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ABSTRACT 
 

We present a Brain Computer Interface (BCI) system 
in an asynchronous setting that allows classifying objects 
in their semantic categories (e.g. a hammer is a tool). For 
training, we use visual cues that are representative of the 
concepts (e.g. a hammer image for the concept of ham-
mer). We evaluate the system in an offline synchronous 
setting and in an online asynchronous setting. We consid-
er two scenarios: the first one, where concepts are in close 
semantic families (10 subjects) and the second where 
concepts are from distinctly different categories (10 sub-
jects). We find that both have classification accuracies of 
70% and above, although more distant conceptual catego-
ries lead to 5% more in classification accuracy. 

Index Terms— Brain Computer Interfaces, Conceptu-
al Imagery. 

1. INTRODUCTION 

Brain Computer Interfaces (BCIs) are increasingly being 
used out of the laboratory for interaction and control tasks. 
The main criterion aside from having high classification 
accuracy is to propose to users a system that is seamless 
and minimally noticeable so the user can concentrate on 
the task rather than the BCI. For control applications, 
Motor Imagery (imagining moving one’s limbs) is a well-
studied and adequate BCI paradigm [1]. It is intuitive and 
naturally corresponds to the semantics of a control task 
(e.g., turning left or right in a virtual environment). How-
ever, when it comes to selection tasks, SSVEP and P300 
(repeated flashing of a target) both use visual simulation 
unrelated to the semantics of the task that can be uncom-
fortable. One alternative is to explore the detection of 
conceptual representations and categories in order to build 
a BCI with a selection paradigm close to the semantics of 
the task. Conceptual representations, (e.g. a cat is in the 
broad semantic category of animal) in EEG data have long 
been studied (e.g. what happens in the brain when a user 
is stimulated by the concept “cat”, seeing a cat, reading 
the word “cat”, hearing it). Recent works have attempted 
detecting conceptual categories automatically from such 
signals (EEG, MEG) [2] and found that and that it is pos-
sible to classify objects belonging to semantically distinct 
categories (e.g. cat is an animal, car is a vehicle) as op-
posed to closely related categories (e.g. a hammer is a tool 
and a pen is a writing instrument). Simanova et al. [3] go a 
step further towards building BCI system based on con-
ceptual category detection by studying event-related po-
tential (ERP) activations. They consider textual, visual 
and auditory cues for concept stimulation. The best per-

forming detection results from visual stimuli. Starting 
from their findings we intend to build a BCI system that 
allows detecting the semantic categories of a few concrete 
concepts (e.g. a lamp, a chair). We thus obtain a BCI 
paradigm compatible with the semantics of selection 
tasks. We follow the principles of the theoretical BCI 
architecture by Kosmyna et al. [4] as well as the critique 
by Lotte et al. [5] on BCI training protocols to build an 
asynchronous and incremental BCI system that imple-
ments a detection of semantic categories in order to trig-
ger discrete actions that are related to a particular catego-
ries of interest (e.g. imagining a lamp so as to turn a light 
on or off).  

We study two settings: one where the concepts are 
from distinct semantic categories (a goat and a fireplace) 
and another where the two categories are closer together 
(a rabbit and a werewolf). We want to answer the follow-
ing questions:  

• (Q1) Is such a system feasible? 
• (Q2) How does using closer semantic categories affect 

the performance of the system? 
We will first present the design and architecture of our 

BCI system. Subsequently, we present the experiments 
and results along with a discussion and conclude about 
our findings. Finally we present perspectives for future 
work. 

2. RELATED WORK 

Murphy et al. [6] first study the detection of concept cate-
gories in EEG and later in MEG [2], [7] using a Common 
Spatial Patterns (CSP) filter and a Support Vector Ma-
chine  (SVM) classification using a dense coverage EEG 
acquisition system.  
Simanova et al. make a step further towards building BCI 
system based on conceptual category detection in their 
study of resulting event-related potentials (ERP) [3]. They 
consider textual, visual and auditory cues for concept 
stimulation. The best performing detection results from 
visual stimuli.  

