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Robust Output Interval Constraint using O/I Saturation
Transformation with Application to Uncertain Linear Launch Vehicle

Emmanuel Chambon?, Laurent Burlion? and Pierre Apkarian?

Abstract— In this article, we consider the case where a
regulated output of an uncertain system with unknown dis-
turbance input is constrained to lie between two specified time-
varying bounds. We suppose a controller has already been
designed using any desired technique. This controller may not
satisfy expected output constraints. The objective is to design
saturations on the control signal so that the closed-loop is
altered only when those specifications are not met. The theory
is presented in the linear case with linear dependence on an
unknown disturbance. Application to an uncertain launcher
linear model with unknown wind disturbance is presented.

Index Terms— Linear systems; Constrained control; Uncer-
tain systems; Unknown input.

I. INTRODUCTION

The objective of control law synthesis is often to constrain
time-response of a so-called regulated variable. Characteris-
tics like overshoot or settling time should satisfy prescribed
behavior. Regulated variables however may not be measured
or may depend on unknown disturbance. Additional infor-
mation is thus required.

In this article we consider the case where we want to force
a system regulated output variable α to lie in the possibly
time-varying interval [αmin(t), αmax(t)]. This variable linearly
depends on the system state but also on an unknown input
dw through

α = Cαx + Dα

(
dw u

)>
(1)

where (Cα,Dα) are known. Uncertainties in the plant
model are also considered. We suppose we can bound
unknown input by deterministic time-varying signals. Uncer-
tainty ranges also are supposed known. A controller has been
synthesized which robustly stabilizes the system. The interval
constraint on the regulated output variable α is however not
satisfied.

Some strategies to answer this problem include [1], [2]
which use anti-windup loops to constrain the state or outputs
in the time-domain. In this article however, the recent work
in [3] is used to transform such constraint on a regulated
output into time-varying saturations on the control signal. In
the presence of uncertainties and unknown inputs, calculat-
ing these saturations however requires additional study. We
propose a robust approach where the regulated variable is
estimated through the use of a Luenberger observer. Estima-
tion error – which depends on disregarded uncertainties and
disturbance inputs – is then bounded using interval observers
as described in [4], [5]. Although being conservative, this
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approach has been successfully tested on an uncertain rigid
launch vehicle model with unknown wind input. Other
successful applications of Output to Input Constraint Trans-
formation (OIST) include visual servoing applied to a low-
order known UAV model [6] and longitudinal load control
of an aircraft [7] where a known linear large-scale model is
considered.

The paper is structured as follows. Section II introduces
notations and formulates the problem as well as the con-
sidered hypotheses. Section III provides theoretical results
related to OIST. In Section IV we describe our solution
which involves the use of different types of observers. Our
approach is then applied to a rigid launch vehicle model
in Section V. Conclusions and perspectives are given in
Section VI.

II. THE OIST PROBLEM

A. Notations and a definition

Let R (resp. N) denote the set of real numbers (resp. of
natural integers). Let A ∈ Rn×m. The Moore-Penrose pseu-
doinverse of A is denoted A†. For a matrix A(Θ) depending
on an uncertain vector Θ ∈ Rr with known nominal value
Θnom, notation A refers to A(Θnom). Let r ∈ N, r refers to
{1, 2, . . . , r}. The identity matrix of size n × n is written In.

Inequalities over matrices are to be understood element-
wise: considering A =

(
ai j

)
and B =

(
bi j

)
in Rn×m, A ≤

B ⇔ ∀i ∈ n, j ∈ m, ai j ≤ bi j. For a matrix A ∈ Rn×m we
denote Au = max(A, 0) (where max is the component-wise
maximum function) and Al = Au − A. Kronecker delta is
denoted κ(i, j) = κi, j and is null unless i = j.

Definition 1: Let A ∈ Rn×n. A is said to be Metzler iff

∀i , j ∈ n, ai j ≥ 0 (2)

B. Hypotheses

The hypotheses satisfied by the systems considered
throughout the article are regrouped here.

Hypothesis 1: the disturbance signal dw ∈ R is unknown
but time-varying bounds M(t) (resp. M2(t)) are known such
that ∀t, |dw(t)| ≤ M(t) (resp. |ḋw(t)| ≤ M2(t)).

