
HAL Id: hal-01208237
https://hal.science/hal-01208237

Submitted on 2 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FLOWING BILATERAL FILTER: DEFINITION AND
IMPLEMENTATIONS

Maxime Moreaud, Francois Cokelaer

To cite this version:
Maxime Moreaud, Francois Cokelaer. FLOWING BILATERAL FILTER: DEFINITION AND IM-
PLEMENTATIONS. Image Analysis & Stereology, 2015, 34 (2), pp.101-110. �10.5566/ias.1225�. �hal-
01208237�

https://hal.science/hal-01208237
https://hal.archives-ouvertes.fr

Flowing bilateral filter : definition and implementations
MAXIME MOREAUD, FRANCOIS COKELAER

IFP Energies nouvelles, B.P. 3, 69390 Solaize, FRANCE
e-mail : maxime.moreaud@ifpen.fr; francois.cokelaer@ifpen.fr

 ABSTRACT

The bilateral filter plays a key role in image processing applications due to its intuitive parameterization and its
high quality filter result, smoothing homogeneous regions while preserving the edges of the objects. Considering the
image as a topological relief, seeing pixel intensities as peaks and valleys, we introduce a way to control the tonal
weighting coefficients, the flowing bilateral filter, reducing “halo” artifacts typically produced by the regular
bilateral filter around a large peak surrounded by two valleys of lower values. In this paper we propose to
investigate exact and approximated versions of CPU and parallel GPU (Graphical Processing Unit) based
implementations of the regular and flowing bilateral filter using the NVidia CUDA API. Fast implementations of
these filters are important for the processing of large 3D volumes up to several GB acquired by x-ray or electron
tomography.

Keywords : adaptive filter, GPU, 3D image processing.

INTRODUCTION

 Filtering operation is a critical image processing
operation which performs noise attenuation
allowing to do further advanced tasks in better
conditions (e.g. segmentation or analysis, …). The
bilateral filter formulated by Tomasi and
Manduchi (1998), whose beginnings can be found
in Smith and Brady (1997), belongs to the class of
non-iterative and locally adaptive image filters
(Barash, 2002). Besides regular spatial weighting
(directly linked to the distance from the center of
the filter’s observation window), the main idea of
the bilateral filter is to insert an additional
weighting factor based on a tone (or photometric,
grey level) distance. Thus, a spatially close pixel,
but far in terms of tone value, would have a low
contribution in a result value.

The research community devoted large efforts
during the past decade to reduce the bilateral filter
complexity induced by the computation of the
tonal weighting factor, mainly by using non-exact
versions of this filter. Straightforwardly, we can
consider, as for the Gaussian filter, that a k-D
kernel can be decomposed in a succession of k 1-D
kernels, each result of a 1-D filter being the next

filter’s input image (Pham and Vliet, 2005). Note
that, unlike the Gaussian filter, the result of this
filter is only an approximation of the bilateral filter
(the same remark could be done for all non-
separable filters, such as median filter
approximation (Narendra, 1981)). Later, we will
refer to this filter as the separable bilateral filter.
Paris and Durand (2006) proposed an original
formulation of the bilateral filter seeing it as a
convolution in a spatio-tonal space of dimension
k+1. This method is composed of three steps.
Firstly, conversion of the image in the space of
higher order dimension. Secondly, filtering using
standard convolution in this space. Thirdly,
conversion by interpolation of the result in the
initial space. Note that a specific data structure, the
“bilateral grid” was recently developed (Chen et
al., 2007) combining the latter method with a GPU
compliant architecture. Weiss (2006) proposed a
O(log(r)) per pixel implementation (with ‘r’
corresponding to the spatial width of the filter) but
limited to constant weighting functions (box-
filter). His approach uses sliding windows
histogram computation, also known as an efficient
way to speed up median filters (Huang, 1981).
Recently Porikli, (2008) and Yang et al., (2009),
improved this method by using image integral

histogram and succeeded in lowering the
complexity to O(1) per pixel in the case of
constant or polynomial weighting functions
(Taylor development of Gaussian kernel). Note
that these methods are efficient for 8 bit images
but remain computationally intensive for 24 or 32
bits images leading to a huge memory requirement
for large images due to local histogram
computation. Recently, Chaudhury et al., (2011)
used the O(1) algorithm of Porikli, (2008) but with
trigonometric range kernels thus yielding a better
approximation.