3. BCI SYSTEM PROPOSED 

The rationale behind our BCI system is to make no as-
sumption about the specific BCI paradigm, to require little 
initial training and to allow for the incremental addition of 
training trails. We want the user to start using the system 
right away, even though the performance is potentially 
sub-optimal and allow for the incremental addition of new 
training trials if the performance does not satisfy the user 



for the particular task at hand. We follow the architectural 
principles proposed by Kosmyna et al. [4] that were made 
following the critique of BCI training protocols by Lotte 
et al [5]. We use Minimum Distance Classification 
(MDC), a popular classification approach in pattern 
recognition [8] and that is compatible with the require-
ments of the architectural principles we follow and shows 
good performance for some BCI experiments, especially 
in an asynchronous setting (e.g. with the Mahalanobis 
distance) [9]. The best performance is achieved with para-
digm-specific distance measure [10]. In our work, we 
make no assumptions about the nature of the signals and 
use Independent Component Analysis (ICA) as a prepro-
cessing step with the objective that ICA will project the 
data in a space closer to the intrinsic topology of the data 
[11] and make it easier for distance measure to accurately 
capture relevant differences in EEG patterns. This implies 
that the number of components computed is lower than 
the number of sensors. 

3.1. Signal Processing & Acquisition 

Figure 1 gives a graphical representation of how signals 
are divided into time 1s epochs over a 250ms sliding win-
dow, then filtered, and averaged. Subsequently, signal 
processing is applied on each epoch: 

• The Butterworth filter allows selecting the appropriate 
frequencies for Conceptual Imagery and discarding 
unwanted frequencies. We selected a 8-25Hz pass 
band with a filter of magnitude 4 and with a ripple of 
0.5db. 

• The FastICA [12] algorithm projects the signal data in 
a space where data points are maximally independent, 
essentially separating task related sources from noise 
sources and other interference. The difference with 
other ICA algorithms is that FastICA uses a fast algo-
rithm based on fixed-point calculations. We applied 
the variant of FastICA with symmetric orthogonaliza-
tion and using a hyperbolic tangent contrast function. 
We computed 10 components out of 16 sensors. We 
used a GPL Java implementation of the original algo-
rithm as described by Hyvärinen and Oja [12]. 

• We then produce average epochs that allow us to 
smooth the signal and remove some of the variability.  
The system thus produces an average epoch every se-

cond, which is then used for feature extraction and for 
classification. Thus, the classifier will yield one classi-
fication per second. Given that ICA is rather costly to 
compute, anything less than one second led to sub re-
al-time performance on the machine we performed the 
processing on (2012 MacBook Air, i7@2.9GHz).  
Given the sensitivity to noise and to variability in min-

imum distance based classification, ICA separates noise 
sources from authentic signals and makes it easier for 
distance measure to accurately capture relevant differ-
ences in brainwave patterns (if we generate less compo-
nents than sensors). 

Our classifier only requires minimal training data to 
start functioning. Indeed, our aim is to reduce that training 
time to a single calibration trial per class before the sys-
tem starts functioning. Subsequently, further training can 
be incrementally added depending on the initial perfor-
mance and the satisfaction of the user. For each trial, we 
capture a reference signal for each of the classes. In the 
case of our system, we captured full averaged epochs as 
references. Thus, the calibration for each class lasted 5 
seconds and we left 2 seconds of rest between each cali-
bration trial so that users could unwind briefly and prepare 
for the next trial. Figure 2 graphically shows the process 
by which we capture the reference signal for a particular 
BCI task.  

3.2. Feature Extraction & Classification 

As described in Figure 3, for each classification, we take 
the current average epoch and compute the distance be-
tween this current epoch and the reference signals for each 
of the class references. We then consider that the class 
corresponding to the reference epoch that yields the min-
imum distance is the outcome of the classification. Right 
after calibration, there is a single reference signal per 
class, however when feedback is given, more reference 

 
Figure 1. Signal epoch segmentation and averaging in 

our system. 

 
Figure 2. Detailed view of the calibration phase. 

 
Figure 3. Our classifier. 



signals are added for each class. When there are several 
references per class, there will be several distance meas-
urements, in which case the classification will be decided 
by a majority vote on classification outputs resulting from 
the individual distance measurements.  

Similarly, given that several EEG channels are used, if 
we use single variable distance measures (as opposed to 
multivariate measures), we obtain one distance value per 
channel, which is handled the same way as in the multiple 
reference setting. We can also consider using several 
different distance measures at the same time, so long as 
distances are comparable (same value range and distribu-
tion).  

In order to minimize the sensitivity of the classifier 
and rapid successive classification changes, we added a 
threshold of successive identical classification outcomes 
before the system classification output changed. As can be 
seen in Figure 4, initially the classification result is Class 
1 (CL.1) twice consecutively and then the classifier gives 
a Class 2 (CL.2), however the system continues to output 
Class 1. For the system to change its output to Class 2, we 
need 4 successive Class 2 classifications from the classifi-
er (with no gaps).  

