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Abstract

In this paper, we present a novel framework for combining several independent on-
line trackers using visual scene context. The aim of our method is to decide automatically
at each point in time which specific tracking algorithm works best under the given scene
or acquisition conditions. To this end, we define a set of generic global context features
computed on each frame of a set of training videos. At the same time, we record the
performance of each individual tracker on these videos in terms of object bounding box
overlap with the ground truth. Then a classifier is trained to estimate which tracker gives
the best result given the global scene context in a particular frame. We experimentally
show that such a classifier can predict the best tracker with a precision of over 80%
in unknown videos with unknown environments. The proposed tracking method further
filters the classifier responses temporarily using a Hidden Markov Model in order to avoid
rapid oscillations between different trackers. Finally, we evaluated the overall tracking
system and showed that this scene context-based tracker selection considerably improves
the overall robustness and compares favourably with the state-of-the-art.

1 Introduction

We consider the problem of on-line visual object tracking in unconstrained environments,
which raises many challenges. First, the arbitrary nature of the object makes it difficult to
model its appearance only from the first video frame and implies the use of on-line learning
as opposed to off-line trained classifiers for specific types of objects (e.g. faces or pedestri-
ans). Additionally, the potential changes in the scene appearance, camera motion or other
acquisition conditions during a video make background subtraction algorithms unsuitable for
the tracking task. In order to successfully track an object in these unconstrained conditions, a
tracking algorithm needs to adapt its model based on discriminant, descriptive features while
minimising model drift. In our work, we leverage the fact that different tracking algorithms
are specialised on different types of scenes and acquisition conditions. We show that, by
quantifying these scene context parameters and training a discriminative classifier that de-
cides at each moment which specific algorithm will perform best under the given conditions,
we are able to successfully combine several independent trackers in a way that considerably
improves the overall robustness in highly varying environments.

(© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1.1 Related Work

In the literature, many ways of combining, fusing or selecting visual features have been pre-
sented. An example of low-level fusion of features is the Bayesian framework introduced by
Yilmaz et al. [29] fusing probabilistic density functions based on texture and colour features
for object contour tracking. Collins et al. [4] used likelihood maps to rank features in order
to select the most discriminant one. Other existing works (e.g. [20, 23, 26, 30]) fuse differ-
ent modalities, like motion or shape, in order to improve the overall foreground-background
discrimination. Fusion is also possible at a higher level, where several trackers are run in
parallel in order to select or combine their respective results. A probabilistic combination
has been proposed by Leichter ef al. [16] where parallel trackers use different features and
output a probabilistic density function of the tracked state. Another probabilistic formulation
has been presented by Kwon et al. [14, 15], where different motion and appearance models
are combined by sampling from different trackers. More recently, the method Bailer et al. [2]
fuses the bounding boxes of multiple state-of-the-art trackers by an off-line training step and
trajectory optimisation. In terms of model or feature fusion, our previous work Moujtahid et
al. [18] concentrated on using confidence values of several individual trackers to select the
most suitable one at a given instant. Each tracker is independent and relies on a different
visual feature, like colour or texture. The similar approach from Stenger ez al. [24] also used
confidences but has been applied to the particular case of face tracking and involves off-line
trained classifiers, whereas in [18] we used an additional spatial-temporal coherence criteria
to enforce the continuity of tracking.

In contrast to these existing works, in our proposed framework, the selection of the most
discriminant and most suitable tracker is based on the visual scene context in the video.
Context has been used previously for object tracking in different forms and has shown to
improve the overall tracking performance. Some works propose to detect image regions or
interest points that move similarly to the tracked object [9, 27, 28] in order to assist the
tracking, so-called supporters, contributors or helper objects. Other methods seek image
regions that have similar appearance, so-called distractors, in order to avoid confusion [6,
11]. However, these approaches are computationally expensive, due to the more complex
data association and modelling of spatial and temporal relationships between the different
tracked objects or interest points.

In our approach, we are not trying to detect and track supporting or distracting image
regions but we are classifying the general scene context and conditions in order to select the
most appropriate visual cue or tracker for a given situation. To this end, we compute global
image descriptors based on colour, intensity and motion at each video frame. In the past,
other global image descriptors (sometimes called gist features) have been proposed (e.g.
[19, 21, 25]) mostly for fixed images to classify scenes into different semantic categories,
such as open, closed environments, indoor, outdoor efc. To our knowledge, no other work
exists that extracts and classifies global scene context features for visual object tracking.

