
HAL Id: hal-01208373
https://hal.science/hal-01208373v1

Submitted on 3 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On automata and language based grammar metrics
Matej Crepinsek, Tomaz Kosar, Marjan Mernik, Julien Cervelle, Rémi Forax,

Gilles Roussel

To cite this version:
Matej Crepinsek, Tomaz Kosar, Marjan Mernik, Julien Cervelle, Rémi Forax, et al.. On automata and
language based grammar metrics. Computer Science and Information Systems, 2010, 7 (2), pp.309–
329. �10.2298/CSIS1002309C�. �hal-01208373�

https://hal.science/hal-01208373v1
https://hal.archives-ouvertes.fr

UDC 004.4, DOI: 10.2298/CSIS1002309C

On Automata and Language Based Grammar
Metrics

Matej Črepinšek1, Tomaž Kosar1, Marjan Mernik1,
Julien Cervelle2, Rémi Forax2, Gilles Roussel2

1 University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova 17, 2000 Maribor, Slovenia

Email: {matej.crepinsek, tomaz.kosar, marjan.mernik}@uni-mb.si
2 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,

77454 Marne-la-Vallée, France
Email: {julien.cervelle, remi.forax, gilles.roussel}@univ-mlv.fr

Abstract. Grammar metrics have been introduced to measure the qual-
ity and the complexity of the formal grammars. The aim of this paper is to
explore the meaning of these notions and to experiment, on several gram-
mars of domain specific languages and of general-purpose languages,
existing grammar metrics together with the new metrics that are based on
grammar LR automaton and on the language recognized. We discuss the
results of this experiment and focus on the comparison between gram-
mars of domain specific languages as well as of general-purpose lan-
guages and on the evolution of the metrics between several versions of
the same language.

Keywords: grammar metrics, software language engineering, grammar engi-
neering, grammarware.

1. Introduction

Grammar metrics were introduced to measure the quality and complexity of a
given grammar in order to orient grammar engineering (grammarware [17]). We
consider that existing metrics [23], more or less deduced from classical pro-
gram metrics or from the structure of the specification, could be upgraded with
new metrics that are specific to grammar behavior and could provide additional
insights about the complexity of the grammar and the language generated by
this grammar. Of course, a single metrics alone cannot capture the quality of
the grammar, however a set of well chosen metrics could give interesting hints
to grammar developers.

In order to complete the existing set of metrics, we propose two different
kinds of metrics3. A first set of metrics is computed from the LR automaton,

3 This work is sponsored by bilateral project “Advanced Topics in Grammar Engineer-
ing” (code BI-FR/08-09-PROTEUS-008) between Slovenia and France.

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

generated from the grammar. A second set is more related to the language
recognized, than to the grammar itself. These different kinds of metrics produce
results that are complementary for the grammar developers.

In order to compute these metrics, we have developed a tool. As an input, it
takes ANTLR [22] or Tatoo [4, 5] grammars and computes classical metrics [23]
together with our new metrics. It uses Tatoo engine to construct the LR automa-
ton for these grammars.

Using this tool we have computed the values of these metrics on several
grammars that form a good benchmark of grammars. These grammars cover
domain specific languages (DSL [20]) and general-purpose languages (GPL
[28]). They also cover the evolution of a grammar between different versions of
the language. From these experimentations, we discuss the different values of
the metrics.

The structure of the paper is as follows. Presented in the Section 2 is related
work and existing metrics. In Section 3, the new metrics are defined. Section
4 describes the tool and how it is linked to Tatoo. In Section 5, experimental
results on the grammars are detailed and discussed. In Section 6, some usage
guidelines are presented. Section 7 carries conclusions and remarks. In the
appendix, the computation of the closure application of rules is detailed.

2. Overview of Related Work

In the field of grammar metrics, only a few tools and papers exist. The most
pertinent of these tools is SynC tool by Power and Malloy [23]. In SynC tool,
grammar metrics are divided into size and structural metrics. In the first met-
rics group, an adaptation of standard metrics for programs [13], the following
grammar size metrics are defined [23]:

– term – number of terminals,
– var – number of non-terminals,
– mcc – McCabe cyclomatic complexity,
– avs – average size of right hand side, and
– hal – Halstead effort.

Size metrics feature useful information about the grammars. More maintenance
is expected for grammars with large numbers of non-terminals (var). The mcc
provides the number of alternatives for non-terminals. The mcc value indicates
the effort required for grammar testing and a greater potential for parsing con-
flicts. A big avs value points to less readable grammar as well as it impacts on
the parsers’ performance, because symbols have to be placed on the parser
stack. The hal value evaluates grammar designers’ efforts to understand the
grammar.

Structural metrics for grammars are derived from grammatical levels [8],
where a grammar is represented as a graph. In the graph, the nodes are non-
terminals and the edges represent a successor relationship between a left hand

310 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

side non-terminal and a non-terminal on the right hand side. In order to com-
pute structural metrics, we compute the strongly connected components of the
graph, which leads to a partition of the set of non-terminals into grammatical
levels. We use the following structural metrics, as defined in [23]:

– timp – tree impurity,
– clev – normalized counts of levels,
– nslev – number of non-singleton levels,
– dep – size of largest level, and
– vhei – Varju height metrics.

Tree impurity (timp) measures how much the graph resembles a tree (0% –
graph is a tree, 100% – graph is fully connected). A high timp value for a gram-
mar means that refactoring, the grammar will be complicated, since a change
in one rule may impact many other rules. A normalized count of levels (clev)
is the normalization of the number of grammatical levels by the total number of
non-terminals expressed in percentage. A high clev indicates more opportu-
nities for grammar modularization. Many of the equivalence classes are of size
1, while language concepts such as declarations, expressions, and commands
tend to be represented by larger classes. The (nslev) metrics identifies the
number of such classes. The size of the largest level (dep) metrics measures
the number of non-terminals in the largest grammatical level. A high dep in-
dicates an uneven distribution of the non-terminals among grammatical levels.
The Varju height metrics (vhei) is the maximum distance of any non-terminal
from the start symbol, and is expressed as a percentage of the number of equiv-
alence classes.