Hypothesis 2: y = x and α = Cαx is of relative degree
k ∈ N+ with respect to u, and relative degree 0 < l ≤ k with
respect to dw that is{ ∀i < k − 1, CαAiBu = 0 & CαAk−1Bu , 0

∀i < l − 1, CαAiBd = 0 & CαAl−1Bd , 0 (3)

It is also supposed that CαAk−1Bu > 0.



Hypothesis 3: the relative degrees wrt. u and d satisfy to
the following relation: k = l + 1.

Hypothesis 4: As far as initial values are considered, we
have αmin ≤ α(0) ≤ αmax and

∀ j ∈ k − 1, α j,min(0) ≤ α( j)(0) ≤ α j,max(0) (4)

where α j,min and α j,max are defined recursively in Fig. 1
with α0,min = αmin.

Hypothesis 5: Suppose there exists a matrix R such that
M = R (A − LC) R−1 = RAeR−1 is Hurwitz Metzler.

Hypothesis 6: Suppose
∣∣∣CαAk−1Bddw

∣∣∣ � Kk

∣∣∣CαAk−2Bddw

∣∣∣
(where Kk > 0 is fixed) and

∣∣∣CαAk−1Bddw

∣∣∣ � ∣∣∣CαAk−2Bdḋw

∣∣∣
C. Problem formulation

Let Θ = {θi}i∈r a vector of uncertain parameters satisfying
∀i ∈ r, ∃

(
θi, θi

)
∈ R2 s.t. θi ≤ θi ≤ θi. By extent, we define

Θ =
(
θi

)
i
∈ Rr and Θ similarly. The notation Θnom is used

to refer to known nominal value of these parameters. We
consider the following uncertain linear system

(G)
{

ẋ = A(Θ)x + Bu(Θ)u + Bd(Θ)dw

y = Cx (5)

where x ∈ Rn, y ∈ Rm, u ∈ R, matrices (A, Bu, Bd)
dependency on the vector of uncertain parameters Θ is
known, C is known and dw ∈ R is an unknown disturbance
with time-varying lower and upper bounds

∀t, dw(t) ≤ dw(t) ≤ dw(t) (6)

We suppose a stabilizing static or dynamic control law
u has been designed using any linear control design tech-
nique like H∞ synthesis or modal control. We consider the
following problem

Problem 1: Find umin, umax and C0 such that

α(t) ∈ [αmin(t), αmax(t)] , ∀t (7)

for the system described as



ẋ = A(Θ)x + Bu(Θ)u + Bd(Θ)dw
y = Cx

α = Cαx + Dα

(
dw
u

)
∈ R

u ∈
[
umin

(
dw, dw,Θ,Θ, αmin, αmax, y

)
,

umax

(
dw, dw,Θ,Θ, αmin, αmax, y

)]
x0 ∈ C0

(8)

Apart from being expressed in the linear framework, this
is a slightly different problem from the Robust Output Con-
straint Problem proposed in [3] since the regulated variable
α linearly depends on the unknown disturbance dw and the
considered system depends on parameters Θ. Note however
that the specified bounds αmin(t) and αmax(t) do not depend
on this vector Θ.

D. Uncertainties viewed as nominal system inputs

In robust control theory, uncertainties are commonly in-
jected into a system through Linear Fractional Transforma-
tion (LFT) with respect to a block ∆ ∈ Rr×r (see [8]). This
means that system (5) is equivalent to a known (nominal)
system perturbed by inputs d∆ due to the presence of
uncertainties. These inputs themselves depend on the other
system variables through

(Gu)


ẋ = Ax + B

(
dw u

)>
+ B∆d∆

d∆ = ∆z
z = C∆x + D∆1

(
dw u

)>
+ D∆2d∆

y = Cx

(9)

where B =
[
Bd(Θnom) Bu(Θnom)

]
, z ∈ Rr and ∆ is a

diagonal matrix with elements δi (i ∈ r) satisfying |δi| ≤ 1.
When comparing Eq. (5) and Eq. (9), one can see that B∆d∆

contains information on the variation of uncertain parameters
Θ around their nominal value Θnom. This formulation will
be used in the decoupling of α with respect to dw and u
(see Section II-E). Also, problem 2 will be reformulated in
presence of uncertainties by addition of a disturbance input
d∆ to the existing input dw.

