
HAL Id: hal-01208329
https://hal.science/hal-01208329

Submitted on 2 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying dynamical models of nitrate propagation in
agricultural drinking water: how can we help

agronomists?
Vincent Laurain, Marion Gilson, Marc Benoît

To cite this version:
Vincent Laurain, Marion Gilson, Marc Benoît. Identifying dynamical models of nitrate propagation
in agricultural drinking water: how can we help agronomists?. 17th IFAC Symposium on System
Identification, SYSID 2015, Oct 2015, Beijing, China. �hal-01208329�

https://hal.science/hal-01208329
https://hal.archives-ouvertes.fr


Identifying dynamical models of nitrate

propagation in agricultural drinking water:

how can we help agronomists?

V. Laurain
∗,∗∗

M. Gilson
∗,∗∗

M. Benôıt
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Abstract: Since the 50 last years, the rapid development of modern agriculture in industrialised
countries has considerably affected the quality of water resources, up to the point to jeopardise
the capacity of rural territories to produce drinking water. Hence, agronomy has been interested
in the complex nitrate biogeochemical interactions for a long time. While agronomists are able to
produce very accurate physical models of nitrate propagation at different scales, their tools have
a limited relevance if the information regarding geology or agriculture is missing. Consequently,
in many cases, it prevents the specialists of being affirmative about the prediction of their
current actions on the water quality. By opposition, a system identification methodology is here
presented to predict nitrate concentration in water. It has the advantage of being applicable
even when very little knowledge is available. It will be shown how external variables such as
rainfall and temperature can play an important role in modelling water pollution systems. The
efficiency of the approach, both in terms of prediction and physical insight, is discussed on a
real life dataset.

1. INTRODUCTION

Agriculture is challenged by large scale issues, like impacts
of land system changes on the preservation of environmen-
tal resources, urging agronomy to evolve.

In European Union, the WFD (Water Framework direc-
tive) is built on a strict basis: water policy is a result based
policy. So, States and Agencies have to maintain water in
a good state, link to chemical norms and dates to obtain
these results [EC2, 2000]. So, it has become compulsory to
deal with two main parameters to help decision makers in
this domain: the evolution of concentration and the level
of chemical contains at a precise dates. This work is hence
dedicated to water quality depletion or improvement.

During the past decades many different models have been
proposed in order to analyse the complex biogeochemical
behaviour of nitrate (N) in agricultural soils. In [Manzoni
and Porporato, 2009], 250 different models are classified in
terms of mathematical features such as spatial and tem-
poral scale or isotropy approximations. These models take
into account different phenomena (denitrification, biomass
growth and decay, water flux ...) and therefore require the
tuning of a large number of parameters. They also require
quite a large number of input such as the type of culture,
the N density at different depths or the soil type [Bacsi
and Zemankovics, 1995, de Willigen and Neeteson, 1985].
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Hence, they are mostly exclusively validated on dedicated
experimental parcels [Cavero et al., 1999, Bacsi and Ze-
mankovics, 1995, de Willigen and Neeteson, 1985], where
each required information is available. The strength of
those models is their deep physical insight and the respect
of a modelling protocol allowing their generalisation to
other parcels.

Nevertheless, their main drawback is their inability to be
tuned on parcels where some of the required knowledge is
unavailable: in this case, some assumptions are required,
which can average favourably at large scales, but that are
hardly verifiable at smaller scales such as catchment or
parcels scale[Del Grosso et al., 2006]. This problem was
early acknowledged in [Ledoux et al., 2007, Beven, 2000]
and considerably limits a possible dynamical analysis. In
the presented application, the only available information
is the compulsory N concentration measure in drinkable
water sources. All the physical knowledge is missing: e.g.
the depth of these sources, the surface of drained water, the
flow, the culture types or the soil type. Estimating a model
of the N propagation in the water becomes a challenging
issue in this context which actually represents one of the
most realistic scenario. It means that in such a situation
the only analysis left is the trend static analysis: is the N
concentration raising or decreasing?

