties are colored gray. The injection pressure in both ND experiments is 25 hPa, while the number in the experiment names

for the CD and OD experiments gives the injection pressure in hPa.

TABLE 2 | The fractal mass dimensions Dm and box dimensions Db for the breakthrough patterns.

ND1 ND2 CD25 CD50 CD75 CD100 OD25 OD50 OD75 OD100

Dm 1.50 ± 0.05 1.60 ± 0.03 1.45 ± 0.04 1.61 ± 0.07 1.44 ± 0.04 1.43 ± 0.05 1.38 ± 0.06 1.40 ± 0.10 1.20 ± 0.20 1.44 ± 0.05

Db 1.55 ± 0.02 1.55 ± 0.02 1.60 ± 0.01 1.62 ± 0.02 1.59 ± 0.02 1.57 ± 0.02 1.60 ± 0.02 1.60 ± 0.01 1.62 ± 0.02 1.63 ± 0.02

as function of (t/tb), and the scaling exponent β from the slope
of the log-log plot of (r(t)/rb) as function of (t/tb), following
Equation (11). The estimated values for α and β are presented
in Table 3, and the corresponding plots are shown in Figure A3
in the Supplementary Material.

For the ND boundary condition we see that the scaled curves
collapse fairly well on top of each other, except for an inner
part which has a slightly lower mass-radius slope. The slopes are
however limited to the estimated mass dimension. For both the
deformable boundary conditions we see that the scaled curves
collapse well on top of each other and along the estimated mass
dimensions. Although, there are inner parts with slopes close
to 2 falling down from the collapsed curves. This effect is most
obvious in the OD plots.

Deformations
Deformation of the porous media is illustrated in Figure 9 for
selected snapshots of the confined and OD experiments with
an injection pressure of 100 hPa. The radial displacements
and volumetric strains are shown at an early stage, around
mid-experiment, at a later stage and at breakthrough. Radial
displacement of beads in the CD boundary condition, seen
in Figure 9A, are directed outwards from the injection center.
In the initial stage, the displacements do not reach all the
way to the rim of the cell, but over time the displaced area
grows toward a final size and magnitude, which goes toward
zero near the rim. The corresponding volumetric strains are
shown in Figure 9B, and show that the porous medium is
increasingly compacted with time outside the invasion cluster.
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FIGURE 8 | (A) Examples of mass-radius relations at several snapshots for a non-deformable experiment at 25 hPa (left), a confined deformable experiment at 100

hPa (middle), and an open deformable experiment at 100 hPa (right). At the start of the curves, the leftmost gray vertical lines mark the lower radius cutoff, which is

just outside the injection region, and the gray vertical lines to the right mark a distance of 1 mm outside the lower cutoff. The black dotted lines show the estimated

mass dimensions for the breakthrough patterns. The gray dotted lines has slopes of 2 to indicate the space filling dimension of an emptied bubble. (B) Family-Vicsek

scaling of the same mass-radius relations as above, except for the smallest clusters with a total mass <10% of the breakthrough mass. On the axes, T = (t/tb) is the

ratio of time over breakthrough time, r is radius, rb is breakthrough radius, N(r) is mass within radius r, Nb is total mass at breakthrough, and α and β are scaling

exponents. Here, for ND2: α = 1.45 and β = 0.80, for CD100: α = 1.58 and β = 1.02, and for OD100: α = 1.73 and β = 1.10.

Finger opening, i.e., parts of the air cluster empty of beads, is
observed in regions where the volumetric strain exceeds 0.05.
Thus, there is a crossover from finger opening to pore invasion
in the latter half of the experiment. Radial displacements at
different snapshots for the OD100 experiment are shown in
Figure 9C. We see a similar behavior as in the CD case initially,
where the inner beads are displaced radially outwards from the
injection center while the outer beads are not yet displaced. With
time, the radial displacements increase in magnitude outside the
growing cluster and eventually reach out to the rim where beads
leave the cell. The corresponding volumetric strains for the OD
snapshots are shown in Figure 9D. Initially, there is compaction
outside the growing air cluster, and with time there is increasing
decompaction of the outer portion of the medium. Again, finger
opening is observed in regions with volumetric strain above
0.05 and we see that it goes on until breakthrough in this
experiment.

The tangential displacements were found to look similar for
both boundary conditions, and is illustrated for a 40ms interval
in Figure 10. The displacements are directed away from the sides
of the fingers, and are higher in magnitude for larger fingers.
Outside the air cluster, where radial displacement dominates,
tangential displacement magnitudes are small.

