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  ABSTRACT    

The bilateral filter plays a key role in image processing applications due to its intuitive parameterization and  its 
high quality filter result, smoothing homogeneous regions while preserving the edges of the objects. Considering the 
image as a topological relief, seeing pixel intensities as peaks and valleys, we introduce a way to control the tonal 
weighting coefficients, the flowing bilateral filter, reducing “halo” artifacts typically produced by the regular 
bilateral filter around a large peak surrounded by two valleys of lower values. In this paper we propose to 
investigate exact and approximated versions of CPU and parallel GPU (Graphical Processing Unit) based 
implementations of the regular and flowing bilateral filter using the NVidia CUDA API. Fast implementations of 
these filters are important for the processing of large 3D volumes up to several GB acquired by x-ray or electron 
tomography.  

Keywords : adaptive filter, GPU, 3D image processing. 

 

INTRODUCTION 
 

 Filtering operation is a critical image processing 
operation which performs noise attenuation 
allowing to do further advanced tasks in better 
conditions (e.g. segmentation or analysis, …). The 
bilateral filter formulated by Tomasi and 
Manduchi (1998), whose beginnings can be found 
in Smith and Brady (1997), belongs to the class of 
non-iterative and locally adaptive image filters 
(Barash, 2002). Besides regular spatial weighting 
(directly linked to the distance from the center of 
the filter’s observation window), the main idea of 
the bilateral filter is to insert an additional 
weighting factor based on a tone (or photometric, 
grey level) distance. Thus, a spatially close pixel, 
but far in terms of tone value, would have a low 
contribution in a result value. 
 
The research community devoted large efforts 
during the past decade to reduce the bilateral filter 
complexity induced by the computation of the 
tonal weighting factor, mainly by using non-exact 
versions of this filter. Straightforwardly, we can 
consider, as for the Gaussian filter, that a k-D 
kernel can be decomposed in a succession of k 1-D 
kernels, each result of a 1-D filter being the next 

filter’s input image (Pham and Vliet, 2005). Note 
that, unlike the Gaussian filter, the result of this 
filter is only an approximation of the bilateral filter 
(the same remark could be done for all non-
separable filters, such as median filter 
approximation (Narendra, 1981)). Later, we will 
refer to this filter as the separable bilateral filter. 
Paris and Durand (2006) proposed an original 
formulation of the bilateral filter seeing it as a 
convolution in a spatio-tonal space of dimension 
k+1. This method is composed of three steps. 
Firstly, conversion of the image in the space of 
higher order dimension. Secondly, filtering using 
standard convolution in this space. Thirdly, 
conversion by interpolation of the result in the 
initial space. Note that a specific data structure, the 
“bilateral grid” was recently developed (Chen et 
al., 2007) combining the latter method with a GPU 
compliant architecture. Weiss (2006) proposed a 
O(log(r)) per pixel implementation (with ‘r’ 
corresponding to the spatial width of the filter) but 
limited to constant weighting functions (box-
filter). His approach uses sliding windows 
histogram computation, also known as an efficient 
way to speed up median filters (Huang, 1981). 
Recently Porikli, (2008) and Yang et al., (2009), 
improved this method by using image integral 



 

 

histogram and succeeded in lowering the 
complexity to O(1) per pixel in the case of 
constant or polynomial weighting functions 
(Taylor development of Gaussian kernel). Note 
that these methods are efficient for 8 bit images 
but remain computationally intensive for 24 or 32 
bits images leading to a huge memory requirement 
for large images due to local histogram 
computation. Recently, Chaudhury et al., (2011) 
used the O(1) algorithm of Porikli, (2008) but with 
trigonometric range kernels thus yielding a better 
approximation. 
 
A lot of efforts have been brought to speed up the 
bilateral filter at algorithmic levels, sometimes by 
using an elaborated data structure or a rough 
version of the filter. But, recent advances of 
massively parallel computation hardware opens 
new perspectives : especially for processing of 
large 3D data volumes, up to several GigaBytes. 