All the available nitrate cycle models can be referred to as
so-called “bottom-up” models : from the physics to the
data. A diametrically opposed philosophy also emerged
in the environmental field: “top-down” approach also re-
ferred to as data-based mechanistic [Young and Garnier,



2006]. The model is determined using the measured data
and these approaches link directly to the field of system
identification. There are many environmental fields where
system identification was successfully used, and one of the
most prosperous field related to the presented application
is the rainfall/runoff modelling ([Young and Garnier, 2006,
Laurain et al., 2010, Lorent and Gevers, 1974]). This
paper main contribution is to propose a data-based model
for the problem of nitrate propagation modelling and is
consequently mainly applicative.

The identification problem is challenging: Firstly, agronomists
are only interested in physically interpretable models.
Therefore, once a model is designed, the validation process
can only be based on physical propositions. Secondly, the
input represented by the N mass spread by farmers is
unknown. Hence, it is firstly required to find some external
variable correlated with N sources.

The paper is organised as follows. In Section 2, the first
step of finding input through correlation analysis will be
carefully explained. Based on the data mining considera-
tions, the identification problem and the proposed model
are detailed in Section 3. Finally, the results are exposed
and analysed from the control theory viewpoint in 4 and
from agronomic viewpoint in Section 5. Conclusions and
some future directions of research are given in Section 6.

2. TEMPERATURE AND RAINFALL AS INPUT?

In this case study, the available data consists of the N
concentration CN in 6 underground water sources (S1

to S6) under farming management, located in Lorraine,
Plateau Lorrain Region, France. The sample period is
irregular in some parts of the data and the minimum
sampling period is 15 days from the January 1st, 1990
until 2003. An example is shown in Figure 1(a).

In the presented application, system identification is a
delicate problem as unlike pesticides, nitrate have many
different sources which can be both natural (plant own
production, cow rejections) and human (mineral fertilisa-
tion, polluted rainfall). For example, it is not unusual to
find nitrate in forest underground waters without any hu-
man activity. Most unfortunately, in many realistic cases,
none of the N sources measurements is available at the
watershed scale level.

While human N sources cannot likely be correlated with
any kind of usually measured signals, natural N sources
might find possible correlated signal candidates: it is fair,
for example to assume that the vegetation density is
related in some way to the temperature and the rain-
fall. Moreover, those measures are widely and commonly
available. In this study the rainfall r(t) daily sampled is
available and exposed in Figure 1(c). Moreover, the aver-
age daily temperature τ(t) at Nancy station, France has
been downloaded from the European Climate Assessment
website (Source 741) [Tank and Coauthors, 2002] and is
displayed in Figure 1(b).

All the accessible data are not homogeneous in sampling
frequency. In order to harmonise the sampling period
between al signals, it has been chosen to interpolate
CN daily in order to keep most available knowledge on
temperature and rainfall. Here linear interpolation has

been performed. Since there isn’t any available knowledge
on the inter-sample behaviour, and since the aim of this
study is to define a possible predictive model structure,
the interpolation choice and effects are not discussed in
this reduced conference format.

Before identifying any dynamic model, a possible correla-
tion between the temperature/rainfall and the nitrate con-
centration is studied in order to determine whether they
can be considered as possible input signals. Since, the true
relationship can possibly be time-varying or nonlinear, a
local correlation analysis on a sliding window is driven.
At each time ti, the local correlation scores ρw

τ,CN(ti) and

ρw
r,CN(ti) defined as:

ρwX,Y (ti)= ρ(X,Y )|k∈{i−w,i+w}, (1)

are computed, where w represents the sliding window size
and ρ(X,Y ) is the correlation score between signalsX and
Y . Due to space restriction only the result for 3 sources
S1, S2 and S3 are exposed in Figure 2 for w = 365 (each
window represents two years).

A strong correlation between temperature and N concen-
tration appears (ρ365

τ,CN reaches 0.6 on some of the sources).

Similar results are obtained on the 6 sources. Since, the
temperature curve is almost periodic, this highlights a
pseudo-periodic behaviour of the concentration.

Correlation with the rainfall is however doubtful. Nonethe-
less, since concentration was originally sampled fort-
nightly, the signal does not contain any high frequencies,
unlike the rainfall signal. Therefore, before excluding the
rainfall possible contribution, the same correlation study
is driven after a low pass filtering of the signals.