A lot of efforts have been brought to speed up the
bilateral filter at algorithmic levels, sometimes by
using an elaborated data structure or a rough
version of the filter. But, recent advances of
massively parallel computation hardware opens
new perspectives : especially for processing of
large 3D data volumes, up to several GigaBytes.

Despite of the large number of papers on the
acceleration of the 2D bilateral filter on GPU, only
a few recent works can be found on the 3D
implementation. Bethel, (2012) proposed an
NVidia CUDA based 3D exact implementation of
the bilateral filter together with a study of the
impact of the GPU configuration parameters.
However, these tests are for a fixed and relatively
small 3D image (256x256x120 voxels). In
Banterle et al., (2012), an approximated version of
the bilateral filter is proposed by using
subsampling, benefiting from GPU fast cache
texture fetches. This implementation gives a good
trade-off between computation time and quality of
the filtering result.

In this paper, our contributions are :

• Seeing images as peaks and valleys (Serra
and Soille, Salembier and Serra, 1994), we
derive a new bilateral filter formulation: the
flowing bilateral filter. Additionally to the
well-known spatial and tonal attenuation
coefficient, a topological approach of the

image allows suppression of “halo1” artifacts
around a large peak surrounded by two
valleys of different values.

• Study of several bilateral filter
implementations i.e. regular (as in (Tomasi
and Manduchi, 1998) but with Tukey’s
biweight function (Durand and Dorsey,
2002)) and separable versions are proposed
on massively parallel architecture using the
NVidia CUDA API considering the
processing of quite large 3D volumes
acquired by X-ray or electron tomography.

METHODS

 We first recall the definition of the regular
bilateral filter. Then, we give the exact definition
of the flowing bilateral filter. Finally, the
definition of the separable version of the flowing
bilateral filter is given.

REGULAR BILATERAL FILTER

 Let I be an image defined on its spatial domain
D. Let f and g be two even functions having their
maximum in x=0, decreasing from x=0 and
parameterized by σf and σg for f and g respectively.
f and g are typically Gaussian but can take other
forms like the fast decreasing and truncated
Tukey's biweight function (f(x)=g(x)=0.5(1-(x/σ)2)2
if |x|<σ, 0 otherwise). For a pixel location p in D,
the result of the bilateral filter is given by I’ (p)
(Eq. 1):

() () () ()()
() () ()()p'IpIg p'pf with W

 I(p) p'IpIg p'pf
W

1
pI'

gf

gf

σ

Dp'
σ

σ

Dp'
σ

−−=

−−=

∑

∑

∈

∈

(1)

1
 we mean by "halo" overflows with dark or light

intensities not present on the initial image and caused by

a filter process.

a.

b.

c.

d.

Fig.1. a. Initial 1D profile; b.1D profile with
additional Gaussian noise; c. After application of
a spatial filter (Tukey function σ=15); d After
application of a bilateral filter (Tukey functions
σf=15 et σg=10).

The effect of this filter is illustrated on a 1D
profile (Fig. 1). The bilateral filter can be seen as
signal convolution with the function f weighted by
the function g. A pixel present in the observation
window will, therefore, be strongly taken into
account in the convolution points at low distance
from the current point (standard convolution) and
close in intensity of the current point (action of
function g), but these two aspects are taken into
account independently "f does not see the intensity
and g does not see the distance".