3.3. Equipment and Electrode Placement 

For the electrode placement of Conceptual Imagery, we 
mostly followed the placement proposed by Simanova et 
al. [3], where 64 electrodes are positioned in an equidis-
tant manner so as to locate and study the underlying phe-
nomena. They make three experiments where visual, tex-
tual and auditory stimulation cues are used and find that 
visual cues lead to the best performance. We focus on 
visual stimulation and place our electrodes on the activa-

tion areas over the visual cortex. 
We used a g.tec USBAmp with 16 channels with 

g.SAHARA dry electrodes over the following 10-20 elec-
trode positions: P3, P4, Pz, PO9, PO7, PO3, PO4, PO8, 
PO10, POz, O9, O10, O1, O2, Oz, Iz (Figure 5). Moreo-
ver, we plotted an average activation map averaged for 
one of our subjects in Figure 6 in the 160-200 ms. time 
interval after stimulation. The activations are indeed iden-
tifiable over the visual cortex at similar locations as those 
identified by Simanova et al., there most likely are activa-
tions elsewhere, however we only cover the visual cortex.  

4. EXPERIMENTS 

In order to answer our questions on whether obtaining a 
functional BCI system in this context is feasible (Q1) and 
how using items from closer conceptual categories impact 
performance (Q2), we made two experiments and for each 
of the settings we are interested in studying:  

• Two concepts from closely related conceptual 
categories; 

• Two concepts from clearly distinct conceptual 
families. 

We first present the two settings and the concepts in-
volved. Then we validate the classification procedure by 
doing a synchronous training capture of 20 trials for each 
class and by using 10-fold cross-validation. Finally we 
evaluate the system in the asynchronous setting, by giving 
the users objectives in a practical task and counting the 
number of errors and the time to correct classification in 
order to evaluate the performance in a real setting. For a 
two-class classification problem, the system also consid-
ers the resting state of the user that should include all 
activity except the target activity. This is essential for an 
asynchronous setting as the classifier is constantly active, 
even when the user is at rest, in which case the classifier 
should recognize it [13]. 

4.1. Similar Conceptual Families 

To study similar conceptual family detection, we devel-
oped a simple game where users played with the little 
riding hood and had to go home, but at each step there 
could be a rabbit menaced of being eaten by the big bad 

 
Figure 6. Activation map in the 160-200ms epoch after 

stimulation. 

 
Figure 5. Electrode placement for our BCI according to 

the extended 10-20 electrode placement system. 

 
Figure 4. The classification change threshold. 



(Were)wolf or the player could be menaced of being eat-
ing by the wolf directly. The user had to imagine the con-
cept of a rabbit to save the rabbit and dash forward (in the 
first situation) or to imagine the wolf to kill it (in the se-
cond situation). A rabbit is an animal but a werewolf is 
not quite an animal, although close to one. The question 
for this setting is how this closeness affects the perfor-
mance of the BCI. The user had to chose between the 
rabbit or the werewolf at each turn over 16 turns. 

4.2. Different Conceptual Families 

In the second setting we devised a similar game with a 
different objective at each turn. A herder’s goats have run 
away far and wide. The herder wants to get the goats back 
and goes on a journey. At each turn, the herder either 
hears a goat and the player must imagine a goat to catch 
the goat in the game or if night falls (the sky darkens), the 
player must imagine a fire in order to set camp for the 
night. The herder finished the journey in 8 days and nights 
(16 sessions), however for the experiments the order was 
randomized. This setting serves to answer the first exper-
imental question of whether BCI performance will be 
acceptable in out restricted setting compared to Simanova 
et al.’s study. 

5. RESULTS & ANALYSIS 

5.1. Synchronous Offline Validation 

 We performed a simple validation that consisted classify-
ing a set of unlabeled signals and comparing them to a set 
of reference signals for each class (including the rest 
class) using 10-fold cross-validation. We considered two 
distance measures in order to see what was the one (if 
any) leading to the best performance. The analysis was 
done over the signals of two subjects (distinct from sub-
jects of the asynchronous experiments in the next session) 
captured over the course of 20 trials for each class.  We 
used both the Mahalanobis distance (parametric – assumes 
a normal distribution, multivariate – one measure for all 
channels at once) and the spearman rank correlation coef-
ficient (non-parametric, single variate – distance averaged 

over channels to obtain a single measure). We can now 
look at the cross-validation results from the off-line analy-
sis to validate the BCI system depending on the distance 
measure used in Table 1. In bold is the best result for each 
measure and each subject. The Mahalanobis distance 
performed better with a significant difference (ANOVA + 
Tukey HSD post-hoc with p-value correction, with 
p<0.01) from the spearman difference except for subject 
two in the context of different conceptual families. The 
difference of performance between subjects was not sig-
nificant. Moreover the results were not random following 
the empirical study by Müller-Putz et al. [14]. 