E. Unknown input decoupling

To use the methods proposed in [3], we can artificially
decouple α and dw. Assuming B is full-column rank, we have
B†B = I2. Using Eq. (9), we have ẋ = Ax+B

(
dw u

)>
+B∆d∆

hence (
dw u

)>
= B† ẋ − B†Ax − B†B∆d∆ (10)

Since α = Cαx + Dα

(
dw u

)>
, we have

α = Cαx + DαB† (ẋ − Ax − B∆d∆)
= Σ1 x + Σ2 ẋ − DαB†B∆d∆

= Σ(s)x − DαB†B∆d∆

(11)

with the notations

Σ1 := Cα − DαB†A
Σ2 := DαB†
Σ(s) := Σ1 + Σ2 s

(12)

Note this requires a knowledge of the state x through
observation in case y , x. Also note that Σ(s) is not
proper but Tα→ξ(s)Σ(s) may be where ξ := Tα→ξ(s)α is
an appropriate change of variable. Note a similar change
of variable is considered later in this article for reasons
detailed in IV-D.1. If Tα→ξ(s)Σ(s) is proper, an estimation of
ẋ is not required. Otherwise, specific techniques need to be
used like high-gain observers [9] or algebraic time-derivative
estimation [10] which is not considered in this article.

III. O/I SATURATION TRANSFORMATION

For simplicity of the presentation, we only describe appli-
cation of OIST to the known linear perturbed case. Please
refer to [3] for a comprehensive discussion. In case the model
is uncertain, consider an additional input d∆ as in problem 1
using Eq. (9). Consider the following problem

Problem 2: Find umin, umax and C0 such that



α(t) ∈ [αmin(t), αmax(t)] , ∀t (13)

for the system described as
ẋ = Ax + Buu + Bddw
y = Cx
α = Cαx
u ∈ [

umin(y, αmin, αmax), umax(y, αmin, αmax)
]

x0 ∈ C0

(14)

where x ∈ Rn, y ∈ Rm, u ∈ R and system matrices are
known. Under Hyp. 1 to 4 we formulate the theorem

Theorem 1: Let (K1, . . . ,Kk) fixed positive real numbers.
Let Hyp. 2 to 4 be satisfied. We have

α(k) = CαAk x + CαAk−1Buu + CαAk−1Bddw + CαAk−2Bdḋw (15)

Requirements α(t) ∈ [αmin(t), αmax(t)] , ∀t and ∀m ∈
k, αm,min ≤ α(m) ≤ αm,max (where bounds are defined in
Eq. (16) and (17) in Fig. 1) are satisfied under application
of the following saturations on control signal u

umin =
αk,min(x, ẋ, dw) −CαAk x −CαAk−1Bddw −CαAk−2Bdḋw

CαAk−1Bu
(18)

with umax defined in a similar way. Under Hyp. 1 a more
restrictive expression is obtained

umin =
1

CαAk−1Bu

(
αk,min(x, ẋ, 0) −CαAk x +

[∣∣∣CαAk−1Bd

∣∣∣
+Kk

∣∣∣CαAk−2Bd

∣∣∣] M +
∣∣∣CαAk−2Bd

∣∣∣ M2

)
(19)

Note that (Ki)i ∈ k static coefficients in αk,min(x, ẋ, 0) need
to be chosen wisely to avoid saturations crossings.

Proof: due to space restriction, the proof of this theorem
is not detailed here. A sketch of the proof in presence of
disturbance is proposed in [3, p. 1219].

IV. PROPOSED SOLUTION

The regulated variable α has been decoupled from the
unknown input dw in Section II-E. Further knowledge is
however needed since α depends on (x, ẋ) according to
Eq. (11) which leads to umin and umax depending on the
state and its derivative, as shown in Th. 1. In this article, we
propose using an LTI Luenberger observer in parallel with
an interval observer. Then we proceed to OIST application.