Paper [3] presents a methodology for iterative grammar development. Well-
known techniques from software engineering are applied to the development

– version control,
– grammar metrics,
– unit testing, and
– test coverage analysis.

It demonstrates how these techniques can make grammar development a
controlled process. As mentioned above, one of the techniques used involves
grammar metrics. Authors use size and structural metrics defined in [23] and
extend them with disambiguation metrics, which are SDF [15] specific:

– frst – number of follow restrictions,
– rejp – number of reject productions,
– assoc – number of associativity attributes, and
– upp – number of unique productions in priorities.

These metrics merely count the various types of disambiguation in the SDF
notation. Aside from Halstead’s effort metrics, some of the ingredient metrics
and related metrics are presented and used for grammar engineering. In a

ComSIS Vol. 7, No. 2, Special Issue, April 2010 311

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

similar manner, as done in this work, we propose new metrics, which brings
additional insights into grammar development.

One of the applications for grammar metrics is also in the field of gram-
mar testing. The concept of grammar testing is explained in [18]. This paper
presents context-dependent branch coverage on parser testing and grammar
recovery; it proposes new tests for checking the accuracy and the complete-
ness of grammars. We believe that our grammars’ metrics could be a valuable
contribution to the field of grammar testing, used as effort estimation in grammar
engineering (i.e., software engineering applied to grammars).

3. Proposed New Metrics

In this section, we describe in detail two new kinds of metrics, LR table-based
metrics and generated-language based metrics.

3.1. LR Table Metrics

The first set of metrics is based on the LR automaton that is used to produce an
efficient bottom-up parsers for the grammar, but could also simulate top-down
parsing [25], comparable to LL parsers. It is surprising that information given by
this automaton has never been used before to qualify grammars.

The LR states are built using the following algorithm. A more detailed de-
scription of this algorithm can be found in [2].

First, the grammar is increased by adding a new production

X → SEOT

where S is the start symbol of the grammar, X a fresh non-terminal which be-
comes the new axiom and EOT, a fresh terminal which symbolizes the end of
input.

E → (E)|E + E|E − E| − E|id

Fig. 1. Grammar G1

States of the LR automaton are defined by a set of items. An item is a
production where an inter-letter space is marked (usually with a dot) on the
right-hand side. The set of items defines all of the productions that can be found
at this stage of the parsing. For instance, for the grammarG1 described in Fig. 1,
after reading «(E+E» (the E means that a word derived from E is recognized)
the state contains:

312 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

E → E ·+E
E → E · −E
E → E + E·

The item E → E + E· indicates that «E + E» has been read and will be
considered as a single E, while the item E → E · −E indicates that the second
E is part of an E − E expression that will be considered as a single E.

Note that the information that a «(» has been read, is kept in the state stack
of the parser, not in the LR state.

Only the initial state contains the item:

X → ·SEOT

States are built by applying a creation rule to existing states, until a new state
cannot be built.

To explain this rule, we first define the closure C(I) of an item I as the small-
est set to verify the following set of equations, where P is the set of productions
of the grammar:

– I ∈ C(I);
– ∀E → α ·Xβ ∈ C(I) and ∀X → γ ∈ P,

then X → ·γ ∈ C(I).
The closure of a state is defined as the union of the closure of its items.

Then, new states are built from a state St by applying the following rule: for
each terminal or non-terminal v such that an item X → α · vβ is in C(St), the
following state is created

{Y → δv · ζ|Y → δ · vζ ∈ C(St)}

If v is a terminal, we say that the state St can shift the terminal v.
The set of LR states for the grammar G1 computed using previous algorithm

is the following:

{X → ·EEOT}
{X → EEOT·}
{E → (·E)}
{E → − · E}
{E → id·}
{E → (E)·}
{X → E · EOT, E → E ·+E, E → E · −E}
{E → E + ·E}
{E → E − ·E}
{E → (E·), E → E ·+E, E → E · −E}
{E → −E·, E → E ·+E, E → E · −E}
{E → E + E·, E → E ·+E, E → E · −E}
{E → E − E·, E → E ·+E, E → E · −E}

ComSIS Vol. 7, No. 2, Special Issue, April 2010 313

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

In the last state, for instance, the terminals + and − can be shifted.
From the possible metrics that can be extracted from the LR automaton we

have chosen the following:

– The metrics lrs represents the number of states in the LR automaton. This
number is 13 for the grammar G1. This metrics captures the complexity of
the grammar.

– The lat metrics sums, for each terminal in the grammar, the number of
states in the LR automaton that does not lead to an error when this terminal
is in the lookahead, and it is normalized by the number of terminals. This
metrics gives an idea for each terminal of the probability to accept it during
the parsing.

– Metrics lat can be further normalized by the number of states lrs. Metrics
lat/lrs computes complexity of relations between the terminals and the
states in LR tables.

– The metrics lrtla sums, for each state in the automaton, the number of
terminals that, when they are in the lookahead, do not lead to an error
in this state, and it is normalized by the number of states. It indicates the
complexity of each state in the automaton. If we normalize metrics lrtla
by the number of terminals we get metrics lat/lrs.