FLOWING BILATERAL FILTER

 Here, an image is seen as a topological relief.
We consider the case where two valleys of
different values are surrounding a large peak (see
Fig. 2 for an illustration). As we have seen before,
the bilateral filter, with an adequate
parameterization, can keep intact the strong
transition. However, in this particular case, we can
observe an overflow of the valleys around the
peak, the lower value valley into the higher value
valley and reciprocally. This case leads to the
creation of “halo” in the filtered images and can be
avoided if gf × is strictly decreasing. This kind of
function can be designed by imposing the decrease
of the function g by adding a comparison while

a.

b.

c.

d.

Fig. 2. a. Initial 1D profile composed by a large
peak surrounded by two valleys; b. 1D profile with
additional Gaussian noise; c. After application of
a bilateral filter (f and g, Tukey function, with
σf=20 and σg=20); d. After application of the
flowing bilateral filter (same parameters).

computing filter’s tonal weight : if d and d’ are
distances from the central pixel, with d>d’, then
g(d) must be smaller than g(d’). This criterion can
be formulated as a morphological reconstruction
operation (Serra, 1988) (Vincent 1993) in the
weighting function space. Grayscale
morphological reconstruction ()XρY of Y from X
is obtained by iterating grayscale geodesic dilation
of X “under” Y until stability is reached (Vincent
1993): () ()()Xδ Xρ n

Y
1n

Y ≥
∨= with

()() () YBXXδ 1
Y ∧⊕= and
()() () () ()() (n times). Xδ...δδXδ 1

Y
1
Y

1
Y

n
Y ooo=

This new filter can be written as :

() () ()

() () p'G p'pf W

with

 I(p) p'G p'pf
W

1
pI'

I p, ,σ
Dp'
σ

I p, ,σ
Dp'
σ

gf

gf

∑

∑

∈

∈

−=

−=

(2)

Within this formulation, the weighted function
depends on the location of the central pixel (Eq.
3). This new filter enables the suppression of
“halo”, however, morphological opening by
reconstruction results in a significant additional

time computing overhead especially for 3D
processing.

() ()
()

() ()()xIpIg(x)B

 and 0; else p, xif 0g(x)A

 withAρp'G

gg

gg

gIp,,gσg

σI p, ,σ

σp ,σ

p ,σBI p, ,σ

−=

==

=

(3)

SEPARABLE FLOWING
BILATERAL FILTER

 In order to reduce the complexity and memory
usage of such a filter, it is possible to design an
approximated version by means of a separated
kernel (Pham and Vliet, 2005). The separable
bilateral filter can be written as Eq. 4:

() ()
()

() ()()

() ()
()

() ()()

()
()

() ()()
()

()
() ()()

() () xxyyyx

xxσ
pDyp'

σy

σ
pDxp'

σx

σ
pDxp'

σ

x
x

xxxσ
pDyp'

σ

y

apDpaDet apDpaD

and

p'IpIg p'pfW

,p'IpIg p'pfW

with

I(p) p'IpIg p'pf
W

1
pI

, (p)I p'IpIg p'pf
W
1

pI'

gf

gf

gf

gf

=∈==∈=

−−=

−−=

−−=

−−=

∑

∑

∑

∑

∈

∈

∈

∈

(4)

The formulation of the separable flowing bilateral
filter (see an illustration Fig. 4) can be written with
a morphological reconstruction as Eq. .5. This
formulation can lead to a practical and efficient
implementation. Indeed, a morphological
reconstruction can be implemented as a simple
floating point comparison by a neighborhood
element (see Algo. 1).