A. State observer and error system

We use the following observer to estimate x̂ based on
system G – see Eq. (5) – nominal model (Θ = Θnom)

(Gobs)
{ ˙̂x = Ax̂ + Buu + L(y −Cx̂)

yobs = x̂
(20)

This observer is based on the nominal model and does not
take unknown input dw into account. As such the resulting
observation error depends on both dw and Θ. Let e = x − x̂
and

∆A(Θ) := A(Θ) − A
∆Bu(Θ) := Bu(Θ) − Bu

(21)

Using the following notations

Ae(Θ) := (A − LC) + ∆A(Θ)
Be(Θ) :=

[
∆A(Θ) ∆Bu(Θ)

] (22)

the estimation error dynamics is given by

(Ge)

 ė = Ae(Θ)e + Be(Θ)
(
x̂ u

)>
+ Bd(Θ)dw

ye = e
(23)

on which methods presented in [5] can be applied.

B. Estimation error interval observer

The purpose of such an observer is to determine e and
e such that ∀t, e(t) ≤ e(t) ≤ e(t). Suppose we can define
∆A ≤ ∆A(Θ) ≤ ∆A with ∆A = −∆A1 and (∆Bmin

u ,∆Bmax
u ) are

known with ∆Bmin
u = −∆Bmax

u
2. Let

Be(x̂, u) :=
[
−sgn(x̂)∆A sgn(u)∆Bmin

u

]
Be(x̂, u) := −Be(x̂, u)

(24)

Eq. (23) can be written in the following form

(Ge)

 ė = Aee + Be(Θ)
(
x̂ u

)>
+ Bd(Θ)dw + f (e,Θ)

ye = e
(25)

where Ae = Ae(0) and f (e,Θ) = (Ae(Θ) − Ae) e = ∆A(Θ)e.
Since Ae(Θ) = Ae(0) + ∆A(Θ) we obtain

Ae − ∆A ≤ Ae(Θ) ≤ Ae + ∆A (26)

and using [5], we consider f (e, e) := −∆A
(
e − e

)
f (e, e) := − f (e, e)

(27)

Suppose we have Bmin
d ≤ Bd(Θ) ≤ Bmax

d . We define

Bd(d) :=
{

Bmin
d if d ≥ 0

Bmax
d if d < 0 , Bd(d) :=

{
Bmax

d if d ≥ 0
Bmin

d if d < 0 (28)

In case Ae is Hurwitz Metzler3, we can use the interval
observer in Eq. (29) in Fig. 2 which is described in [5], [11],
[4]. Since Ae is Hurwitz but not Metzler, suppose Hyp. 5 is
satisfied. Let ez = Re. Eq. (25) reformulates as


ėz = Mez + RBe(Θ)

(
x̂ u

)>
+ RBd(Θ)dw

+R f (R−1ez,Θ)
ye = Re

(31)

Using notations in Section II-A and Appendix A, we
obtain the interval observer as defined in Eq. (30) in Fig. 2.
Estimation error e then satisfies e ≤ e ≤ e if

1This is specific to our application (see Section V).
2This is also specific to our application. In other cases, refer to [5] and

expect more difficult expressions.
3See Def. 1.



∀ j ∈ l − 1, α j+1,min(x) := K j+1

(
α j,min(x) −CαA j x

)
+ α̇ j,min (16)

With k = l + 1, αk,min(x, ẋ, dw) := Kk

(
αl,min −CαAl x

)
+ α̇l,min − KkCαAk−2Bddw (17)

Fig. 1. OIST (under Hyp. 3): satisfied α(m) bounds for m ∈ k in which αl+ j,max is defined similarly to αl+ j,min.


ė = Aee + Be(x̂, u)

(
x̂ u

)>
+ f (e, e) + min(Bd(dw)dw, Bd(dw)dw)

ė = Aee + Be(x̂, u)
(
x̂ u

)>
+ f (e, e) + max(Bd(dw)dw, Bd(dw)dw)

(29)


ėz = Mez + Bz

e(x̂, u)
(
x̂ u

)>
+ f z(ez, ez) + Bz

d(dw, dw)

ėz = Mez + Bz
e(x̂, u)

(
x̂ u

)>
+ f

z
(ez, ez) + Bz

d(dw, dw)
(30)

Fig. 2. Left (resp. right): valid interval observer in case Ae (resp. M = RAeR−1) is Hurwitz Metzler.

 e = T uez − T lez

e = T uez − T lez

(32)

and state x satisfies x̂ + e ≤ x ≤ x̂ + e.