– The metrics lcc counts the number of LR conflicts. These conflicts are shift-
reduce or reduce-reduce conflicts found in some of the states. The lcc met-
rics gives an insight into the complexity of the grammar. Indeed, the conflicts
solved by priority/associativity rules could also be solved by rewriting the
grammar instead of introducing unnecessary productions that degrade the
readability of the grammar [2]. Note that conflicts may be implicitly resolved
by many compiler generators. A shift-reduce conflict is resolved implicitly
by choosing to shift over reduce. On the other hand a reduce-reduce con-
flict is resolved implicitly by choosing to reduce the rule that first appears in
the grammar. However, every such conflict should be carefully studied and
checked if default behavior is indeed appropriate. Conflicts certainly raise
the complexity of the grammar and lcc metric captures it.

3.2. Generated Language Metrics

The second set of proposed metrics is based on some of the characteristics of
the language recognized. The following metrics, discussed in more detail below,
are proposed: ss, ssm, ltps, ltpsm, ltpsa, and ltpsn.

The metrics ss builds, for each production, the shortest sample that uses
it and stores the average size of these samples. This metrics provides hints of
the verbosity of the language produced by the grammar. The metrics ssm is the
maximum size of the samples.

The shortest sample for a production is produced using a recursive algo-
rithm. More precisely, the algorithm for computing the shortest sample using a
production in a grammar consists in three steps. The first is the computation,
from each non-terminal, of the shortest word made of terminals derived from

314 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

this non-terminal. The second step is the computation, for any non-terminal N ,
of the shortest word generated by an axiom, that is only made of terminals and
one occurrence of N , which we call the sequel of the shortest word leading to
X. Details of these first two steps can be found in appendix. Once these first two
steps are accomplished, to get the shortest sample using production X → α,
one starts with the word w obtained in step two for non-terminal X, replace X
by α in w and finally replace all remaining non-terminals with the shortest words
computed in step one.

The word produced is still the shortest since, if a shorter one exists, either its
derivation tree would lead to a shortest way to produce a word that contains X
or the shortest words for non-terminals of α. Since the first two steps are done
using a closure operation on rules, if only the shortest sample for one single
production needs to be computed, one can save computation time using a lazy
and dynamic programming style, as it is done in Tatoo.

For instance for grammar G1, the set of the shortest samples produced by
this algorithm is:

{(id), id + id, id− id,−id, id}

The average size of these samples is ss = 2.4, while the maximum size of the
shortest sample is ssm = 3.

The other metrics are only concerned with the sequences of two terminals
(terminal pairs) that may be found in the language recognized by the grammar.

S → L|L.L
L→ B|LB

B → 0|1

Fig. 2. Grammar G2

For instance, the grammar for Knuth’s binary numbers, described in Fig. 2,
allows 8 different terminal pairs. Combinations are presented in Table 1, where
the first column and the first row represent all grammar terminals (ter) and
true or false on position (teri, terj) indicate that, there exists a sentence
recognized by this grammar which contains the pair of terminals (teri, terj).

Table 1. Allowed terminal pairs

i/j 0 1 .
0 true true true
1 true true true
. true true false

ComSIS Vol. 7, No. 2, Special Issue, April 2010 315

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

From the table of allowed terminal pairs, we have defined four different met-
rics:

– The metrics ltps computes the number of different terminal pairs accept-
able in the language. In case of G2 value of ltps metrics is 8.

– The metrics ltpsm computes the maximum number of different pairs for
one terminal. In case of G2 value of ltpsm metrics is 3, because after
terminal 1 one can find three different terminals (the same as in the case of
terminal 0).

– The metrics ltpsa computes, given a terminal, the average number of ter-
minals that can directly follow this terminal. In case ofG2 the value of ltpsa
metrics is (3 + 3 + 2)/3 ≈ 2.666.

– The metrics ltpsn normalizes the metrics ltps, by the number of possible
combinations of terminals and is presented as a percentage. In the case of
G2 the value of ltpsn, the metrics is (3 + 3 + 2)/9 ≈ 88.888%.

Table 1 is calculated directly from the grammar by computing, for all non-
terminal X, the sets of first F (X) = {a|X ⇒∗ aβ} and last L(X) = {a|X ⇒∗
βa} possibly derived terminals, where a is a terminal. From these sets, it is easy
to calculate pairs from the right hand sides of productions. For all occurrences
of two consecutive terminals or non-terminals v1 and v2, one adds all of the
pairs of L(v1)F (v2) where L(a) = F (a) = a in case a is a terminal.

4. Tool Description

In this section, we present the gMetrics tool. This tool extracts information from
grammars and calculates the metrics proposed by Power and Malloy [23] as well
as the new ones, LR-based metrics and generated language-based metrics,
proposed in the previous section. The global activity diagram of gMetrics is
presented in Fig. 3.

The main objective of this tool is to extract from input grammars as much
information as possible and perform as few modifications as possible in relation
to the original grammar. Indeed, we would like to avoid potential metric distur-
bance and to process all metrics from the same specification.

We currently support the formats of compiler construction tools ANTLR ver-
sion 3 [22] (an LL parser generator) and Tatoo [5] (a LR parser generator).
The metrics are divided, as explained before, into four categories: size met-
rics, structural metrics, LR automaton-based metrics and generated language-
based metrics. In practice, to reuse an existing grammar specification, one must
take into account the grammar form (BNF, EBNF, CNF, etc.), the grammar type
(LL, LR, LALR, IELR [9], etc.), the file format (a tool mainly dependent and
potentially customized with semantics and other annotations) and the version
of the tool. In this work, we limited ourselves to grammar specifications used
by ANTLR and Tatoo. Moreover, automata-based metrics are calculated from
LR automaton, despite that a particular grammar can be of different type (e.g.,

316 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

Fig. 3. Activity diagram

LL, LALR, IELR). Although, we report the number of shift-reduce and reduce-
reduce conflicts that indicate that a grammar might not be the LR grammar
(some conflicts are resolved by additional rules in parser generators). Our fu-
ture work lies in identifying the correct type of grammar while calculating the
automata-based metrics, as well to analyze the conflicts, as presented in [9].