Despite of the large number of papers on the 
acceleration of the 2D bilateral filter on GPU, only 
a few recent works can be found on the 3D 
implementation. Bethel, (2012) proposed an 
NVidia CUDA based 3D exact implementation of  
the bilateral filter together with a study of the 
impact of the  GPU configuration parameters. 
However, these tests are for a fixed and relatively 
small 3D image (256x256x120 voxels). In 
Banterle et al., (2012), an approximated version of 
the bilateral filter is proposed by using 
subsampling, benefiting from GPU fast cache 
texture fetches. This implementation gives a good 
trade-off between computation time and quality of 
the filtering result. 

In this paper, our contributions are : 

• Seeing images as peaks and valleys (Serra 
and Soille, Salembier and Serra, 1994), we 
derive a new bilateral filter formulation: the 
flowing bilateral filter. Additionally to the 
well-known spatial and tonal attenuation 
coefficient, a topological approach of the 

image allows suppression of “halo1” artifacts 
around a large peak surrounded by two 
valleys of different values. 

• Study of several bilateral filter 
implementations i.e. regular (as in (Tomasi 
and Manduchi, 1998) but with  Tukey’s 
biweight function (Durand and Dorsey, 
2002) ) and separable versions are proposed 
on massively parallel architecture using the 
NVidia CUDA API considering the 
processing of quite large 3D volumes 
acquired by X-ray or electron tomography. 

 
METHODS 
 

 We first recall the definition of the regular 
bilateral filter. Then, we give the exact definition 
of the flowing bilateral filter. Finally, the 
definition of the separable version of the flowing 
bilateral filter is given.  

 
REGULAR BILATERAL FILTER 

 Let I be an image defined on its spatial domain 
D. Let f and g be two even functions having their 
maximum in x=0, decreasing from x=0 and 
parameterized by σf and σg for f and g respectively. 
f and g are typically Gaussian but can take other 
forms like the fast decreasing and truncated 
Tukey's biweight function (f(x)=g(x)=0.5(1-(x/σ)2)2 
if |x|<σ, 0 otherwise). For a pixel location p in D, 
the result of the bilateral filter is given by I’ (p) 
(Eq. 1): 
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1
 we mean by "halo" overflows with dark or light 

intensities not present on the initial image and caused by 

a filter process. 
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d. 

Fig.1. a. Initial 1D profile; b.1D profile with 
additional Gaussian noise; c. After application of 
a spatial filter (Tukey function σ=15); d After 
application of a bilateral filter (Tukey functions 
σf=15 et σg=10). 

The effect of this filter is illustrated on a 1D 
profile (Fig. 1). The bilateral filter can be seen as 
signal convolution with the function f weighted by 
the function g. A pixel present in the observation 
window will, therefore, be strongly taken into 
account in the convolution points at low distance 
from the current point (standard convolution) and 
close in intensity of the current point (action of 
function g), but these two aspects are taken into 
account independently "f does not see the intensity 
and g does not see the distance". 

 
FLOWING BILATERAL FILTER 

 Here, an image is seen as a topological relief. 
We consider the case where two valleys of 
different values are surrounding a large peak (see 
Fig. 2 for an illustration). As we have seen before, 
the bilateral filter, with an adequate 
parameterization, can keep intact the strong 
transition. However, in this particular case, we can 
observe an overflow of the valleys around the 
peak, the lower value valley into the higher value 
valley and reciprocally. This case leads to the 
creation of “halo” in the filtered images and can be 
avoided if gf ×  is strictly decreasing. This kind of 
function can be designed by imposing the decrease 
of the function g by adding a comparison while  

a. 
 

b. 

 
c. 

 
d. 