TABLE 3 | The scaling exponents α and β found for the experiments ND2,

CD100, and OD100.

α β Dm = α/β

ND2 1.45 ± 0.18 0.80 ± 0.17 1.81 ± 0.35

CD100 1.58 ± 0.12 1.02 ± 0.13 1.55 ± 0.25

OD100 1.73 ± 0.10 1.10 ± 0.04 1.57 ± 0.14

Discussion

When we examine the flow patterns in Figure 3, we find that
they have both common features across boundary conditions and
typical characteristics depending on the boundary conditions.
In common, they all have the dendritic branching structure
that spreads out from the center, similar to DLA [18], where
longer fingers grow on expense of less advanced fingers. This
behavior is expected for viscous fingering in a porous medium
since the invasion flow follows Darcy’s law (3), with the pressure
distribution given by the Laplace equation outside the air cluster
(of constant pressure) such that the pressure gradient is screened
inside the longest fingers [19]. We do observe in Figures 6, 8 that
spatial properties of the structures grow toward limiting curves
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FIGURE 9 | Visualization of accumulated deformation at different snapshots during experiments: Radial displacements (A) and volumetric strains (B) in the

confined deformable experiment with 100 hPa injection pressure. The radial displacements (C) and volumetric strains (D) are for the open deformable experiment with

100 hPa injection pressure. Time is increasing from left to right, where the snapshots in (A,B) are taken at 176, 488, 696, and 904 ms (i.e., 20, 54, 77, and 100% of

the breakthrough time). The snapshots in (C,D) are taken at 232, 544, 960, and 1272 ms (i.e., 18, 43, 75, and 100% of the breakthrough time). For the radial

displacements (A,C), red color means that displacements are directed outwards and blue means inwards. For the volumetric strains (B,D), red color means

decompaction and blue means compaction. The air clusters and areas outside of the cell are shown in black, and the black bumps at the cell rim are due to the

clamps. The gray areas in (D) indicate omitted data where boundary effects of beads leaving the cell influence the strain calculations.

over time, and in Figure 7 that the local fractal dimensions show
a sudden decrease at the outermost radii, i.e., the active growth
zone. This confirms that growth dynamics of the patterns follow
a behavior where an outer active growth zone surrounds an
internally developed and frozen pattern, as described in similar
linear systems [3, 4]. The fundamental similarity in the growth
dynamics of the structures is reflected by their similar global
appearance across boundary conditions. This is also indicated
by the fractal box dimensions, which are all observed in the
range from 1.55 to 1.63, consistent with earlier observed values
of e.g., 1.53 [4] and 1.62 [19] for viscous fingers in ND porous
media. The breakthrough times, shown in Figure 5, are generally
observed to decrease with increased deformability and injection

pressure, while the growth rates generally seem to have a linear
trend with some fluctuations.

Typically, as seen in Figures 3A, 6A, invasion patterns in the
ND system has long thin fingers with approximately the same
finger thickness at all radii. In the deformable systems, typical
invasion patterns have initially an air bubble emptied of grains,
as observed in Johnsen et al. [21]. The empty bubble seems
larger for higher injection pressure and deformability, but in all
cases it branches rather quickly into few and thick fingers. In
the CD system (Figures 3B, 6B) the few thick fingers cross over
to increasingly numerous and thinner fingers with radius, while
in the OD system (Figures 3C, 6C), typical invasion patterns
goes from the few thick fingers into more numerous and thinner
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FIGURE 10 | Example of tangential displacement behavior taken from

the interval of 448–488ms (50–54% of breakthrough time) for the

confined deformable experiment with 100 hPa injection pressure. Blue

color means counter-clockwise displacements and red means clockwise

displacements. The air cluster and area outside of the cell are shown in black,

and the black bumps at the cell rim are due to the clamps.

fingers before crossing back to few and thick fingers close to
the rim. The key difference between the deformable systems
is visualized in Figures 9B,D. The porous medium in the CD
system is increasingly compacted as the cluster grows, while the
porous medium in the OD system is centrally compacted and
then decompacted near the rim as the cluster grows. Inside the
longest finger radius, displacements are observed to be directed
out from the side of fingertips as in Figure 10, while outside the
invasion cluster, radial displacements dominate.

The radial displacements outside the invasion cluster are
driven by a viscous pressure gradient, as in the experiments
by MacMinn et al. [30] where a saturated granular material is
injected with the same fluid. We assume that radial displacement
occurs outside the invasion cluster when

1p > σg, (13)

where 1p is the viscous pressure drop across a bead and σg is the
granular stress opposing bead displacement. In the OD boundary
condition, decompaction at the rim is believed to initiate when
the pressure drop across the outer layer of beads overcome the
pressure necessary to move one bead out of the cell, 1p > σb.