Nevertheless, some transformations are unavoidable because the original
input format of the grammars is different and some metrics make use of specific
algorithms that require constrained input. However, gMetrics minimizes such
transformations.

To solve the problem of a unique grammar representation, we have chosen
to use an in-memory intermediate form close to an EBNF notation.

Indeed, even if neither ANTLR nor Tatoo uses complete EBNF form as input,
the input format of each parser generator is close to this notation. Moreover, this
format has the advantage to avoid to choose between left of right recursion in
the specification, since lists may be specified using star (’*’) or plus (’+’) con-
structions.

ComSIS Vol. 7, No. 2, Special Issue, April 2010 317

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

The ANTLR format has been selected because it provides a great deal of
interesting existing grammars and Tatoo was chosen because of its open archi-
tecture that facilitates the computation of some of the metrics. Both tools use
priorities or/and associativity rules for solving automata conflicts.

In the future, we plan to broaden our tool to support other input formats (e.g.,
LISA [21]). Meanwhile, users may use this tool as a Java application library. In
this case, users need to implement the IGrammar interface, which describes
grammar in our EBNF internal form.

Because ANTLR and Tatoo are both implemented in Java, the simplest
choice was to implement gMetrics in Java. The first challenge was to create
and to fill internal data structure from ANTLR and Tatoo grammar specification.
More precisely, in Tatoo, we directly used the memory representation exported
by Tatoo. Moreover, since Tatoo supports grammar versioning, one input gram-
mar may include several versions (usually specified in different grammars).

The metrics implementations are divided into four groups: size metrics, struc-
tural metrics, LR-based metrics and language-based metrics.

– To calculate size metrics, we implement a visitor pattern that counts different
grammar properties.

– To compute structural metrics, the call graph is derived from the produc-
tions. It is then used to calculate grammatical levels. The structure met-
rics [8] are deduced from this information.

– To construct the LR automaton, information about the grammar associative-
ness (left or right) is first established. Next, the LR table is computed by the
Tatoo, engine together with the associated LR actions.

– For the language-based metrics, terminal pairs are computed, as explained
in the previous section.

When dealing with metrics implementation, we try to provide as much in-
formation for interpretation as possible. For most of the metrics we provide
histograms, which are used to calculate concrete metrics values. These his-
tograms can also be used for the computation and the analysis of different sta-
tistical values.

For example, in Fig. 4 we present the metric ltps histogram for the ANSI
C grammar. The metric ltps describes, for a given terminal, the number of
different terminals that can follow it. In this histogram one can notice that many
terminals (34 in y axle) have between 11 and 20 (x axle) terminals that can follow
them and only one terminal may be followed by almost all terminals. With this
histogram one can monitor the introduction of a new terminal in the grammar.

The gMetrics tool is an open source project and can be found on the follow-
ing web page http://code.google.com/p/cfgmetrics.

5. Empirical Study on Metrics for GPL and DSL Grammars

The grammar samples used for this experiment come from examples drawn
from the ANTLR [22] samples and from several versions of Java grammars for

318 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

Fig. 4. Metrics ltps histogram for the ANSI C grammar

Tatoo [4, 5]. They cover domain-specific languages and general-purpose lan-
guages. These grammar examples are representative of current practice in
grammar-ware engineering and can be considered as good benchmarks to
evaluate the pertinence of metrics. They result from a collaborative work that
usually involves several developers thereby ensuring their global quality.

More precisely, the DSL grammars studied are:

– EXPR, a grammar for arithmetic expressions [2].
– FDL, a grammar that enables the specification of sets of features [10].
– EBNF, a grammar for grammar specifications in Extended Backus Normal

Form [1].
– CFDG, a grammar of a simple programming language for generating pic-

tures [11].
– GAL, a grammar to describe video devices [26].
– ANTLR V3, a grammar for grammar definitions in ANTLR version 3 for-

mat [22].

General-purpose language grammars studied are those from

– Ruby 1.8.5 [27];
– ANSI C [14];
– Python 2.5 [19], and
– versions of Java [12] from 1.0 to 1.6.

The version 1.6 of the Java grammar comes from ANTLR samples, whereas
the other versions come from Tatoo samples.

The results shown in Table 2 show the outcome of the size metrics for the dif-
ferent kinds of grammars. This table indicates that some of these metrics (e.g.,

ComSIS Vol. 7, No. 2, Special Issue, April 2010 319

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

Table 2. Results for classical metrics

Lang term var mcc avs hal
Expr 9 5 1.6 4 1
FDL 14 6 2.17 6.5 2.63
EBNF 12 7 1.71 3.29 1.17
CFG Design 24 13 2.39 6 6.57
GAL 71 74 1.2 3.88 33.36
ANTLR V3 49 45 2.42 4.98 29.55
Ruby 1.8.5 88 83 2.61 4.74 54.44
Java 1.6 98 110 2.46 5.96 122.66
ANSI C 83 66 2.21 5.09 42.34
Python 2.5 85 86 2.22 4.93 63.41
Java 1.5 102 129 1.75 5.85 140.38
Java 1.4 100 116 1.75 5.8 118.21
Java 1.3 99 114 1.76 5.84 116.85
Java 1.2 99 114 1.76 5.84 116.85
Java 1.1 98 114 1.75 5.83 116.98
Java 1.0 98 112 1.63 5.38 98.54

mcc, avg) can not be used to differentiate DSL from GPL grammars. Some
DSLs (e.g., GAL) are comparable to GPLs in relation to the number of termi-
nals, nonterminals, and hal indicates that the size of such DSLs grammars can
be comparable to GPLs.