In the sequel, a signal xT (t) defines the low pass fil-
tered version of x(t) with a filter cut-off frequency of
1/T (1/days). For example τ200(t), C

N
200(t) and r200(t)

are displayed in Figure 1. It must be noticed that
during this phase, the choice To = 200 days is not
critical as only the existence of a correlation is eval-
uated. The associated local temperature/concentration
and rainfall/concentration correlation scores ρ365

τ200,C
N

200

and

ρ365
r200,C

N

200

are computed as defined in(1). The results are

exposed in Figure 3 for both the temperature (red curves)
and the rainfall (blue curves). In this Figure, it can be
clearly be concluded that the low frequency rainfall compo-
nents are also correlated to the low frequency components
of the N concentration.

Here is an important preliminary conclusion for system
identifiers. In many environmental applications, important
measures are missing due to high costs or complex data
acquisition processes. In those cases, temperature and
rainfall should not be overlooked as an important source of
information. For example, it is clear how temperature and
rainfall play a major role in the water cycle. Moreover,
temperature is a good indicator of agricultural practices
and/or vegetation level. Hence, even in pollution applica-
tions, rainfall and temperature might be strongly linked
to the system under study.

Finally, it can be noticed from Figure 3 that the correlation
varies much over time. This must be carefully taken in
account since a time-varying behaviour seriously compli-
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Fig. 1. Raw and smoothed data
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Fig. 2. Correlation between the temperature/rainfall and the N concentration using the raw data of S1,S2 and S3.

cates the identification problem. Indeed, the number of
data points (approximately 300 for each source) is hardly
enough to identify complex time-varying behaviours.

The next section defines the identification problem once
the rainfall and temperature have been defined as input.

3. IDENTIFICATION PROBLEM STATEMENT

As in any data-based modelling procedure, an identifi-
cation dataset is needed in order to optimise a model
and a validation dataset is required to cross-validate the
obtained model. Thirteen years of data is available with
15 days sampling period. It means that approximately 315
data points are measured. Under these conditions, splitting
the dataset into validation and estimation dataset means
that at most, a 160 points dataset is available for iden-
tification. Under these conditions, it is hardly achievable
to define a strongly nonlinear structure or time-varying
structure. Hence, the model structure will be restricted to
linear models only.

In order to avoid a strongly changing behaviour in the
identification set, years from 1990 to 1994 are avoided since
they exhibit the most drastic change in local correlation
(see Figure 3). Moreover, 1996 and 1997 are according to
agronomists the driest and rainiest years respectively by
far. Hence, years 1996 to 1999 should englobe the most
marginal as well as the most average behaviours and are
retained for identification while the validation dataset is
taken as the whole data set.

Furthermore, the drift on CN (appearing on the original N
concentration in Figure 1(a)) is removed for identification
purposes. This is performed by removing low-pass filtered

signals and therefore defining the following centred signals:






CN
c (t) = CN(t) − CN

1460(t),

τc(t) = τ(t) − τ1460(t)

rc(t) = r(t)− r1460(t).

It must be noticed that instead of a low-pass filtered
signals, second order polynomial curve could be chosen
to represent the drift, with same performances.

Finally, the identification problem can be stated as:
Given the nitrate concentration data (output signal)
CN

c (t), the rainfall data rc(t) and the temperature data
τc(t) sampled at time tk k = 1..N , estimate a linear model
representing the N concentration propagation relationship
for the given parcel.
The model class considered in this case study can be
described as the following continuous-time Multi Input
Single Output (MISO) Output Error (OE) hybrid model:

M































C̊N
c (t)=

mr
∑

j=0

bjp
j

snr +

nr−1
∑

j=1

ajp
j

rc(t) +

mτ
∑

i=0

βip
i

snτ +

nτ−1
∑

i=1

αjp
i

τc(t)