5.2. Asynchronous online evaluation 

 For the asynchronous online evaluation, we had 10 users 
for each setting (10 subjects for close categories and 10 
other subjects for distant categories) and had the users 
perform the respective task. Users were between 23 and 
45 years old and all had prior BCI experience. In the first 
setting the user had to chose between the rabbit or the 
werewolf at each turn over 16 turns without a predefined 
duration or stimulus (only one was correct, the order was 
randomized). The turn ended as soon as the classification 
output was different than the rest state. Similarly, in the 
second setting users had to cross 16 segments of a game. 
Similarly the user got out of the current segment only 
when the classification output was different from rest. For 
both situations we measured the average classification 
accuracy and the average classification time (time be-
tween the start of the turn or segment and the moment the 
classification output becomes different from rest). Table 2 
shows the results. The difference in the means of the clas-
sification accuracy and classification time between the 
two settings is significant with p<0.01, using a student t-
test (the assumption of equality of variances holds). Like 
in the synchronous setting, both setting lead to a usable 
classification performance for the BCI, however with 
close conceptual categories is 5% lower than with distinct 
conceptual categories (70.12% vs. 75.62%). The differ-
ence in classification time is even more marked as it takes 
about half as long to perform a classification with distinct 
conceptual categories rather than with close conceptual 
categories (1245ms against 2512ms).   

5.3. Discussion  

From both the synchronous validation setting and the 
asynchronous evaluation setting, we can answer positively 
to Q1 about the fact that we can indeed build a functional 

Distance 
Measure 

Concept Distinction Type 
Close conceptual 

family 
Different concep-

tual families 
Subject 

1 
Subject 

2 
Subject 

1 
Subject 

2 
Mahalanobis 71.34% 

(1.23%) 
71.45% 
(1.14%) 

74.23% 
(0.87%) 

73.96% 
(0.75%) 

Spearman 69.32% 
(2.03%) 

68.94% 
(1.87%) 

72.45% 
(1.22%) 

72.65% 
(1.43%) 

Table 1. Synchronous Offline Analysis in terms of 10-
fold cross-validated Classification Accuracy (STD. Dev. 

in parenthesis) for both subjects and for the spearman 
rank correlation and Mahalanobis distances. 

Close conceptual family Different conceptual 
families 

Accuracy Time Accuracy Time 

70.12% 
(0.65%) 

2512ms 
(234ms) 

75.62% 
(0.45%) 

1245ms 
(143ms) 

Table 2. Asynchronous evaluation. Classification Ac-
curacy (%) and average classification time (MS), 

standard deviation in parenthesis. 



BCI system using conceptual category classification. Even 
though we only concentrate on one stimulus modality and 
area in the brain. Arguably covering a broader area would 
allow us to capture higher level processing of the concep-
tual information and allow for the better detection of clos-
er categories. Indeed, while both systems are usable, the 
5% difference in classification accuracy and the two-fold 
increase in classification time have a potential effect on 
the usability of the system (Q2) for the end users. 

5.4. User opinions 

The subjects of the experiment were very interested by the 
conceptual imagery BCI paradigm as they saw great po-
tential for an engaging interaction in many contexts. 
However, for close conceptual families they find the delay 
it took for a successful classification to occur rather frus-
trating as opposed to the classification time for distinct 
conceptual families that was deemed tolerable.  

6. CONCLUSION 
We build an operational BCI system in an asynchronous 
setting that allows classifying objects in their semantic 
categories based on visual cues. We evaluate the system in 
an offline synchronous setting and an online asynchronous 
setting in two situations: two concepts in families that are 
close and two concepts from distinctly different catego-
ries. We find that both have classification accuracies of 
70% and above, although more distant conceptual catego-
ries lead to 5% more in classification accuracy in the 
online setting. For future work, the inclusion of a broader 
coverage of the brain would potentially allow for finer 
grained distinction between categories. Moreover given 
that we only used two classes in this experiment, it is 
necessary to extend and evaluate this work to more classes 
in order to see how the performance and training time 
required scale up. 
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