C. Regulated variable estimation error

Recall that α = Σ1x + Σ2 ẋ − DαB†B∆d∆. Let eα = α − α̂
where α̂ = Σ1 x̂ + Σ2

˙̂x. Thus

eα = Σ1e + Σ2ė − DαB†B∆d∆

= e1
α + e2

α

eα = e1
α + e2

α

eα = e1
α + e2

α

e1
α = Σ1e + Σ2ė

e2
α = −DαB†B∆d∆

(33)

which we can bound using previous results

e1
α = Σu

1e − Σl
1e + min

(
Σu

2ė − Σl
2ė,Σu

2ė − Σl
2ė

)
e1
α = Σu

1e − Σl
1e + max

(
Σu

2ė − Σl
2ė,Σu

2ė − Σl
2ė

)
e2
α = min

[
B

(
dδ1

. . . dδr

)>
, . . . ,B

(
dδ1 . . . dδr

)>]
e2
α = max

[
B

(
dδ1

. . . dδr

)>
, . . . ,B

(
dδ1 . . . dδr

)>]
(34)

where B = −DαB†B∆ and dδi (i ∈ r) extrema are functions
of δi and θi,nom (see for example V-B). These bounds take into
account the fact we use the estimated state (and estimated
state derivative) to compute an estimate of regulated variable
α̂ (cf. e1

α) and that the model we use is nominal (cf. e2
α).

D. Robust OIST

Let αn = Σ1x + Σ2 ẋ. Note that α = αn + e2
α. Suppose

αn = Tu→αn (s)u is of relative degree k ∈ N+ with respect to
u and l = k − 1 with respect to dw.

1) Change of variable (optional): In case Tu→αn (s) has
nunst unstable poles with nunst > k, we define a stable and
strictly proper change of variable ξ = Tαn→ξαn of degree
nunst−k and we proceed with the study of ξ = Tαn→ξTu→αn u =

Tu→ξu. Note ξ is of relative degree kξ = nunst with respect
to u. In case a change of variable is not needed, this is
equivalent to taking ξ = αn.

2) Transfer study: Consider the transfer function Tu→ξ(s).
We define Tξ(s) and T?

u (s) such that:

Tξ(s)ξ = T?
u (s)u = Tξ(s)Tu→ξ(s)u (35)

where Tξ is of degree kξ and is composed of Tu→ξ(s)
unstable poles. Hence T?

u (s) is a stable transfer of null
degree. Using this result, T?

u has a state-space representation(
A?

u , B
?
u ,C

?
u ,D

?
u
)

with state X and D?
u , 0. Moreover, Tξ(s)

can be expressed as a monic polynomial of degree kξ:
Tξ(s) = skξ + akξ−1skξ−1 + . . . + a1s + a0. It comes

skξξ = C?
u X + D?

u u − akξ−1skξ−1ξ − . . . − a1sξ − a0ξ (36)

3) OIST: To begin with, we suppose d∆ = 0 and dw , 0.
Considering problem 2, we have to find [umin(t), umax(t)] such
that ∀t, umin(t) ≤ u ≤ umax(t)⇒ ξmin(t) ≤ ξ(t) ≤ ξmax(t).

Let ξn = Tαn→ξαn. Under Hyp. 1 to 4 we can apply
results in Th. 1 (supposing Tαn→ξ(s) (Σ1 + Σ2s) is proper)
thus we obtain saturations on the control signal u. These
saturations depend on state and state derivative (x, ẋ) but
also on bounds on the wind

(
dw, dw

)
and its derivative. Two

additional problems appear
• in case (x, ẋ) is not known, this means we can only

determine ξ̂n = Tαn→ξα̂n where α̂n = Σ1 x̂ + Σ2
˙̂x. Thus ξ̂n

is also of null relative degree with respect to estimation
error e1

α on which bounds have been determined in
Eq. (34). Indeed we have

ξ̂n = Tu→ξ(s)u − Tαn→ξ(s)e1
α

• In case bounds on dw derivatives are not known, we
decide to rely on Hyp. 6 in this paper. In future work
this hypothesis will be weakened to account for more
demanding wind profiles and models.