It is noteworthy that all of the metrics for Java versions are extremely stable,
with the exception of the mcc metrics, which is much larger for Java 1.6. This
is without a doubt because it is an LL grammar, designed for ANTLR, whereas
other versions of Java are LR, designed for Tatoo.

Table 3 provides the results of the structural metrics for the grammars.
Among these results, it is interesting to note that the clev metrics indicates
that the first versions of Java support have better modularization than the newer
versions, probably due to new constructions such as internal classes. However,
it is surprising that DSL, such as Expr, also has large values.

Most of the structural metrics are not very relevant where they concern the
difference between DSL and GPL, with the exception of the dep metrics. How-
ever, there is marked variation between the values of this metrics between GPL,
in particular in Java. This provides a good means for the interweaving of the
grammar. From our point of view, these structural metrics are difficult to under-
stand for grammar developers.

The results of Table 4 show that the values of the metrics lrsmainly depend
on the type of the language. The DSL grammars have smaller values than GPL
grammars, below 1000 states. Second, this metrics is not directly connected to
the size of the grammar since grammars with similar numbers of terminals or
non-terminals produce completely different values (e.g. Ruby vs. Python from

320 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

Table 3. Results for structural metrics

Lang timp clev nslev vhei dep
Expr 56.25 60 1 3 3
FDL 32 83.33 1 1 2
EBNF 69.44 42.86 1 3 5
CFG Design 31.25 100 0 1 1
GAL 14.6 95.95 1 1 4
ANTLR V3 21.69 75.56 2 1 8
Ruby 1.8.5 62.37 37.35 1 1 53
Java 1.6 72.35 25.46 2 1 80
ANSI C 67.93 30.3 3 1 41
Python 2.5 44.39 46.51 3 1 35
Java 1.5 76.53 22.48 2 1 100
Java 1.4 59.59 40.52 2 1 69
Java 1.3 58.98 41.23 2 1 67
Java 1.2 58.98 41.23 2 1 67
Java 1.1 58.98 41.23 2 1 67
Java 1.0 33.29 65.18 3 1 24

Table 4. Results for LR based metrics

Lang lrs lat lrtla lat/lrs lcc
Expr 59 18 3.05 0.31 0
FDL 115 20.13 2.63 0.18 0
EBNF 129 63.08 6.36 0.49 2
CFG Design 151 45.72 7.57 0.32 0
GAL 873 40.31 3.14 0.05 1
ANTLR V3 958 165.92 8.66 0.17 60
Ruby 1.8.5 13474 3509.2 23.18 0.26 7446
Java 1.6 6244 1107.34 17.56 0.18 658
ANSI C 2512 448.04 14.98 0.18 165
Python 2.5 3909 646.98 14.23 0.17 57
Java 1.5 7741 1342.88 17.87 0.17 5715
Java 1.4 7183 1279.29 17.99 0.18 5715
Java 1.3 6698 1189.24 17.76 0.18 5144
Java 1.2 6698 1189.24 17.76 0.18 5144
Java 1.1 6693 1193.28 17.65 0.18 5144
Java 1.0 5611 901.02 15.9 0.16 5144

ComSIS Vol. 7, No. 2, Special Issue, April 2010 321

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

Table 2). However, the evolution of this metrics is also directly connected to
the complexity of the different versions of Java, but varies smoothly. Finally, the
metrics value for the Java 1.6 grammar is not comparable to Java 1.5 grammar
value, even if the language is the same. This is due to the fact that Java 1.6
grammar is designed for LL parsing and LL grammars are known to be more
complex than LR ones. It is also probably due to a important use of conflict
resolution mechanism in the Java 1.5 version (measured by the lcc metrics)
that simplifies the grammar. From this result, it would appear that the metrics
lrs is a good measure of the complexity of the grammar.

For each terminal in the grammar the lat metrics sums, the number of
states in the LR automaton that does not lead to an error when this terminal is
in the lookahead, and it is normalized by the number of terminals. Because lat
metrics depends on the number of states, it is also interesting to normalize it by
the number of states (lrs).

Indeed, the value for different versions of Java is very stable. It is also com-
parable to C, Java and Python grammar values. On the contrary, the value for
the language GAL is very low. A low value for this metrics indicates that each
terminal only appears in few of the grammar’s states (5% of the states for GAL)
and thus that the language is very controlled and probably easy to learn. On
the other hand, a high value for this metrics, such as 49% for EBNF, indicates
that the language may accept any terminal in approximately every state.

The results show that the metrics lrtla is closely related to the type of lan-
guage. DSL grammars have smaller values than GPL grammars. Normalizing
this metrics by the number of terminals in the grammar, it produces the same
results as the normalized value of lat. This is to be expected since those two
normalized metrics compute respectively the probability of being able to shift a
given terminal in a given state and the probability of a given state to be able to
shift a given terminal.

Results for the metrics lcc indicate that for most of the tested DSLs we
do not have a LR conflict. Priorities/associativities are expressed in a recursive
manner. If we compare ANTLR grammar for Java 1.6 and Tatoo grammar for
Java 1.5, we can notice big difference in metrics lcc value. Value of Tatoo
Java grammars for metrics lcc is high, because priorities/associativities are
massively used in expressions.

In Table 5, the metrics ss provides results that are not related to the size
of the grammar nor to the expressive power of the language. GPL and DSL
grammars have similar values as well. This metrics evolves moderately with the
different versions of Java. It seems to measure the verbosity of the grammar.
Indeed, C or Python are known to be less verbose than Java. One surprising
result is again, the smaller value of this metrics for the 1.6 version of Java. This
is probably due to the larger number of productions for the LL version. Although
these complementary productions have small sample sizes, the average value
is smaller.