Fig. 2. a. Initial 1D profile composed by a large 
peak surrounded by two valleys; b. 1D profile with 
additional Gaussian noise; c. After application of 
a bilateral filter (f and g, Tukey function, with 
σf=20 and σg=20); d. After application of the 
flowing bilateral filter (same parameters). 

computing filter’s tonal weight : if d and d’  are  
distances from the central pixel, with d>d’, then 
g(d) must be smaller than g(d’). This criterion can 
be formulated as a morphological reconstruction 
operation (Serra, 1988) (Vincent 1993) in the 
weighting function space. Grayscale 
morphological reconstruction ( )XρY  of Y from X 
is obtained by iterating grayscale geodesic dilation 
of X “under” Y until stability is reached  (Vincent 
1993): ( ) ( )( )Xδ Xρ n

Y
1n
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This new filter can be written as : 

( ) ( ) ( )

( ) ( ) p'G p'pf W

with

  I(p) p'G p'pf
W

1
pI'

I p, ,σ
Dp'
σ

I p, ,σ
Dp'
σ

gf

gf

∑

∑

∈

∈

−=

−=

 

 

(2) 

Within this formulation, the weighted function 
depends on the location of the central pixel (Eq. 
3). This new filter enables the suppression of 
“halo”, however, morphological opening by 
reconstruction results in a significant additional 



 

 

time computing overhead especially for 3D 
processing. 
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SEPARABLE FLOWING 
BILATERAL FILTER 

 In order to reduce the complexity and memory 
usage of such a filter, it is possible to design an 
approximated version by means of a separated 
kernel (Pham and Vliet, 2005). The separable 
bilateral filter can be written as Eq. 4: 
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The formulation of the separable flowing bilateral 
filter (see an illustration Fig. 4) can be written with 
a morphological reconstruction as Eq. .5. This 
formulation can lead to a practical and efficient 
implementation. Indeed, a morphological 
reconstruction can be implemented as a simple 
floating point comparison by a neighborhood 
element (see Algo. 1). 
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Function Horizontal_flowing_BFilter() 
BEGIN  
FOREACH p in I 
  fRc = 1; // flowing tonal coeff. init 
  sum_c = 0.0; // neighborhood coeff. sum 
  FOREACH p’ in Dx 

    Sc = GetSpatialCoeff(p’); 
    Rc = GetTonalCoeff(p’); 
    IF( Rc <= fRc) // flowing bilateral filter 
      fRc = Rc 
    ENDIF 
   c = fRc*Sc; 
   sum_c += c; 
   tot = c*I(p’);   
  ENDFOREACH 
  O(p) = tot/sum; 
END FOREACH 

Algo. 1. Pseudo code of separable flowing 
bilateral filter considering the horizontal 
direction. 

GPU ARCHITECTURE AND CUDA 
PROGRAMMING MODEL 

 
 Even if GPU were originally designed to 
perform graphic oriented applications, such as 
renderings and textures mappings, their native 
parallel architecture (Single Instruction Multiple 
Data) led the scientific community to bring speed 
up to highly computational demanding 
applications. For our study, we used the computed 
unified device architecture (CUDA) (NVIDIA 
CUDA C, 2012) developed by NVIDIA for the 
implementation of regular and separable bilateral 
filters. In order to operate the native GPU 
capability to perform parallel work, the NVidia 
CUDA API enables to run thousands of threads in 
parallel by launching a batch of threads called 
warps on the GPU’s Streaming Multiprocessors 
(SMs) via a function called kernel function. A 
kernel function can be seen as a specialized 



 

 

template function on the index of the threads and 
blocks launched on the SMs. GPUs own different 
types of memory which are on and off chip. The 
DRam or global memory is the main GPU memory 
enabling inter alia, reading and writing from the 
host machine (with a high latency and via the PCI 
Express), and providing memory pointers to kernel 
functions in order to perform data processing. 
Shared memory and registers are on chip 
memories providing a low latency and high 
bandwidth. Note that shared memory is statically 
allocated by the programmer and that an allocated 
buffer is shared by all the threads of a block 
whereas registers are handled automatically by the 
driver and are related to each of the threads 
individually.  

As we carried over our experiments with an 
NVidia Quadro 4000 of capability 2.0 we will 
limit our description to the Fermi architecture. 
Regarding the relation between GPU architecture 
and CUDA API, there are three levels of 
parallelism expressed and they represent three 
levels of granularity :  

 
• The smaller execution level is the warp of 

threads. In our case the SMs run a batch of 
32 threads simultaneously. 

• The second level of parallelism is the block, 
whose size is chosen by the programmer and 
contains a maximum of 1024 threads for the 
Fermi architecture. Note that a block can 
only be executed by one SM however, one 
SM can execute several blocks. 