1.2 Motivation

Different tracking algorithms have different strengths and weaknesses. Some cope well with
different lighting conditions, some are particularly robust to object deformations or occlu-
sions efc. but will fail in other conditions. Due to the compromise between invariance and
discriminative power, despite recent progress in on-line tracking algorithmes, it is hard to de-
sign models that perform well in very different environments and contexts. Although the
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Figure 1: Overall framework of the proposed scene context-based tracking algorithm.

fusion of different visual cues generally improves the performance in that regard, it remains
difficult to decide on the importance or on the weight each modality should get when the
overall scene context changes, especially within a given video. Moreover, the on-line updat-
ing of the underlying models is not straightforward. A given modality or tracker might be
impaired by the update under conditions that it has not been designed for.

To this end, we propose a framework that combines several independent and comple-
mentary trackers, each specialised on different image and scene conditions. The decision on
which tracker to select is proposed by an off-line trained classifier which, in turn, is based
on general scene context features that are independent from the individual trackers. To sum-
marise, our contributions are the following:

e a set of general scene context features that describe the global conditions (such as
lighting, camera motion) that are relevant to track an object in a video,

e a framework that combines independent trackers by using a classifier that estimates at
each frame the most suitable tracker for the given context, and by filtering the classifier
responses using a temporal Hidden Markov Model (HMM),

e and a thorough evaluation of the different components of the proposed approach and
comparison with state-of-the-art methods.

2 Opverall approach

The general procedure of the proposed tracking framework is illustrated in Fig. 1. On a given
video, N independent trackers Ty, (n € 1..N) run in parallel and, at every frame 7, produce
each an estimate of the object’s state. This is usually a bounding box B} with an associated
confidence value (or score) ¢; ,. The objective is to select at each frame the best tracker, i.e.
the one that outputs the bounding box that fits best the object to track.

At the same time, M scene context features f; are extracted and concatenated with addi-
tional measures like the trackers’ confidences ¢; and the identifier of the last selected tracker
s;—1 to form a large feature vector i;. An N-class classifier, that has been trained off-line on
annotated data, is then applied on these features to estimate the best tracker for the given
scene context. The classifier responds with y;, a probability for each class which is subse-
quently filtered by a HMM to ensure some temporal continuity of the tracker selection and
reject outliers. Finally, a Kalman Filter is applied as a post-processing step to temporally
smooth the resulting object bounding box B; from the selected trackers 7;. The result of
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the Kalman filter represents the final output of our tracking algorithm, and is further used to
update the models of the individual trackers 7,,.

Apart from this last update step, all the trackers are completely independent and do not
cooperate or interact with each other. It is also important to mention that this approach is very
generic, and in theory any on-line tracking algorithm can be integrated in this framework.

3 Visual scene context

In most existing computer vision algorithms, for example image classification or object
recognition, some common visual features are used to concisely describe the content of an
image or a region, such as SIFT, HOG, Haar-like features, LBP, or more roughly using Gist
descriptors. However, to our knowledge, there are no established descriptors that capture
global scene information regarding the overall environment or acquisition conditions, like
lighting, camera motion, background uniformity efc. To quantify these phenomena is of par-
ticular interest for video analysis and object tracking algorithms. In the following, we will
propose a set of such descriptors that we call “scene context features”.

3.1 Scene context feature extraction

The proposed scene context features are designed to help predicting the best tracker in a given
environment. Most of them correspond to first and second order statistics of a given image-
related variable (e.g. intensity, hue, saturation, motion vectors), and are straightforward to
compute. Let’s define Q as a region of the input image, and ff}( as our feature computed
on Q. To simplify the notation, we omit the frame index ¢ in this section. We propose to
use the following set of features, grouped into three categories and defined in Equations 1-4:

Intensity features

- Average brightness ( fIQ): the mean grey-scale pixel value over region € (see Eq. 1).
- Average contrast ( fzg): the mean squared value of the difference of each grey-scale
pixel and the average brightness over Q (see Eq. 4).

Chromatic features

- Average saturation ( f39): the mean pixel value of the saturation channel in HSV colour
space over the region Q (Eq. 1).

- Saturation variance ( ff): the variance of saturation over Q (Eq. 2).

- Dominant hue ( fSQ): the dominant colour of the region Q extracted from a histogram
of quantised hue pixel values in HSV colour space (Eq. 3).

- Hue variance ( f69): the variance of the pixel values in the hue channel (Eq. 2).

Motion features

- Average motion ( f7Q): the mean of the norm of optical flow vectors densely computed
over the region Q (Eq. 1).

- motion variance ( fél): the variance of the norm of dense optical flow vectors over Q
(Eq. 2).
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Let p; denote the pixel value of a given image channel (e.g. H,S,V) and ||Q|| the number
of pixels in the region Q. The above mentioned features are then defined as follows:

AVERAGE: o= Zﬁgn’”, fork=1,3,7 (1)

o  Yico(pi)? Yicari )
VARIANCE: fi== 1l - ( |’|Q” ) , fork=4,6,8 (2)
DOMINANT CUE: [ = argmax(p;), fork =5 3)

icQ
YicaPi

CONTRAST: i for k = 2. 4
#= a5 (- S or @

Each of these features k is computed on three different image regions Q. We define a global
value as the feature computed on the whole image: ka . The local value is the feature com-
puted on the Region Of Interest (ROI), i.e. the region defined by the bounding box of the
tracked object: ka. And a differential value as the difference between the feature com-
puted on the foreground region (i.e. the ROI) and the background region (i.e. the image not
including the ROI): ka .