() ()
()

() ()()

() ()
()

() ()() I(p) p'IpIG p'pf
W

1
pI

 , (p)I p'IpIG p'pf
W

1
pI'

Ip,,σ
pDxp'

σ

x
x

xxxIp,,σ
pDyp'

σ

y

gf

xgf

−−=

−−=

∑

∑

∈

∈

(5)

()
()

() ()()
()

()
() ()()

() ()
()

() ()()
() () xxyyyx

σI p, ,σ

σp ,σ

p ,σBI p, ,σ

xxIp,,σ
pDyp'

σy

Ip,,σ
pDxp'

σx

apDpaDet apDpaD

,xIpIg(x)B

and 0 else p, xif 0g(x)A

 with Aρp'G

and

,p'IpIG p'pfW

,p'IpIG p'pfW

with

gg

gg

gI p, ,gσg

xgf

gf

=∈==∈=

−=

==

=

−−=

−−=

∑

∑

∈

∈

Function Horizontal_flowing_BFilter()
BEGIN
FOREACH p in I
 fRc = 1; // flowing tonal coeff. init
 sum_c = 0.0; // neighborhood coeff. sum
 FOREACH p’ in Dx

 Sc = GetSpatialCoeff(p’);
 Rc = GetTonalCoeff(p’);
 IF(Rc <= fRc) // flowing bilateral filter
 fRc = Rc
 ENDIF
 c = fRc*Sc;
 sum_c += c;
 tot = c*I(p’);
 ENDFOREACH
 O(p) = tot/sum;
END FOREACH

Algo. 1. Pseudo code of separable flowing
bilateral filter considering the horizontal
direction.

GPU ARCHITECTURE AND CUDA
PROGRAMMING MODEL

 Even if GPU were originally designed to
perform graphic oriented applications, such as
renderings and textures mappings, their native
parallel architecture (Single Instruction Multiple
Data) led the scientific community to bring speed
up to highly computational demanding
applications. For our study, we used the computed
unified device architecture (CUDA) (NVIDIA
CUDA C, 2012) developed by NVIDIA for the
implementation of regular and separable bilateral
filters. In order to operate the native GPU
capability to perform parallel work, the NVidia
CUDA API enables to run thousands of threads in
parallel by launching a batch of threads called
warps on the GPU’s Streaming Multiprocessors
(SMs) via a function called kernel function. A
kernel function can be seen as a specialized

template function on the index of the threads and
blocks launched on the SMs. GPUs own different
types of memory which are on and off chip. The
DRam or global memory is the main GPU memory
enabling inter alia, reading and writing from the
host machine (with a high latency and via the PCI
Express), and providing memory pointers to kernel
functions in order to perform data processing.
Shared memory and registers are on chip
memories providing a low latency and high
bandwidth. Note that shared memory is statically
allocated by the programmer and that an allocated
buffer is shared by all the threads of a block
whereas registers are handled automatically by the
driver and are related to each of the threads
individually.

As we carried over our experiments with an
NVidia Quadro 4000 of capability 2.0 we will
limit our description to the Fermi architecture.
Regarding the relation between GPU architecture
and CUDA API, there are three levels of
parallelism expressed and they represent three
levels of granularity :

• The smaller execution level is the warp of

threads. In our case the SMs run a batch of
32 threads simultaneously.

• The second level of parallelism is the block,
whose size is chosen by the programmer and
contains a maximum of 1024 threads for the
Fermi architecture. Note that a block can
only be executed by one SM however, one
SM can execute several blocks.

• The last level of granularity is the grid (more
precisely the grid of threads blocks), often
determined by the mapping of threads on
data desired by the programmer (e.g. it can
be convenient to make one thread treating
one voxel).

In order to reach a high arithmetic peak for a given
applications some basic strategies are
recommended (NVIDIA CUDA Best, 2012) and
will be experimented in ours implementations:

• An algorithm should be written to exhibit

parallelism.

• Minimize data transfer between CPU and
GPU because of their penalizing latency.

• Ensure coalesced read from global memory.
• Avoid conditional branching (e.g. “if”

statements).
• Maximize SM occupancy rate i.e. give the

multiprocessors a large number of blocks to
process.