The ltps, lptsm and ltpsa metrics are directly related to the type of lan-
guage. DSL have values below 1000, whereas GPL have values above 1000.

322 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

Table 5. Results for language based metrics

Lang ss ssm ltps ltpsm ltpsa ltpsn
Expr 1.56 4 35 6 4.29 0.43
FDL 2.53 6 47 8 4.34 0.23
EBNF 1.59 3 102 11 5.56 0.70
CFG Design 2.33 7 82 17 12.72 0.14
GAL 2.73 13 349 43 35.34 0.06
ANTLR V3 1.73 8 435 29 24.97 0.18
Ruby 1.8.5 1.47 7 3200 88 44.87 0.41
Java 1.6 2.04 10 2691 92 48.61 0.28
ANSI C 1.73 7 1777 81 41.92 0.25
Python 2.5 1.73 8 1576 61 48.33 0.21
Java 1.5 2.98 14 2370 83 50.06 0.22
Java 1.4 2.94 14 2272 81 49.78 0.22
Java 1.3 2.95 14 2239 80 49.25 0.22
Java 1.2 2.95 14 2239 80 49.25 0.22
Java 1.1 2.96 14 2200 79 48.81 0.22
Java 1.0 2.89 14 1734 78 48.77 0.18

They increase smoothly with the version of Java. The ltpsn value is very com-
parable to lat/lrs, since it measures the constraints on the language. The
only language that gives different results is CDFG: the ltpsn stresses that the
language is moderately constrained (14%) whereas the other metrics indicates
30%, which is quite high. Since, these two metrics are not exactly related, it is
normal, that they produce different results, although large differences probably
indicate an interesting property of the grammar. At this time we are not able to
explain this behavior.

6. Usage Guidelines

There is currently no empirical study for grammar based metrics, which would
ascertain or suggest when and how to use them. But from an in-depth under-
standing of metric design, we can give some useful usage guidelines. To do this
we describe the advantages/disadvantages for each proposed metrics.

Metrics can be used for different purposes and in different stages of the
grammar/language development life-cycle. The importance of metrics and their
resulting interpretation is also dependent on their purpose. This is why it is
important to identify the objective of the use. Three usages of proposed metrics
are discussed in detail below.

Grammar-based Language Comparison

This is most common scenario in which we have different grammars and would
like to compare them. First, we need to be aware that the same language can

ComSIS Vol. 7, No. 2, Special Issue, April 2010 323

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

be described with different grammars, and a grammar can be described with
different forms, or it can be specialized for different parsing techniques. The best
way to compare grammars is to compare grammars that are in the same form
and that they use the same parsing technique. In this case, the simplest metrics
to use are lrs, lat and ltpsm. These metrics indicate the size and complexity
of grammars and because of that, they can be used to rank the grammars. For a
precise comparison with common languages we suggest using the results from
Table 4 and Table 5. For quick reference of grammar size and complexity we
propose four different groups.

– Tiny, mainly toy grammars,
– Small, mainly DSL grammars,
– Intermediate, 3rd generation GPL languages grammar,
– Big, modern object-oriented language grammars.

The groups are defined using an analysis of tested grammars. The intent of
these groups is not to classify grammars by size or complexity, but merely for
quick reference in order to have a first impression about the grammar size.

Table 6. Metrics orientation values

Grammar size lrs lat ltpsm
from to from to from to

Tiny 0 100 0 20 0 6
Small 101 1000 21 200 7 50
Intermediate 1001 3000 201 500 51 70
Big 3001 ≥ 3001 501 ≥ 501 71 ≥ 71

Orientation values for each group and metrics are stated in Table 6.
Metrics that are less size-dependent are lrtla and lrpsa. lrtla indi-

cates average complexity of each state and lrpsa indicates complexity of ter-
minal pairs. In the third group we find metrics and normalizations that are not
size-dependent lat/lrs, lcc, ss and ltpsn. In most cases these values are
averaged by size. Because of this, they are less adapted to comparing larger
grammars.

Developing a New Language

In this scenario, we develop a new language from scratch. In practice, this
means that in most cases we develop new DSL (because they are most com-
mon [16, 24]). In order to compare the new language with others, we can use
metrics as suggested in the previous section. In addition, the developer can
monitor metrics after every incremental developing stage to evaluate its influ-
ence on the complexity and the verbosity of grammars. For this purpose, all of

324 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

the suggested metrics are appropriate, but if the developer wants to measure
the verbosity of the language, he/she should look at the lat/lrs, ss or lptsn
metrics, whereas, if the developer is interested in the complexity of the gram-
mar he/she should look at other metrics. For developers it is also interesting to
monitor number of conflicts lcc.

Sample Based Language Comparison

In this case, languages are compared based on samples/sentences. Two sce-
narios are possible: either formal grammar does not exist yet or a sample-based
comparison is carried out in addition to a grammar-based comparison. To be
able to compare or evaluate the language, we calculate the metrics ltpsm,
ltpsa and ltpsn (ltpX). These metrics can be calculated directly from sam-
ples, with the condition that samples involved all allow combinations of termi-
nals. In this scenario, there are two main problems. First, to identify all terminals
and second to get some degree of confidence that our set of samples (S) is
diverse enough. The first problem is lexically-related and solvable. The second
problem can neither be tested nor computed. To overcome this obstacle, we use
the relation between metrics with the unknown grammar G and metrics calcu-
lated from samples S. Value of ltpX(G) is always greater or equal to ltpX(S).
In practice this means that we can compare the language to a language that
has smaller metrics values. If our goal is to infer grammar from samples, met-
rics ltpsn can help to evaluate a number of different non-terminals. Higher
numbers mean fewer constraints in terms of language; this usually means less
differing non-terminals. With this information we have more direct grammar in-
ference search [6, 7].