• The last level of granularity is the grid (more 
precisely the grid of threads blocks), often 
determined by the mapping of threads on 
data  desired by the programmer (e.g. it can 
be convenient to make one thread treating 
one voxel). 

 
In order to reach a high arithmetic peak for a given 
applications some basic strategies are 
recommended (NVIDIA CUDA Best, 2012) and 
will be experimented in ours implementations:  

 
• An algorithm should be written to exhibit 

parallelism. 

• Minimize data transfer between CPU and 
GPU because of their penalizing latency. 

• Ensure coalesced read from global memory. 
• Avoid conditional branching (e.g. “if” 

statements). 
• Maximize SM occupancy rate i.e. give the 

multiprocessors a large number of blocks to 
process. 

GPU CODE OPTIMIZATION 

SPATIAL COEFFICIENT 

 The first optimization realized for all the 
implementations is the pre-computation of the 
spatial attenuation coefficients on the CPU. As 
these coefficients don’t change during program 
execution, we load them on the GPU in an on-chip 
buffer memory of 64kB called constant memory 
which  is accessible by all the threads with high 
bandwidth and small latency. 

MEMORY ACCES 

 Our first experiment was designed to show the 
impact of non-strided access when working with 
multi-dimensional arrays allocated as a linear 
memory block. Even if misaligned global memory 
fetches issues were resolved since the introduction 
of Fermi architecture (due to the additional L1 
cache of 128 bytes in each SMs), Fig. 3 reveals 
that column and depth (Y and Z directions) fetches 
penalize global computation time. The 
specification of the Quadro 4000 GPU card 
announces a bandwidth peak of 89.6 Go/sec, this 
serves as a reference to evaluate the speed of our 
algorithm. The slowdown observed for Y and Z 
passes is due to the GPU driver fetching 
mechanism in the global memory where fetches 
are performed via 32, 64 or 128 bytes transactions 
aligned with their size. In the case of a 3D image 
processing algorithms, we need to consider the 
three directions and to perform a local scan around 
each voxel. For the regular bilateral filter, we 
consider a 3D neighborhood window, thus a 
convenient memory fetching optimization is to 
bind image data memory portion to a 3D texture 
cache in order to speed up spatial locality access.  



 

 

 

Fig. 3. Global memory bandwidth ratio with 
theoretical hardware bandwidth peak considering 
the three filtering directions (X, Y, Z) through a 
512x512x512 – 32 bits data volume and with 
bilateral filter’s fetching pattern. 

For the separable bilateral filter, even if we can’t 
avoid the reading and writing of the data from the 
global memory, we can benefit of this first read to 
load an on-chip and fast buffer of shared memory, 
and then to perform memory fetches into this 
buffer for the neighborhood scan. Note that the 
memory requirement consists of allocating enough 
memory for the input and output image on the 
Dram of the GPU (e.g. this represents 1GByte for 
a 512x512x512 image). 

  PERFORMANCE VS OCCUPANCY 
 

 This first implementation was designed to 
maximize SMs occupancy i.e. one thread 
computes one result image voxel. Starting from 
this first implementation, we decided to 
investigate the vectorization capabilities of the 
GPU by treating simultaneously N_BATCH of 
rows, columns or data vectors in the depth 
direction thereby introducing Instruction Level 
Parallelism (ILP) via loop unrolling directive 
(Volkov, 2010). Note that vectorization is 
lowering the number of threads and blocks 
launched on the SMs thus tending to reduce 
occupancy while rising registers usage. Hence the 
principle is to allocate and to load N_BATCH  

Fig. 4. Separable flowing bilateral filter results on 
standard tests images. 
 

times the shared memory buffers (note that this 
buffer is limited to 48KB) and to benefit from 
independent memory, and compute operations 
for N_BATCH output voxels at the same time in 
order to hide memories and arithmetic latencies. 

 

RESULTS 
 

QUALITATIVE AND QUANTITATIVE 
ANALYSIS 
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Fig.5. Qualitative comparisons on 2D images. For each images, spatial and tonal parameters are 
equivalent. 
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Table 1. Timings comparisons between  Regular, Separable Flowing and (Paris and Durand, 2006) 
bilateral filter implementations on standard test images.  