The displacements away from fingertips correspond to
opening of fractures by capillary forces, as e.g., discussed in
Holtzman et al. [29]. A typical capillary threshold in our
deformable systems is found from Equation (2) as

pcap = γ

(

2

a
+

2

b

)

, (14)

where a is the typical bead size and b is the plate separation,
giving pcap = 225.26 Pa. Since the lowest injection pressure in our

experiments is 2500 Pa, we can always expect pore invasions if
fracturing does not occur. However, if

pcap > σg and 1p⊥ > σg, (15)

where 1p⊥ is the pressure drop perpendicular to fingers across
beads, fracturing is assumed to occur. Limiting mechanisms for
fracturing can then be an increase in σg due to compaction
and accumulated friction, or a decrease in 1p⊥ due to pressure
screening from the longest fingers.

In the CD system fracturing occurs initially, but since the
granular stress increase as the medium compacts over time, we
observe a crossover from fracturing to pore invasions. In the
OD system, fracturing occurs initially and may cross over to
pore invasions in the intermediate compacted region due to
compaction and accumulated friction. Later on, when the fingers
approach the open rim, the medium decompacts and friction is
relaxed such that fracturing re-initiates. This results in a new
instability as fingers are sensitive to the proximity of the open
rim, andwe observe 1–2 fingers grow to breakthrough on expense
of the others. The outer fingers appear similar to fractures in a
paste [57]. During the outer fracturing instability for the higher
injection pressures, we also see an increased number of branches
on the longest fingers. This could be a consequence of outer
decompaction of the media, in the sense that the pore sizes
increase along the fingers and become more easily invaded.

The local fractal dimensions in Figure 7A are more or
less constant inside the frozen region, and correspond well
to the global mass- and box dimensions by Mandelbrot’s
rule of thumb (8). Thus, the ND patterns have fairly well
defined fractal dimensions on a global scale, between 1.5 and
1.6, consistent with earlier observed values. The local fractal
dimensions in Figure 7B, for the CD experiments, are observed
to be approximately constant in the frozen part of the patterns,
similar to the ND case for the lower injection pressures (CD25,
CD50). However, for higher injection pressures we see slightly
higher local dimensions initially, influenced by the central
emptied structures and thick fingers. The local dimensions for
the structures in the OD system, Figure 7C, are more or less
decreasing with radius. In addition, mass dimensions for the
deformable patterns generally do not correspond well with the
local dimensions due to finite size effects. In other words, the less
developed outer parts contribute to a decrease in the mass-radius
slope. For the CD100 and OD experiments the box dimension
only corresponds with a part of the local dimensions. This
indicates that the patterns in the most deformable systems does
not have a well-defined global fractal dimension, but have locally
defined fractal dimensions and transitions of universality class
with radius. The initial emptied and thick finger regions seem
to have local dimensions corresponding to around 1.7 which is
the measured fractal dimension for invasion patterns in empty
cells and DLA [58, 59]. In an intermediate region, the local
dimensions correspond well to the measured box dimensions
around 1.6, indicating viscous fingering. For the outer parts in
the OD system, the local dimensions decrease toward 1.4, which
is similar to the measured box dimension of 1.43 for fractures in
a paste [57].

Frontiers in Physics | www.frontiersin.org 13 October 2015 | Volume 3 | Article 81

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Eriksen et al. Two-phase flow in deformable porous media

After pattern growth develops into viscous fingering, the
mass-radius relations as function of time are found to scale
according to a Family-Vicsek scaling relation, where N(t) = Nb ·

(t/tb)
α and r(t) = rb · (t/tb)

β . The dynamic scaling exponents α

for the invaded area over time N(t)∼ tα are observed to increase
with the deformability of the porous media. When considering
that

dN(t)

dt
∼ tα−1, (16)

we see that higher values of α imply that the invaded area
changes at a faster rate. To the knowledge of the authors,
a dynamic scaling exponent for invasion area over time for
two-phase flow in deformable porous media is not discussed
in earlier papers. Thus, we present a new measured exponent
which calls for theoretical evaluation and comparison with
theoretical models. When mass dimensions of the patterns in the
deformable systems are estimated from the scaling law, Dm =
α/β , we get the values 1.55 ± 0.25 for CD100 and 1.57 ± 0.14

for OD100, which is similar to the respective box dimensions
as well as observed fractal dimensions of patterns in ND
systems.
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