GPU CODE OPTIMIZATION

SPATIAL COEFFICIENT

 The first optimization realized for all the
implementations is the pre-computation of the
spatial attenuation coefficients on the CPU. As
these coefficients don’t change during program
execution, we load them on the GPU in an on-chip
buffer memory of 64kB called constant memory
which is accessible by all the threads with high
bandwidth and small latency.

MEMORY ACCES

 Our first experiment was designed to show the
impact of non-strided access when working with
multi-dimensional arrays allocated as a linear
memory block. Even if misaligned global memory
fetches issues were resolved since the introduction
of Fermi architecture (due to the additional L1
cache of 128 bytes in each SMs), Fig. 3 reveals
that column and depth (Y and Z directions) fetches
penalize global computation time. The
specification of the Quadro 4000 GPU card
announces a bandwidth peak of 89.6 Go/sec, this
serves as a reference to evaluate the speed of our
algorithm. The slowdown observed for Y and Z
passes is due to the GPU driver fetching
mechanism in the global memory where fetches
are performed via 32, 64 or 128 bytes transactions
aligned with their size. In the case of a 3D image
processing algorithms, we need to consider the
three directions and to perform a local scan around
each voxel. For the regular bilateral filter, we
consider a 3D neighborhood window, thus a
convenient memory fetching optimization is to
bind image data memory portion to a 3D texture
cache in order to speed up spatial locality access.

Fig. 3. Global memory bandwidth ratio with
theoretical hardware bandwidth peak considering
the three filtering directions (X, Y, Z) through a
512x512x512 – 32 bits data volume and with
bilateral filter’s fetching pattern.

For the separable bilateral filter, even if we can’t
avoid the reading and writing of the data from the
global memory, we can benefit of this first read to
load an on-chip and fast buffer of shared memory,
and then to perform memory fetches into this
buffer for the neighborhood scan. Note that the
memory requirement consists of allocating enough
memory for the input and output image on the
Dram of the GPU (e.g. this represents 1GByte for
a 512x512x512 image).

 PERFORMANCE VS OCCUPANCY

 This first implementation was designed to
maximize SMs occupancy i.e. one thread
computes one result image voxel. Starting from
this first implementation, we decided to
investigate the vectorization capabilities of the
GPU by treating simultaneously N_BATCH of
rows, columns or data vectors in the depth
direction thereby introducing Instruction Level
Parallelism (ILP) via loop unrolling directive
(Volkov, 2010). Note that vectorization is
lowering the number of threads and blocks
launched on the SMs thus tending to reduce
occupancy while rising registers usage. Hence the
principle is to allocate and to load N_BATCH

Fig. 4. Separable flowing bilateral filter results on
standard tests images.

times the shared memory buffers (note that this
buffer is limited to 48KB) and to benefit from
independent memory, and compute operations
for N_BATCH output voxels at the same time in
order to hide memories and arithmetic latencies.

RESULTS

QUALITATIVE AND QUANTITATIVE
ANALYSIS

original

σf=9 and σg=5

σf=9 and σg=10

σf=9 and σg=20

original

σf=9 and σg=5

σf=9 and σg=10

σf=9 and σg=20

Fig.5. Qualitative comparisons on 2D images. For each images, spatial and tonal parameters are
equivalent.

332X410x8-bit 552X574x8bit 328 X 500 x 8-bit 686x482x8 bit 728x476x8bits

Regular Bilateral Filter

Separable Flowing Bilateral Filter

Bilateral Filter (from (Paris and Durand, 2006) sampling factor = 1)

Bilateral Filter (from (Paris and Durand, 2006)) (sampling factor = 0.25)

Table 1. Timings comparisons between Regular, Separable Flowing and (Paris and Durand, 2006)
bilateral filter implementations on standard test images.