“Stained Glass” “Tulip”  “House Corner” 

PSNR UIQ SSIM PSNR UIQ SSIM PSNR UIQ SSIM 

Noise 

27,74 0,99 0,99 27,5 0,962 0,963 25,11 0,964 0,965 

Regular Bilateral Filter 

31,62 0,996 0,996 33,3 0,992 0,992 28,56 0,987 0,987 

Flowing Bilateral Filter 

31,74 0,996 0,996 33,35 0,992 0,992 28,627 0,987 0,987 

Separable Bilateral Filter 

31,6 0,993 0,993 33,77 0,993 0,993 27,99 0,985 0,985 

Separable Flowing Bilateral Filter 

32,27 0,997 0,997 34,24 0,994 0,994 28,627 0,987 0,987 

Bilateral Filter  (Paris and Durand, 2006) subsampling = 0.25 

30,23 0,995 0,995 34,31 0,994 0,994 28,09 0,985 0,985 

  

“Catalyst 1” “Catalyst 2” 

PSNR UIQ SSIM PSNR UIQ SSIM 

Noise 

27,79 0,983 0,983 27,76 0,969 0,969 

Regular Bilateral Filter 

31,19 0,992 0,992 28,45 0,97 0,971 

Flowing Bilateral Filter 

31,23 0,992 0,992 28,49 0,97 0,971 

Separable Bilateral Filter 

30,41 0,991 0,991 27,15 0,959 0,96 

Separable Flowing Bilateral Filter 

31,6 0,993 0,993 28,37 0,97 0,971 

Bilateral Filter (Paris and Durand, 2006) subsampling = 0.25  

30,79 0,991 0,991 27,35 0,96 0,961 

 “Stained Glass” “Tulip” “House Corner” “Catalyst 1” “Catalyst 2” 
Regular Bilateral Filter (CPU / GPU implementation) 

5.24s / 0.1s 12.62s / 0.34s 6.51s / 0.18s 13.14s / 0.1s 13.77s / 0.12s 
Flowing Bilateral Filter (CPU implementation) 

24.29s 56.75s 29.77s 60.32s 66.89s 

Separable Bilateral Filter (CPU implementation) 
0.336s 0.812s 0.42s 0.845s 0.885s 

Separable Flowing Bilateral Filter (CPU / GPU implementation) 
0.35s / 0.01s 0.83s / 0.03s 0.43s / 0.01s 0.87s / 0.02s 0.926s / 0.02s 

Bilateral Filter (from  (Paris and Durand, 2006)  (CPU , subsampling = 1) 
0.6s 1.1s 0.6s 1.4s 1.4s 

Bilateral Filter (from  (Paris and Durand, 2006)  (CPU , subsampling = 0.25) 
12.2s 47.7s 14.8s 63.4s 68.8s 

Table 2. Quantitative comparisons 
between the proposed 
implementations of the flowing 
bilateral filter and other discussed 
implementations on various 2D 
images. 

 



 

 

For these tests, we used a noise removal 
application. For each image we added a Poisson 
noise (5%) and performed an analysis of the 
filtered images generated by five different 
implementations: the regular bilateral filter, 
separable bilateral filter, flowing bilateral filter, 
separable flowing bilateral filter and (Paris and 
Durand 2006) implementation  with two different 
sampling factors. 

