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Comparing overlapping properties of real

bipartite networks
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Abstract. Many real-world networks lend themselves to the use of graphs
for analysing and modelling their structure. But such a simple represen-
tation has proven to miss some important and non trivial properties
hidden in the bipartite structure of the networks. Recent papers have
shown that overlapping properties seem to be present in bipartite net-
works and that it could explain better the properties observed in simple
graphs. This work intends to investigate this question by studying two
proposed metrics to account for overlapping structures in bipartite net-
works. The study, conducted on four dataset stemming from very dif-
ferent contexts (computer science, juridical science and social science),
shows that the most popular metrics, the clustering coefficient, turns
out to be less relevant that the recent redundancy coefficient to analyse
intricate overlapping properties of real networks.
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1 Introduction

Many complex networks lend themselves to the use of graphs for analysing and
modelling their structure. Usually, vertices of the graph stand for the nodes of the
network and the edges between vertices stand for (possible) interactions between
nodes of the network. This approach have proven to be useful to identify non
trivial properties of the structure of networks in very different contexts, ranging
from computer science (the Internet, peer-to-peer networks, the web), to biology
(protein-protein interaction networks, gene regulation networks), social science
(friendship networks, collaboration networks), linguistics, economy, etc. [17, 4,
12, 2, 6, 13, 1, 14].

Although useful, such a simple representation is not particularly close to the
real structure of most of real networks. If one considers for instance actor net-
works which link actors performing in the same movies [17, 11] or co-authoring
networks which link authors publishing together [11, 12], one would rather relate
actors to the movies they performed in and authors to their papers. This obser-
vation led the community to use bipartite graphs instead, i.e. graphs in which
nodes can be divided into two disjoint sets, ⊤ (e.g. movies) and ⊥ (e.g. actors),
such that every link connects a node in ⊤ to one in ⊥. Bipartite graphs are



a fundamental object which has proven to be very efficient for both the anal-
ysis [5, 16, 1, 14] and the modelling [3, 15] of complex networks as it is able to
reveal patterns that could not have been detected on simple graphs.

In a recent work [15], this framework has been investigated in an attempt to
propose, for the first time, a bipartite model of the Internet topology. It relies
on recent developments in topology discovery [8, 7] that allows for revealing two
layers in the Internet structure. The model remains simple: it only takes as in-
put the node degree sequence for both layers and randomly generates a bipartite
graph respecting those distributions. The paper showed that, despite the sim-
plicity of the model, realistic network properties, such as high local density and
non trivial correlations among properties of the nodes of the lower layer, emerge
naturally. But it also showed that the model fails in reproducing the overlapping
observed in the two-layer structure.

The present paper extends the analysis of overlapping structures to a wide va-
riety of networks and tries to identify how bipartite metrics can account for those
complex properties. In particular, it investigates whether two recently proposed
metrics, namely the bipartite clustering coefficient and bipartite redundancy co-

efficient, are relevant for explaining the observed overlaps.
The remaining of the paper is organised as follow: Section 2 will review the

technical background necessary for going throughout the paper; Section 3 will
present the main obtained results and finally Section 4 will conclude the paper
and open on new perspectives.

2 Background

In this section, we introduce the required background for the remainder of the
paper. First, we focus on the different dataset (Section 2.1) we used in this study.
Then, we recall the necessary definitions of the bipartite graph framework and
its related metrics (Section 2.2).

2.1 Dataset

As stated in the introduction, many real networks exhibit a complex structure
that involves several layers. In order to be as general as possible in the present
study, we used a wide variety of networks presenting a two-level structure. We
chose to focus on an infrastructure network (Internet), a juridical network (In-
ternational Criminal Court decisions network) and two social networks (a co-
publication network and a network composed of YouTube users). Here below
we describe the four dataset and precise, for each one, the meaning of the upper
layer (⊤ nodes) and the lower layer (⊥ nodes):

Internet [15, 8]: In this network, ⊥ nodes stands for Internet routers and ⊤
nodes indicates the presence of Ethernet switches whose purpose is to induce
indirect connections among routers. The dataset used in this study corre-
sponds to a measurement campaign conducted in September 2006.



ICC [14]: This dataset describes the juridical decisions taken by the Interna-
tional Criminal Court (ICC) in the Lubanga case. Here, ⊥ nodes stands for
the juridical decisions made by the judges and ⊤ nodes for the articles of the
Rome Statute they invoked. The dataset was extracted from a public server
in March of 2013.

Publications [10]: This network describes the scientific collaboration among
researchers through co-published papers. It is based on preprints posted to
the Condensed Matter section of arXiv E-Print Archive between 1995 and
1999. In this network, ⊥ nodes stands for authors and ⊤ nodes for articles.

YouTube [9]: This dataset describes some characteristics of YouTube users.
It has been collected in 2007 and show the relation between users (⊥) and
their membership (⊤).

As we will see further (see Section 3.1 in particular), although the nature of
those networks are very different, their two-level structure share some particular
and non trivial properties, among which the classical heterogeneous distribu-
tion of the degree of the nodes. Note that the size of the networks varies from
thousands of nodes to hundred of thousand of nodes. For this reason, all the
distributions that we will study further will be normalised by the size of the
networks in order to ease the comparisons.