“Stained Glass” “Tulip” “House Corner”

PSNR UIQ SSIM PSNR UIQ SSIM PSNR UIQ SSIM

Noise

27,74 0,99 0,99 27,5 0,962 0,963 25,11 0,964 0,965

Regular Bilateral Filter

31,62 0,996 0,996 33,3 0,992 0,992 28,56 0,987 0,987

Flowing Bilateral Filter

31,74 0,996 0,996 33,35 0,992 0,992 28,627 0,987 0,987

Separable Bilateral Filter

31,6 0,993 0,993 33,77 0,993 0,993 27,99 0,985 0,985

Separable Flowing Bilateral Filter

32,27 0,997 0,997 34,24 0,994 0,994 28,627 0,987 0,987

Bilateral Filter (Paris and Durand, 2006) subsampling = 0.25

30,23 0,995 0,995 34,31 0,994 0,994 28,09 0,985 0,985

“Catalyst 1” “Catalyst 2”

PSNR UIQ SSIM PSNR UIQ SSIM

Noise

27,79 0,983 0,983 27,76 0,969 0,969

Regular Bilateral Filter

31,19 0,992 0,992 28,45 0,97 0,971

Flowing Bilateral Filter

31,23 0,992 0,992 28,49 0,97 0,971

Separable Bilateral Filter

30,41 0,991 0,991 27,15 0,959 0,96

Separable Flowing Bilateral Filter

31,6 0,993 0,993 28,37 0,97 0,971

Bilateral Filter (Paris and Durand, 2006) subsampling = 0.25

30,79 0,991 0,991 27,35 0,96 0,961

 “Stained Glass” “Tulip” “House Corner” “Catalyst 1” “Catalyst 2”
Regular Bilateral Filter (CPU / GPU implementation)

5.24s / 0.1s 12.62s / 0.34s 6.51s / 0.18s 13.14s / 0.1s 13.77s / 0.12s
Flowing Bilateral Filter (CPU implementation)

24.29s 56.75s 29.77s 60.32s 66.89s

Separable Bilateral Filter (CPU implementation)
0.336s 0.812s 0.42s 0.845s 0.885s

Separable Flowing Bilateral Filter (CPU / GPU implementation)
0.35s / 0.01s 0.83s / 0.03s 0.43s / 0.01s 0.87s / 0.02s 0.926s / 0.02s

Bilateral Filter (from (Paris and Durand, 2006) (CPU , subsampling = 1)
0.6s 1.1s 0.6s 1.4s 1.4s

Bilateral Filter (from (Paris and Durand, 2006) (CPU , subsampling = 0.25)
12.2s 47.7s 14.8s 63.4s 68.8s

Table 2. Quantitative comparisons
between the proposed
implementations of the flowing
bilateral filter and other discussed
implementations on various 2D
images.

For these tests, we used a noise removal
application. For each image we added a Poisson
noise (5%) and performed an analysis of the
filtered images generated by five different
implementations: the regular bilateral filter,
separable bilateral filter, flowing bilateral filter,
separable flowing bilateral filter and (Paris and
Durand 2006) implementation with two different
sampling factors.

On the “Stained Glass” image, no“halo” effects
surrounding the two regions border (darker one for
the brighter region and brighter one for the
brighter region respectively) can be noticed with
the flowing bilateral. As we can see, the regular
bilateral filter produces “halo” artifacts. Paris and
Durand (2006) strategy does not produce these
artifacts but, unfortunately, the noise is remaining
strongly present with the test realized with a
sampling factor equal to 1. Considering a
sampling factor at 0.25, a better result can be
obtained but the computing time is then much
longer (see Table 1). Our approach gives the best
compromise between image quality (no “halos”
artifacts and strong noise reduction) and
computing times. We also compared the results
generated by these implementations on standard
tests images (“Tulip” and “House Corner”) and on
2D Scanning Electron Microscopy images of
catalyst supports ("Catalyst1" and "Catalyst2").
Several criterions namely PSNR, UIQ and SSIM
(Wang et al., 2004) are used to compare images
before and after noise filtering, the results are
summarized in Table 2. Except for “Tulip” whose
texture is diagonally oriented, the flowing bilateral
filter is producing at least as well or better than all
the other filters used for the comparisons (cf. the
PSNR values). One can note also that the
separable version of the flowing bilateral filter is
very interesting (see Table 1), furthermore its
running time on GPU is a hundred time lower than
the Paris and Durand (2006) implementation with
a 0.25 sampling factor.