 
On the “Stained Glass” image, no“halo” effects 
surrounding the two regions border (darker one for 
the brighter region and brighter one for the 
brighter region respectively) can be noticed with 
the flowing bilateral. As we can see, the regular 
bilateral filter produces “halo” artifacts. Paris and 
Durand (2006) strategy does not produce these 
artifacts but,  unfortunately, the noise is remaining 
strongly present with the test realized with a 
sampling factor equal to 1. Considering a 
sampling factor at 0.25, a better result can be 
obtained but the computing time is then much 
longer (see Table 1). Our approach gives the best 
compromise between image quality (no “halos” 
artifacts and strong noise reduction) and 
computing times. We also compared the results 
generated by these implementations on standard 
tests images (“Tulip” and “House Corner”) and on 
2D Scanning Electron Microscopy images of 
catalyst supports ("Catalyst1" and "Catalyst2"). 
Several criterions namely PSNR, UIQ and SSIM 
(Wang et al.,  2004) are used to compare images 
before and after noise filtering, the results are 
summarized in Table 2. Except for “Tulip” whose 
texture is diagonally oriented, the flowing bilateral 
filter is producing at least as well or better than all 
the other filters used for the comparisons (cf. the 
PSNR values). One can note also that the 
separable version of the flowing bilateral filter is 
very interesting (see Table 1), furthermore its 
running time on GPU is a hundred time lower than 
the Paris and Durand (2006) implementation with 
a 0.25 sampling factor. 
 

 
Fig. 6: Computation times of CPU/GPU 
implementations of flowing and regular bilateral 
filters.  

 

 
 

 
 
 
 
 
 
 
 

Fig. 7. 3D volume of alumina catalyst (size 
512x512x512, resolution 1nm.voxel-1) obtained 
by electron tomography (Tran et al., 2014). Upper 
image : 3D observation by volume rendering; Left 
image : one region of interest (ROI) of one slice 
of the volume; Right image : same ROI after 
flowing bilateral filter (parameter spatial 4, 
intensity 15). 



 

 

COMPUTING TIME  

 
 Experimental results presented below are 

obtained with an NVidia Quadro 4000 and an Intel 
Xeon QuadCore 2.8Ghz on a 512x512x512 – 32 
bits data volume (see Fig. 7). We compared the 
computation times of optimized versions of the 
separable flowing bilateral filters with Tukey's 
biweight functions kernels  implemented on GPU 
and CPU multi-threads. CPU code is implemented 
using the openMP API. In addition to pre-compute 
filter’s spatial coefficients, the inner loop is 
parallelized on all cores for each of the passes of 
the filter, achieving in our case a quasi linear 
efficiency compared to a single core 
implementation. Fig. 6 illustrates the computation 
times for the different implementations described 
in the previous section. Firstly, it  may be 
observed that the GPU implementations of the 
separable bilateral filter (cf. GPU SEP TUKEY  
and GPU FLOWING SEP TUKEY) outperform 
all the others implementations presented here. 
Indeed, it only needs a few seconds to treat a half 
GB data volume and bring it back to the CPU. 
Despite the use of a 3D texture cache, the regular 
bilateral filter GPU implementation (cf. GPU 
BRUTE FORCE) is very slow. We can notice that 
comparison with the CPU implementation (cf. 
CPU SEP TUKEY) can give an order of 
magnitude of the  reachable speed-up compared to 
a GPU implementation. With a half kernel size of 
39, an acceleration factor of approximately 20 is 
obtained. Considering a batch of 4 voxels to be 
computed at the same time by each thread (i.e . via 
the loading of 4 rows into shared memory) we 
benefit from ILP and observe a 40% speed-up  
compared to the previously described separable 
implementation. Moreover, we notice no 
additional computation time change with the 
flowing bilateral filter considering the GPU or the 
CPU implementations.  

 

CONCLUSION 
 

    Seeing an image as peaks and valleys, we 
introduced the flowing bilateral filter, 
suppressing “halo” artifacts  typically produced 
by the regular bilateral filter around a large peak 
surrounded by two valleys. The proposed 
methodology was to combine a morphological 
reconstruction in the tonal space in order to 
ensure the strict decreasing of the tonal 
weighting function. A separable version of this 
new filter was also proposed. This version 
requires only little change from the original 
approximate separable version of the bilateral 
filter algorithm. We also proposed GPU 
implementations of the separable flowing 
bilateral filter by using the NVidia CUDA API. 
With this version, the global memory of the GPU 
in the row, column or depth direction can be 
preloaded into a fast access buffer and is 
inducing a great speed up compared to a CPU 
implementation. Indeed, we can reach an 
acceleration factor up to 20 compared to a CPU 
implementation parallelized on 4 cores. Time 
computing of regular or flowing separable 
bilateral filters on CPU or GPU are almost 
identical. 
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