Remark 1: Under some hypothesis related to our ap-
plication, we can show that bounding ξ is equivalent to
bounding α:

αmin ≤ α ≤ αmax
⇓(1)⇑(2)

ξmin ≤ ξ ≤ ξmax

(37)



In the presence of uncertainties, d∆ , 0 and ξ̂n is of null
relative degree with respect to d∆ as shown in

ξ̂n = Tu→ξ(s)u − Tα→ξ(s)e1
α + Tα→ξ(s)Bd∆

= Tu→ξ(s)u − Tα→ξ(s)e1
α − Tα→ξ(s)e2

α

= Tu→ξ(s)u − Tα→ξ(s)eα
(38)

4) Note on the presence of null relative degree inputs in
regulated variable expression: Let consider problem 2 and
associated notations. In case α also depends on an input e as
in α = Cαx + Eαe, expressions proposed in Th. 1 are applied
on α−Eαe rather than on α which results in modified control
saturations since the term

∀ j ∈ k, Eαe( j) −
 j∏

i=1

(s + Ki) Eαe


is added to the definition of α j,min and α j,max. This stands
as an extension of Th. 1. At this stage control saturations
depend on bounds on eα (i.e. on dw and d∆ bounds), state
vector estimate and bounds on derivatives of the estimation
error which are discarded in our application using similar
hypothesis to Hyp. 6 (see future works).

E. Remarks

Injecting saturations in a system is never harmless. Con-
sider the case of a dynamic output feedback control law
u = Cv(s)y (e.g. observer-based controller). Under active
saturation, control law is altered into u = umin or u = umax
which differs from Cv(s)y. It may result in controller state
divergence which is unwanted when switching back from
saturation. In that case, consider the use of an anti-windup
loop as described for example in [12].

We do not have mentioned the possible presence of
positive zeros in transfer Tu→ξ. One may show that a system
in closed-loop with active saturating block has its poles equal
Tu→ξ zeros. If positive zeros are present, this means saturated
system may diverge away from the saturation. However when
absolute value a of a positive zero is very small a � 1, as
is the case in our application, divergence will occur after a
long time is spent on saturation, typically of magnitude 1

a
(in seconds).

V. APPLICATION

A. Launch vehicle model

The model considered is that of a rigid launch vehicle
where we also consider sensor dynamics with state xcapt.
Actuator dynamics is implemented as a second-order filter.
The system can be represented by Eq. (5) where u ∈ R
controls the thruster orientation, dw ∈ R is the unknown wind
input and Θ ∈ R2 are two uncertain parameters related to
aerodynamic and thrust coefficients evolution during flight.
The state is given by x =

(
xcapt, ẋcapt, ψ, ψ̇, vz

)> ∈ R5 where
ψ is the attitude, ψ̇ its rate and vz the lateral deviation
velocity. We measure y =

(
ψ, ψ̇, vz

)>
. A dynamic controller

is synthesized using results in [13].
The considered regulated variable is the angle of attack

α = ψ +
vz−dw

V where V is the vehicle speed. The angle of

W
in

d
sp

ee
d

(m
/s

)

Time (s)0 100 200 300 400 500

−80

−40

0

40

80

Fig. 3. Wind profile (in blue) and supposed known bounds dw and dw
used for simulation.

attack must remain below a given constant value |α| ≤ αmax
so as to minimize aerodynamic load during atmospheric
flight. Moreover, α depends on the unknown wind input and
is not measured. We proceed to decoupling with respect to
dw using results in Sect. IV. Transfer Tu→αn is of relative
degree k = 1 with respect to u but has nunst = 2 unstable
poles. Thus we proceed to change of variable Tαn→ξ =

pξ
s+pξ

with pξ � 1. Transfer Tu→ξ is of relative degree k = 2 with
respect to u and l = 1 with respect to dw. Hyp. 2 to 4 are
satisfied. Hyp. 1 is not satisfied since an acceptable bound
on ḋw cannot be easily determined. In first approach, using
Hyp. 6 (satisfied with considered wind profile), we decide
to neglect ḋw in the expression of saturations on u. We use
observers as detailed in Sect. IV to account for incomplete
state knowledge.

Note that the matrix A in Eq. (9) is not Metzler. We
compute adequate matrix transform M = R(A − LC)R−1 so
that M is Metzler using reformulation into an equivalent H∞
synthesis problem. This problem is solved using non-smooth
H∞ synthesis optimization techniques [14], [15], [16]. A
change of coordinates ez = Re is then used as described
in Section IV-B.