Fig. 6: Computation times of CPU/GPU
implementations of flowing and regular bilateral
filters.

Fig. 7. 3D volume of alumina catalyst (size
512x512x512, resolution 1nm.voxel-1) obtained
by electron tomography (Tran et al., 2014). Upper
image : 3D observation by volume rendering; Left
image : one region of interest (ROI) of one slice
of the volume; Right image : same ROI after
flowing bilateral filter (parameter spatial 4,
intensity 15).

COMPUTING TIME

 Experimental results presented below are

obtained with an NVidia Quadro 4000 and an Intel
Xeon QuadCore 2.8Ghz on a 512x512x512 – 32
bits data volume (see Fig. 7). We compared the
computation times of optimized versions of the
separable flowing bilateral filters with Tukey's
biweight functions kernels implemented on GPU
and CPU multi-threads. CPU code is implemented
using the openMP API. In addition to pre-compute
filter’s spatial coefficients, the inner loop is
parallelized on all cores for each of the passes of
the filter, achieving in our case a quasi linear
efficiency compared to a single core
implementation. Fig. 6 illustrates the computation
times for the different implementations described
in the previous section. Firstly, it may be
observed that the GPU implementations of the
separable bilateral filter (cf. GPU SEP TUKEY
and GPU FLOWING SEP TUKEY) outperform
all the others implementations presented here.
Indeed, it only needs a few seconds to treat a half
GB data volume and bring it back to the CPU.
Despite the use of a 3D texture cache, the regular
bilateral filter GPU implementation (cf. GPU
BRUTE FORCE) is very slow. We can notice that
comparison with the CPU implementation (cf.
CPU SEP TUKEY) can give an order of
magnitude of the reachable speed-up compared to
a GPU implementation. With a half kernel size of
39, an acceleration factor of approximately 20 is
obtained. Considering a batch of 4 voxels to be
computed at the same time by each thread (i.e . via
the loading of 4 rows into shared memory) we
benefit from ILP and observe a 40% speed-up
compared to the previously described separable
implementation. Moreover, we notice no
additional computation time change with the
flowing bilateral filter considering the GPU or the
CPU implementations.

CONCLUSION

 Seeing an image as peaks and valleys, we
introduced the flowing bilateral filter,
suppressing “halo” artifacts typically produced
by the regular bilateral filter around a large peak
surrounded by two valleys. The proposed
methodology was to combine a morphological
reconstruction in the tonal space in order to
ensure the strict decreasing of the tonal
weighting function. A separable version of this
new filter was also proposed. This version
requires only little change from the original
approximate separable version of the bilateral
filter algorithm. We also proposed GPU
implementations of the separable flowing
bilateral filter by using the NVidia CUDA API.
With this version, the global memory of the GPU
in the row, column or depth direction can be
preloaded into a fast access buffer and is
inducing a great speed up compared to a CPU
implementation. Indeed, we can reach an
acceleration factor up to 20 compared to a CPU
implementation parallelized on 4 cores. Time
computing of regular or flowing separable
bilateral filters on CPU or GPU are almost
identical.

ACKNOWLEDGEMENTS

 The part of this paper dealing with
implementations on GPU of exact and separable
bilateral filter was presented at the 11th European
Congress of Stereology and Image Analysis, July
9–12, 2013 in Kaiserslautern, Germany.

REFERENCE

Banterle F, Corsini M, Cignoni P, Scopigno R
(2012). A low-memory, straightforward and fast
bilateral filter trough subsampling in spatial
domain. Comput Graphics forum 31(1):19-32.