7. Conclusion and Future Work

This paper explores the usefulness of several new metrics for grammar engi-
neering. It presents experimental results for traditional metrics and for these
new metrics on several grammars. These grammars cover domain-specific lan-
guages and general-purpose languages. Existing metrics are directly computed
from the grammar itself. A first set of new metrics uses the LR automaton pro-
duced from the grammar. A second is related to the language recognized. We
believe that these metrics provide interesting results that are not all covered by
existing metrics. From this point of view, LR-based metrics are probably more
suitable for grammar experts familiar with LR parsing, whereas other metrics
could also be applicable for non-specialists in grammar development.

From experimental results, we see that some metrics are directly linked to
the size or the complexity of the grammar whereas others remain stable even if
the size or complexity of the grammar varies. Our findings show that the metrics
in both cases qualify for evaluating the quality of the grammar. However, we
consider that the quality of the grammar cannot be captured by a single metrics

ComSIS Vol. 7, No. 2, Special Issue, April 2010 325

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

but by a range of the metrics explored in this paper. Moreover, this quality is not
an absolute value but is relative to other grammars.

In this paper we only explore the metrics of the grammar portion of the
analyzer, without looking at the lexing portion of the analyzer. However, the
complexity of these two parts is closely related. For instance, one could specify
in the lexer a different token for true and false or establish a generic token for
the booleans. In this case, the grammar would necessarily be different and may
produce different metrics. Therefore, we believe that metrics on token definitions
could also be useful to capture the entire complexity of a language analyzer. An
analyzer with complex lexer and simpler parser may be less maintainable than
a complex parser with a simple lexer.

References

1. International standard EBNF syntax notation. ISO/IEC standard n◦ 14977 (1996)
2. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compiler: Principles, Techniques, and Tools.

Addison Wesley, 2nd edn. (2007)
3. Alves, T.L., Visser, J.: A case study in grammar engineering. In: Proceedings of the

1st International Conference on Software Language Engineering (SLE 2008). pp.
285–304. Lecture Notes in Computer Science Series, Springer Verlag (2008)

4. Cervelle, J., Forax, R., Roussel, G.: Tatoo: An innovative parser generator. In: 4th
International Conference on Programming Principal and Practice in Java (PPPJ’06).
pp. 13–20. ACM International Conference Proceedings, Mannheim, Germany (Aug
2006)

5. Cervelle, J., Forax, R., Roussel, G.: A simple implementation of grammar libraries.
Computer Science and Information Systems 4(2), 65–77 (2007)

6. Črepinšek, M., Mernik, M., Javed, F., Bryant, B.R., Sprague, A.P.: Extracting gram-
mar from programs: evolutionary approach. SIGPLAN Notices 40(4), 39–46 (2005)

7. Črepinšek, M., Mernik, M., Žumer, V.: Extracting grammar from programs: brute
force approach. SIGPLAN Notices 40(4), 29–38 (2005)

8. Csuhaj-Varjú, E., Kelemenová, A.: Descriptional complexity of context-free grammar
forms. Theoretical Computer Science 112(2), 277–289 (May 1993)

9. Denny, J.E., Malloy, B.A.: The ielr(1) algorithm for generating minimal lr(1) parser
tables for non-lr(1) grammars with conflict resolution. Science of Computer Pro-
gramming (September 2009), http://dx.doi.org/10.1016/j.scico.2009.08.001

10. Deursen, A. van., Klint, P.: Domain-specific language design requires feature de-
scriptions. Journal of Computing and Information Technology 10(1), 1–17 (2002)

11. Elliott, C., Finne, S., Moor, O.D.: Compiling embedded languages. In: Proceedings
of the Workshop on Semantics, Applications, and Implementation of Program Gen-
eration (SAIG’00). pp. 9–27. Springer-Verlag (Sep 2000)

12. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java Language Specification, Second
Edition: The Java Series. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2000)

13. Halstead, M.H.: Elements of Software Science. Elsevier, New York (1977)
14. Harbison, S.P., Steele Jr, G.L.: C A Reference Manual, Fourth Edition. Prentice-Hall,

Upper Saddle River, NJ 07458, USA (1995)
15. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism

sdf—reference manual—. SIGPLAN Not. 24(11), 43–75 (1989)

326 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

16. Javed, F., Mernik, M., Bryant, B., Sprague, A.: An unsupervised incremental learning
algorithm for domain-specific language development. Applied Artificial Intelligence
22(7), 707–729 (2008)

17. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Transactions on Software Engineering and Methodology 14(3), 331–380
(2005)

18. Lämmel, R.: Grammar Testing. In: Proc. of Fundamental Approaches to Software
Engineering (FASE) 2001. LNCS, vol. 2029, pp. 201–216. Springer-Verlag (2001)

19. Lutz, M., Ascher, D.: Learning Python, Second Edition. O’Reilly Media, Inc., Se-
bastopol, CA (2003)

20. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

21. Mernik, M., Korbar, N., Žumer, V.: LISA: A tool for automatic language implementa-
tion. ACM SIGPLAN Notices 30(4), 71–79 (Apr 1995)

22. Parr, T.J., Quong, R.W.: ANTLR: A Predicated-LL(k) Parser Generator. Software
Practice and Experience 25(7), 789 – 810 (1995)

23. Power, J.F., Malloy, J.F.: A metrics suite for grammar-based software. Journal of
Software Maintenance and Evolution: Research and Practice 16(6), 405–426 (2004)