2.2 Bipartite graphs

Bipartite graphs – also referred to sometime by two-mode networks – are triplets
Gb = (⊤,⊥, Eb), where ⊤ is the set of top nodes (the papers in the Publication
dataset for instance), ⊥ the set of bottom nodes (the authors), and Eb ⊆ ⊤×⊥
the set of links between ⊤ and ⊥ (that relate the papers to their authors in our
example). We denote by n⊤ (resp. n⊥) the number of top nodes (resp. bottom
nodes) and by mbip the number of links.

Compared to standard graphs, nodes in a bipartite graph are separated in
two disjoint sets, and the links are always between a node in one set and a node
in the other set. Note that from a given bipartite graph, one can always induce a
corresponding simple graph by a ⊥-projection. In the case of the Publication

network, it would generate a simple graph in which nodes are authors and a link
relates two authors if they have published a joint paper. This would allow to
reuse all the metrics defined for standard graphs.

But we can also compute specific metrics for bipartite graphs, such as k⊤
(resp. k⊥) the average degree of top nodes (resp. bottom nodes), d+⊤ (resp. d+⊥)
the maximal degree observed in top nodes (resp. bottom nodes) and δb =

mb

n⊤.n⊥

the density of the bipartite graph.
Those are natural extensions of standard metrics defined for simple graphs.

But for more intricate properties, it can be tedious to propose a ”natural” def-
inition. This is the case for the local density in the graph (more or less the
density around a node) which is usually captured by the clustering coefficient.



The reason for the difficulty in defining such an extension is that it relies on
the presence of triangles which does not exist in bipartite graphs. As suggested
in [5], one can however rely on the following coefficient that tends to capture the
overlapping between the neighbourhood of two nodes of ⊤. Let N⊤(u) for u ∈ ⊤
denote the set of neighbours (i.e. bottom nodes u is linked to) and N⊥(u) the
dual definition for ⊥ nodes. Then we define:

cc⊤(u, v) =
|N⊤(u) ∩N⊤(v)|

|N⊤(u) ∪N⊤(v)|
. (1)

This coefficient is interesting as it captures the relative overlap between neigh-
bourhoods of top nodes, i.e. cc⊤(u, v) is equal to 1 if the neighbourhood of u
and v intersects exactly, to 0 if they do not share any neighbour. From this coef-
ficient, it becomes natural to define the clustering coefficient related to a specific
⊤ node v. This is given by:

cc⊤(v) =

∑

u∈N⊥N⊤(v)

cc⊤(u, v)

|N⊥N⊤(v)|
. (2)

This coefficient enables in particular to study the distribution of this property
over the top nodes as well as its correlation with the degree or other properties.
Then one can naturally compute the bipartite top clustering coefficient ccbip of
Gb as the average value of cc⊤(v) over all the nodes v of ⊤. More formally:

ccbip(Gb) =
1

|⊤|

∑

v∈⊤

cc⊤(v). (3)

However it has been shown in [5] that this coefficient might miss some impor-
tant properties of the overlapping between ⊤ nodes in the bipartite structures.
This is why the authors suggested to use the redundancy coefficient rd⊤(v) of a
node v which focuses on the impact of removing v as regard the ⊥-projection.
Intuitively, a high value of the coefficient indicates that two ⊥ nodes v relates
are likely to be related by another ⊤ node. Formally, the coefficient is given by:

rd⊤(v) =
|{{u,w} ∈ N⊤(v)

2 s.t. ∃v′ 6= v, (v′, u) ∈ Eb and (v′, w) ∈ Eb}|
|N⊤(v)|(|N⊤(v)|−1)

2

. (4)

Following this definition, we can derive naturally the redundancy coefficient
rdbip of the bipartite graph Gb, defined as the average value of the former coef-
ficient over all ⊤ nodes. More formally:

rdbip(Gb) =
1

|⊤|

∑

v∈⊤

rd⊤(v). (5)



Internet ICC Publication YouTube

n⊤ 10 224 713 22 015 30 087
n⊥ 9 758 1 360 16 726 94 238
mb 25 422 6 670 58 595 293 360
δb(∗10

−3) 0.26 6.88 0.16 0.10

k⊤ 2.5 9.4 2.7 9.8
k⊥ 2.6 4.9 3.5 3.1
d
+

⊤
58 250 18 7 591

d
+

⊥
41 81 116 1 035

Table 1. Global properties of the bipartite structure of the dataset

Internet ICC Publication YouTube

ccbip 0.32 0.15 0.39 0.16
rdbip 0.11 0.69 0.63 0.33

Table 2. Value of the overlapping coefficients of the bipartite structures

3 Analysis of the bipartite structure

The purpose of this section is to analyse the overlapping observed in the bipartite
structure of the four dataset presented in Section 2.1. We will focus in particular
to the two metrics that have been proposed to account for such a topological
property, namely the bipartite clustering coefficients and the bipartite redun-
dancy coefficients (referred to further simply as clustering and redundancy).
First, we start by looking at some global and standard statistics defined for bi-
partite graphs (Section 3.1). Then we turn to the overlapping properties and
study distributions and correlations among the different metrics (Section 3.2).