Barash D, (2002). Fundamental relationship
between bilateral filtering, adaptive smoothing,
and the nonlinear diffusion equation. IEEE T
Pattern Anal Mach Intell 24(6):844-7.

Bethel EW (2012). Exploration of
optimization options for increasing performance of
a GPU implementation of a three-dimensional
bilateral filter. Technical Report, LBNL-5406E,
Lawrence Berkeley National Laboratory, Berkeley
CA, USA, 94720.

Chaudhury KN, Sage D, Unser M (2011). Fast
bilateral filtering using trigonometric range
kernels. IEEE T Image Process 20(12):3376-82.

Chen J, Paris S, Durand F (2007). Real-time
edge-aware image processing with the bilateral
grid. ACM T Graphics 26(3):103.

Durand F, Dorsey J (2002). Fast bilateral
filtering for the display of high-dynamic range
images. ACM T Graphics 21(3): 257-66.

Huang TS, (1981). Two-Dimensional Signal
Processing II : Transforms and Median Filters.
Berlin: Springer-Verlag. 1(5): 209-11.

Narendra PM (1981). A separable median
Filter for Image Noise Smoothing. IEEE T Pattern
Anal Mach Intell 3(1):20-9.

NVIDIA C (2012). NVIDIA CUDA C
Programming Guide 5.0.

NVIDIA Best (2012). NVIDIA CUDA C Best
Practices Guide 5.0.

Paris S, Durand F (2006). A fast
approximation of the bilateral filter using a signal
processing approach. In Proceedings of the

European Conference on Computer Vision 568-
580.

Pham TQ, Vliet LJ (2005). Separable bilateral
filtering for fast video preprocessing. In IEEE
International Conference on Multimedia and
Expo.1-4.

Porikli F (2008). Constant Time O(1) Bilateral
filtering. In IEEE International Conference on
Computer Vision and Pattern Recognition 1-8.

Salembier P, Serra J (1994). Mathematical
Morphology and its Applications to Signal
Processing (Special issue) 38(1).

Serra J (1988). Image Analysis and
Mathematical Morphology, Part II : Theoretical
Advances, Academic Press, London.

Serra J, Soille P (1994). Mathematical
Morphology and its Applications to Signal
Processing, Series "Computational Imaging and
Vision".

 Smith SM, Brady JM (1997). SUSAN – A new
approach to low level image processing. Int J
Comput Vision 23(1): 45-78.

Tomasi C, Manduchi R (1998). Bilateral
filtering for gray and color images. In IEEE
Proceedings of the Sixth International Conference
on Computer Vision 836-46.

Tran V-D, Moreaud M, Thiébaut É, Denis L
and Becker J M (2014), Inverse Problem Approach
for the Alignment of Electron Tomographic Series,
Oil & Gas Science and Technology –. IFP
Energies nouvelles 69(2):279-91.

Vincent L (1993). Morphological grayscale
reconstruction in image analysis: Applications and
efficient algorithms. IEEE T Image Process
2(2):176-201.

Volkov V (2010). Better Performance at
Lower Occupancy. Proceedings of the GPU
Technology Conference, GTC 10.

Wang Z, Bovik AC, Sheikh HR, Simoncelli,
EP (2004). Image quality assessment : From error
visibility to structural similarity. IEEE T Image
Process 13(4):600-12.

 Weiss B (2006). Fast median and bilateral
filtering. ACM T Graphics - Proc of ACM
SIGGRAPH 25(3):519-26.

Yang Q, Tan KH, Ahuja N (2009). Real-time
O(1) bilateral filtering. In IEEE Conference on
Computer Vision and Pattern Recognition 557-64.

	MoreaudM_Flowing_bilateral_filter_definition_Iame_Analysis_and_Stereology-Revue_DAP
	MoreaudM_flowing_bilateral_filter_definition_Iame_Analysis_and_Stereology_Article