CN
c (tk) = C̊N

c (tk) + e(tk),

(2)

where nr,nτ and mr,mτ are the unknown model orders,
p is the differentiation operator and {αi, βi, ai, bj} are
the model parameters to be estimated. In the presented
model, the noise term e(tk) is assumed to be a white noise
stochastic process. Naturally, the identification method
used in order to fit the model plays a crucial role, espe-
cially in cases where the amount of noise is consequent.
Various estimation methods are available in the literature
for continuous-time models [Garnier and Wang (Editors),
March 2008]. For this application, the so-called simplified
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Fig. 3. Correlation between the nitrate concentration, the temperature and the rainfall in the low frequency domain

refined instrumental variable algorithm (SRIVC) [Young
and Jakeman, 1980] is used. From the theoretical view-
point, this identification method exhibits robustness with
regards to high or uncommon noise conditions (unbiased
models) and in case of system approximation, it has also
demonstrated good results in environmental modelling
[Laurain et al., 2010, Young and Garnier, 2006].

4. RESULTS

In order to determine the model quality, the model fit
quality is assessed using the coefficient of determination
defined as:

R2 = 1−
||ĈN

c (tk)− CN
c (tk)||

2

‖ĈN
c (tk)− C̄N

c ‖
2

, (3)

where ĈN
c (tk) is the output simulated from the identified

model on the validation data set and C̄N
c is the average

value of CN
c . It must be noticed that R2 = 1 means perfect

fit, R2 = 0 means that the simulated output is only as
predictive as the output average, while R2 < 0 means that
the simulated output is not predictive. Usually, R2 < −1
is considered as a failure to find a suitable model.

Usually, to determine orders nr,nτ and mr or mτ in (2)
criteria taking into account the parsimony of the model
such as Akaike Information Criteria are used. Nevertheless,
in the presented application, only nr = nτ = 1 and
mr = mτ = 0 give some predictive models and therefore
the most parsimonious structure is directly retained:

M







C̊N
c (t)=

b0
p+a1

rc(t) +
β0

p+ α1

τc(t),

CN
c (tk) = C̊N

c (tk) + e(tk)
(4)

Figure 4 exposes the measured concentration (grey), the
model output (black) as well as the dataset part used for
identification (green). It can be noticed from Figure 4 that
even though the input are external variables, a general
good fit is observed for all sources. Another observable fact
is that, as expected from Figure 3, the system behaviour
seems to vary over time as expected from the correlation
analysis. However, a striking fact is that the model is able
to fit quite precisely for years 1994 to 2003, but is unable
to reproduce the behaviour of years 1990 to 1994. Actually,
no model could be suitably estimated from dataset 1990-
1994 in this study. For all the sources, the system seems to
undergo a radical behavioural change around 1994, very
abrupt in S1, S2,S3 and S4, even if 1994 was not in the
estimation set.

In order to properly assess how and when behavioural
changes occur, a local coefficient of determination is com-
puted at each point in a local window of two years R(ti) =
R2|k∈{i−365,i+365} : the results are exposed in Figure 5
in black. For all sources, the coefficient of determination
shows an explicit transition between two behaviours from
an unpredicted zone in the first part of the data, to a
predictive behaviour towards the end. This jump is very
abrupt for S1 to S5 and takes place at the beginning of
1994 as shown by the coefficients of determination which
reaches values up to 0.7. This value can be considered as
low in a usual system identification framework. Neverthe-
less, in the present context, without any explicit input of
N, sampling difficulties and low number of data, this fitting
score can be considered as a good fit.

Moreover, as previously pointed out, the correlation be-
tween the inputs and output was much better in the low
frequency domain. Therefore, Figure 5 also exposes the
coefficient of determination between Ĉc200 and Cc200 in
red. It shows that in the low frequencies domain, the
coefficient of determination reaches up to 0.9 which is an
undeniable fit and indicates that the yearly trend of nitrate
in those water is nearly completely predictable from the
rainfall and the temperature but only from 1994 on. This
statement is however mild for S4 which shows unpredicted
high frequency signals from 2001 on.

ince the identified model does not represent directly a
physical relationship, the absolute value of the parameters
is probably of little interest. Nonetheless, it appears that
all transfer functions linked to the temperature have a
positive static gain while all rainfall transfer function have
a negative static gain.

The model has been proposed from the data and according
to data-based mechanistic principles, it can therefore only
be validated through physical facts. Therefore the main
outcome of this study is to propose from this black-box
approach physically interpretable facts which are here:

C1 The rainfall has a negative effect on the nitrate
concentration.