B. Wind profile, uncertainties and bounds

We use wind profile presented in Fig. 3 with a +/− 7 m/s
uncertainty

(
dw, dw

)
on wind speed. Note this is particularly

conservative when considering the launch vehicle control
problem since information on the wind speed is much more
limited in reality.

Let d∆ =
(
dδ1 , dδ2

)> the disturbance vector associated to
uncertainties (δ1, δ2) on uncertain parameters (θ1, θ2). We
denote

(
θ1,nom, θ2,nom

)
their nominal values. Using Eq. (9)

formulation, we find the following relation between dδi ’s and
θi’s

dδ1 = −0.1δ1θ1,nomxcapt, dδ2 = 0.4δ2θ2,nomα (39)

which corresponds to a maximal θ1,nom (resp. θ2,nom) vari-
ation of 10% (resp. 40%). We choose to bound uncertainties
by

|dδ1 | ≤ 0.1|θ1,nomxcapt|,
|dδ2 | ≤ 0.4 max

(
|θ2,nom

(
α̂ + eα

) |, |θ2,nom

(
α̂ + eα

)
|
)

(40)

C. Method application

We use results developed in Section IV to
• estimate α as α̂ to be used in eα bounds determination;
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Fig. 5. Obtained saturated control signal in both nominal and critical cases.

• Find bounds
(
eα, eα

)
on estimation error eα = α − α̂

using interval observer;
• Express time-varying bounds on ξ from which time-

varying saturations on control signal u are obtained
using Th. 1 applied to the transfer presented in Eq. (38).

Positive parameters K1 and K2 are chosen static. This
requires care in setting bounds on unknown disturbance for
the reasons mentioned in III. We use Model Anti-Windup
Recovery (MRAW) as described in [12] to avoid divergence
of the dynamic controller state upon saturation.

D. Results

We perform simulation on nominal model (top) and two
representative critical models4. Results are shown on Fig. 4
and Fig. 5. Conservativeness appears in the results being
more satisfactory than expected since α is often smaller
than its maximal expected value. The drawback is that the
control signal could be infeasible in practice with physically
unacceptable value or rate. This is however not the case with
this simplified wind profile.

VI. CONCLUSION

In this article we have presented a first approach to an
effective method to bound an unmeasured disturbed regulated
variable α in the case of an uncertain system with unknown
disturbance input. We have used a combination of interval
observer and OIST method to circumscribe estimation error
and robustly bound acceptable control signals. We have
used an existing controller synthesized using linear control

4That is (δ1 = 1, δ2 = −1) and (δ1 = −1, δ2 = 1).

technique according to given requirements. Our approach
allows to enforce output constraint requirements which may
compete with synthesis requirements. Recently proposed
OIST method [3] proposes to transform expected bounds
on α into saturations on the control u. When no saturation
is active, the behaviour is that of the chosen controller.
Care must be taken in case of a dynamic controller since
its state may diverge under active saturations. Coupled to
interval observer, we show this method can be applied to
uncertain systems with unknown disturbance. This approach
has been successfully applied to a rigid launch vehicle
with five states, two uncertain parameters and one unknown
disturbance (wind input).

To be able to use results detailed in Section III we have
made restrictive hypotheses on our model. Static (K1,K2)
have been chosen which lead to conservative results. Wind
profile and known bounds are also not realistic. These
limits will be considered in future works. Note that this
article may be considered as a proof of feasibility while not
considering issues of stability or zero-dynamics which are
under extensive study at the moment.

Appendix A

φ(ez, ez) := f (T uez − T lez,T uez − T lez)

φ(ez, ez) := f (T uez − T lez,T uez − T lez)

f z(ez, ez) := Ruφ(ez, ez) − Rlφ(ez, ez)

f
z
(ez, ez) := Ruφ(ez, ez) − Rlφ(ez, ez)

Bz
e(x̂, u) := RuBe(x̂, u) − RlBe(x̂, u)

Bz
e(x̂, u) := RuBe(x̂, u) − RlBe(x̂, u)

Bz
d(dw, dw) := Ru min(Bd(dw)dw, Bd(dw)dw)

−Rl max(Bd(dw)dw, Bd(dw)dw)

Bz
d(dw, dw) := Ru max(Bd(dw)dw, Bd(dw)dw)

−Rl min(Bd(dw)dw, Bd(dw)dw)

(41)
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