3.1 A global perspective

The first statistics we focus on concern some basic properties observed in most
real-world networks, formally presented in the previous section. Table 1 presents
the results for the four dataset of Section 2.1. As expected, all usual observa-
tions made on real-world networks stand also for the networks under study. In
particular the graph is sparse (on the order of magnitude of 10−4) and the max-
imal degree is several orders of magnitude higher that the average degree, which
indicates usually some heterogeneity in the degree of the nodes.

This is confirmed by the inverse cumulative distribution of the degree of
the nodes (both ⊤ and ⊥) presented in Figure 1. It clearly shows a heavy-tail
distribution for all the four dataset and the nodes of the two layers.

3.2 Analysis of the overlapping structure

We focus now more precisely to the core of the analysis related to the overlap-
ping in the bipartite structure. First, Table 2 presents the global values of the
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Fig. 1. Inverse CDF of the node degree distribution

two coefficients computed for all the dataset. It shows that, although the two
coefficients intend to capture the same property (overlapping patterns), they
strongly differ on each dataset. The most obvious case is the ICC since the clus-
tering coefficient is quite low (0.15) but the redundancy is very high (0.69). For
the other dataset the gap is less important but we can notice that the higher
coefficient depends on the dataset thus showing that no general behaviour can
be drown here.

Those global average metrics do not allow for a detailed comprehension of
the coefficients. Fortunately, we can compute them for each of the ⊤ nodes in
the networks. This allows to study several properties related to it such as the
distribution of the coefficients. Figure 2 presents the inverse cumulative distri-
bution of the clustering (Figure 2(a)) and the redundancy (Figure 2(a)). We can
observe that the distributions of the two coefficients are very different. For the
clustering, the plot shows that the decrease of the value is very sharp and for
low values. The majority of ⊤ nodes have indeed a small clustering coefficient.
This indicates that the overlapping, according to this metrics, is not particularly
important in the networks.

For the redundancy, the behaviour is different. Except for the Internet case,
for which one can observe a sharp decrease, the value is uniformly distributed
among the nodes. As opposed to the clustering, this seems to indicate on the
contrary that some overlaps are present in three over four dataset. Note for
instance that the fraction of ⊤ nodes having a redundancy of 1 is non negligible:
9% in Internet, 13% in the YouTube case, 46% in the ICC network and 52%
in the Publication network. Taking this last case as an example it means that,
for more than half of the articles of the Publication network, every authors
have also published together at least one other article. This indicates a strong
overlapping in the network which, in the case of co-publication networks, is not
surprising but is not captured by the clustering coefficient.
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Fig. 2. Inverse CDF of the clustering and redundancy coefficients

The distribution shown above is interesting but it does not help to understand
why some coefficients are high and other low. In order to understand better the
situation, we show Figure 3 the correlation between the degree of a ⊤ node
and the value of its clustering (Figure 3(a)) or its redundancy (Figure 3(b)).
More precisely, a (x, y) dot in the plots means that the average value of the
coefficient for nodes having degree x is y. Figure 3(a) shows a very interesting
fact: the value of the clustering seems to be completely governed by the degree
of the corresponding node. The higher the degree, the lower the clustering. Such
a correlation makes the interest of the coefficient weak since it seems derivable
from the degree of the nodes. On the contrary, Figure 3(b) does not present
such a correlation, except for the Publication network for which one observe a
similar behaviour. The notion engulfed in the redundancy coefficient seems then,
to that regard, contain more information than simpler local properties.

4 Conclusion

In this paper, we studied the overlapping properties observed in the bipartite
structure of different networks exhibiting a two-level structure. The main con-
cern of the study was to discriminate between two recently proposed metrics to
account for such properties, namely the clustering coefficient and the redundancy
coefficient.

By analysing the structure of 4 networks stemming from very different con-
texts, we showed that the notion captured by the clustering coefficient turns out
to be quite poor as it is closely related to the simple degree of the node. On the
contrary, the behaviour of the redundancy coefficient is totally unpredictable
regarding local properties such as the degree. The value of the coefficient is not
related to simple local properties of the nodes, at least in 3 of the 4 dataset of
the study.
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Fig. 3. Correlation between the degree and the overlapping coefficients

Understanding the characteristics of the bipartite structure of real networks
are fundamental for several reasons. First, as shown in several studies, such
structures help understanding non trivial properties of simple networks (see [15]
for instance). But more importantly it has been shown to be a better support
for models, enabling in particular to generate random structures closer to real
ones than most of classical models [15].

To that regard, the present work opens the way to several improvements in
recently proposed models. It shows in particular that one could improve bipartite
models by integrating such a property in the model, which has not been done
so far. One way to achieve this goal would be to encode the redundancy in an
artificial third level and control the coefficient by randomly permuting links in
such a tripartite structure. We let such an investigation as a further work.
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