C2 The temperature has a positive contribution on the
nitrate concentration.

C3 The studied sources undergoes a major behavioural
change in year 1994.



1990 1992 1994 1996 1998 2000 2002

−15

−10

−5

0

5

10

 

 

Original
Simulated

(a) Source 1
1990 1992 1994 1996 1998 2000 2002

−10

−5

0

5

10

 

 

Original
Simulated

(b) Source 2
1990 1992 1994 1996 1998 2000 2002

−5

0

5

10

15

 

 

Original
Simulated

(c) Source 3

1990 1992 1994 1996 1998 2000 2002

−6

−4

−2

0

2

4

6

8

10

12

14

 

 

Original
Simulated

(d) Source 4
1992 1994 1996 1998 2000 2002

−15

−10

−5

0

5

10

 

 

Original
Simulated

(e) Source 5
1990 1992 1994 1996 1998 2000 2002

−40

−30

−20

−10

0

10

20

30

40

 

 

Original
Simulated

(f) Source 6

Fig. 4. Measured concentration and simulated model concentration
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Fig. 5. Coefficient of determination between predicted and measured output



5. THE AGRONOMIST VALIDATION

In agronomy, the temperature is a good indicator of
vegetation growth season. In these temperate zones, the
6◦C is the basis of two main phenomena: vegetation
growth, and nitrate mineralization in the soil. Hence,
temperature can be used as an indicator of natural nitrate
production which validates C2. Usually, rainfall minus
evapotranspiration is a good indicator of nitrate movement
in the soils and in the aquifer: without rainfall, N are
stable in the soils, with low rainfall, they are moving,
because very soluble, through the soils to the aquifers
raising the N concentration. Nevertheless, above a critical
amount of rain, the nitrate does not interact with water
anymore, decreasing their concentration in the water,
which validates C1.

Finally, until 1992, each parcel was managed indepen-
dently without any common fertilising policy. However,
since 1993 (with an actual application in 1994), a local
water resource management operation has taken place and
all farmers have been asked to strongly reduce the amount
of nitrate spreading. For all studied sources, it seems that
the simple proposed model is able to clearly emphasise
this change which validates C3. It is even more striking
for Sources 1 and 2. The physics of these sources are very
similar (slope, size, location). Nevertheless, before 1994,
the concentration signals are strongly different (their drift
is actually opposite). Nevertheless, the identified models
are nearly exactly equal and their fit similar. Hence, after
the spreading has become homogeneous, the model clearly
catches the similarities of these parcels. Furthermore, the
strong reduction of fertilisers input from 1993 encourages
us to think that the behaviour after 1994 is close to
a natural behaviour. In natural parcels, the nitrate is
mainly issued from the soil organic matter mineralization
by bacterial activities which is strongly correlated to the
temperature.

6. CONCLUSIONS

The problem of nitrate propagation in water has been ad-
dressed in this paper. Most agronomists mechanistic mod-
els fail to determine the future water quality since in prac-
tice, much physical and costly knowledge is missing. In this
paper, a data-driven protocol has been detailed in order
to propose dynamical models of the nitrate propagation in
drinking water under agricultural soils, at watershed scale.
A correlation study has shown that temperature and rain-
fall are strongly linked to the nitrate concentration in wa-
ter. The causality has even been justified by agronomists.
A simple first order dynamical model has been identified
which has shown extremely good prediction capabilities on
the years following a major agricultural practice change
dedicated to minimise the nitrate loads in drinking water.
From this black-box approach, some physical propositions
have been derived which could all be validated from agro-
nomical knowledge. This emphasises that despite the data-
driven nature of the approach, the proposed model seems
to well represent physical behaviour. Finally, the far end
goal for such model is the concentration drift prediction
which could be a very slow dynamic. Some further work is
hence needed in order to deeper investigate how carefully
each farmer has followed the spreading advice and for how

long. Should it be correlated to the proposed model fit, it
will be investigated how much the model fit can predict the
slow trends which are so far not identifiable from the data
and without the knowledge of spread nitrates amount.
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