24. Rebernak, D., Mernik, M., Wu, H., Gray, J.G.: Domain-specific aspect languages
for modularising crosscutting concerns in grammars. IET software 3(3), 184–200
(2009)

25. Slivnik, B., Vilfan, B.: Producing the left parse during bottom-up parsing. Information
Processing Letters (96), 220–224 (Dec 2005)

26. Thibault, S., Marlet, R., Consel, C.: Domain-specific languages: from design to im-
plementation – application to video device drivers generation. IEEE Transactions on
Software Engineering 25(3), 363–377 (May 1999)

27. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby. The Pragmatic Programmer’s
Guide. Pragmatic Programmers (2004)

28. Watt, D.A.: Programming Language Concepts and Paradigms. Prentice-Hall (1990)

Appendix

7.1. Computation of closure application of rules

The first two steps of the computation of the shortest sample for a production
require a same closure mechanism which is already implemented in the parser
generator Tatoo to compute the first and the follow set [2].

The problem this mechanism solves can be formalized in the following way:
we associate to each non-terminal X a mathematical object (a set of termi-
nals for first and follow set, but a word in the process describe below) which
we note M[X]. The process fills the map M starting from some non-terminals
and updates it using rules until the whole map is filled. In particular, an object
associated to a non-terminal can change during the process. For instance, in
the sequel, we try to compute the shortest words; in these cases, a word can
be replaced by a shorter one.

The problem is expressed giving two rules. The first one, the initiation rule,
tells how to initiate the process by giving an answer for some non-terminals
and putting it in the map M. The second one, the iteration rule, gives how to

ComSIS Vol. 7, No. 2, Special Issue, April 2010 327

M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel

construct new objects from others, leading to the construction of dependency
maps which store, for a non-terminal X:

i. the non-terminals Y such that M[Y] changes when M[X] is updated
ii. the non-terminals Y such that M[Y] has to be computed in order to get

M[X].

Note that map i. is easily computed from iteration rules and map ii. is the re-
verse of map i. In order to compute the object associated to X, the solver first
recursively uses map ii. to get all the words that have to be computed and then
uses the iteration rule in a loop until no more changes are made into the map
M.

7.2. Computation of a shortest word generated by X

We note this map M1.
The rule for the computation are the following:

– initiation rule : if X → α is a production such that α is the shortest only
made of terminals, X generates α, M1[X] = α.

– iteration rule : if X → α is a production such that α does not contains X,
then, if smaller or not yet defined, M1[X] is replaced by the word obtained
replacing each non-terminals Y of α by M1[Y].

Note that cycles in dependency map are not a problem since they always
lead to longer words.

7.3. Computation of a shortest word leading to X

We note this map M2.
The rule for the computation are the following:

– if S is an axiom, S is a shortest word leading to S, that is M2[S] = S.
– if X → αY β is a production, then, if smaller or not yet defined, M2[Y]

is replaced by the word M2[X] where X is replaced by α′Y β′, α′ [resp.
β′] being the word α [resp. β] where all non-terminals Z in this word are
replaced by M1[Z].

Here again, cycles are not a problem for the same reason.

Matej Črepinšek received the Ph.D. degree in computer science at the Uni-
versity of Maribor, Slovenia in 2007. His research interests include grammatical
inference, evolutionary computations, object-oriented programming, compilers
and grammar-based systems. He is currently a teaching assistant at the Uni-
versity of Maribor, Faculty of Electrical Engineering and Computer Science.

Tomaž Kosar received the Ph.D. degree in computer science at the University
of Maribor, Slovenia in 2007. His research is mainly concerned with design and

328 ComSIS Vol. 7, No. 2, Special Issue, April 2010

On Automata and Language Based Grammar Metrics

implementation of domain-specific languages. Other research interest in com-
puter science include also domain-specific visual languages, empirical software
engineering, software security, generative programming, compiler construction,
object oriented programming, object-oriented design, refactoring, and unit test-
ing. He is currently a teaching assistant at the University of Maribor, Faculty of
Electrical Engineering and Computer Science.

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science from
the University of Maribor in 1994 and 1998 respectively. He is currently a pro-
fessor at the University of Maribor, Faculty of Electrical Engineering and Com-
puter Science. He is also an adjunct professor at the University of Alabama at
Birmingham, Department of Computer and Information Sciences. His research
interests include programming languages, compilers, grammar-based systems,
grammatical inference, and evolutionary computations. He is a member of the
IEEE, ACM and EAPLS.

Julien Cervelle received the Ph. D. degree in computer science at Provence
University, Marseille, France in 2002 and its habilitation thesis at Paris-Est Uni-
versity, France in 2007. His research interest are grammar based systems,
parser generators, dynamical systems and cellular automata. He is currently
Professor at Paris-Est University, France and adjunct professor at Ecole Poly-
technique, Palaiseau, France.

Rémi Forax received the Ph. D. degree in Computer Science at Paris-Est Uni-
versity, France in 2001. He is currently a Teaching Assistant at Paris-Est Uni-
versity and a Java Community Process Expert for JSR 292. His main research
areas concern design and implementation of programming languages, compiler
construction, parser generators, virtual machines and executing environment.

Gilles Roussel received in computer science at UPMC, Paris, France in 1994
and its habilitation thesis at University of Marne-la-Vallée, France in 2003. He is
currently professor at Paris-Est University and is deputy director of LIGM com-
puter laboratory at Paris-Est University. His research interests are programming
languages parsing, object-oriented design, program plagiarism detection, net-
work programming and network routing algorithms.

Received: November 15, 2009; Accepted: March 30, 2010.

ComSIS Vol. 7, No. 2, Special Issue, April 2010 329