Not every combination of feature and region is used as some them don’t show semantic
meaning. The concatenation of these features gives us:

= {rC, s = P={0 )

Finally, we obtain M = 21 scene context features f; = {f¢,f* £} for frame 1.

3.2 Scene Context Classifier

To learn the different patterns that show high correlation between the information extracted
from the scene context and the performance of a tracker in a particular set of conditions, we
employ a multi-class classifier. We chose a fully connected Multi-Layer Perceptron (MLP)
with one hidden layer of N, neurons and N output neurons. Any other algorithm could be
used. In fact, a multi-class SVM showed equivalent performance, in our experiments. How-
ever, it was relatively sensitive to the choice of hyper-parameters (e.g. the type of kernel).

The input to the classifier at frame ¢ consists of the scene features f; and two additional
components: First, the confidence values of the N trackers ¢; = (c;1..c; n); they provide the
classifier with a measure of reliability of each tracker’s result. And second, the identifier
s;—1 of the tracker that has been selected in the previous frame. We will experimentally show
that this recursion highly contributes to learning the correlation between the scene context
features and the selected tracker in a given frame.

Furthermore, in order to give the scene context classifier information on the evolution
of the context over time, we additionally provide it with the features from the two previous
frames ¢ — 1 and ¢ — 2 forming the vectors:

Ft = {ftvftflvft72}
C = {ct7ct—17ct—2}
Si—1 = {St—17st—275t—3}

Incorporating the temporal aspect has proven to be very effective, as shown in our exper-
imental results. The final feature vector given as input to the classifier is the following:
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it = {Flaclastfl}'

N;
The classifier is trained off-line with a set of training samples {i i oj‘} containing the

input features i; and labels o7 computed from a separate set of videos with annotated object
bounding boxes. To construct the scene context features i; = {F »Ci,Si } we run the N
trackers on each video, and at each frame, extract the scene context features F; as well as
the trackers’ confidences C;. For the vector S;_1, i.e. the previously selected tracker, we
used the identifiers of the best tracker in the respective preceding frames according to the
ground truth. The desired classifier output class o} is the most accurate tracker, i.e. the one
with the highest overlap with the ground truth. We optimise the neural network parameters
with standard stochastic gradient descent by minimising the mean squared error between
the networks response vector y; = {y; 1..y:., } and the desired output vector y; € {—1,+1}¥
with +1 for the component corresponding to o; and —1 otherwise. The network’s final
class prediction is simply o, = argmax .y y:,. We perform early stopping using a separate
validation set. At each validation step, we update the component s (the previously selected
tracker) in the input vectors according to the maximum of the actual output of the classifier.

4 Tracking procedure

The proposed algorithm uses N independent on-line trackers that are initialised with the
bounding box of the object in the first video frame. Then, as illustrated in Fig. 1, the trackers
and the context feature extraction operate in parallel providing at each frame N confidence
values C; and M scene context features F; respectively.

At each video frame, the scene context classifier estimates the best tracker y; to select
for the given scene context. To avoid frequent and unnecessary switching between different
trackers, we filter the classifier responses in time using a Hidden Markov Model (HMM).

The HMM is used to estimate the discrete hidden variable x, € {1..N} corresponding to
the best tracker selection, and it receives the observations y; being the output of the scene
context classifier. Another observation variable d; = (d;,1..d; ) is added and defined as the
normalised distances of each tracker’s resulting bounding box B} to the previous estimated
object position. Using the HMM, we want to estimate the posterior probability distribution
of x;, which we can compute recursively:

P(xt|y“dt) :P(Yt|xt)/P(xr|xt717dt)l7(xt71|Yt717dt71)dxr71~ 5)

To simplify model parameter estimation, we assume that observations d, and the hidden
variable x,_| are independent. This gives us:

Pty d) = p(yifu)p(lds) [ plob)pCvio1,dio sy ©®

The likelihood function p(y;|x;) of the observed classifier responses and the probability
p(x;|d,) of selecting a tracker given the distances to the previous bounding box are modelled
by histograms computed on a separate training set. The transition probability p(x;|x,—1) is set
empirically to achieve a reasonable continuity of the HMM responses. Then, the best tracker
selection according to the HMM is computed as the maximum a posteriori probability:

s; = argmax p(x; = s'|y;,d;) . @)

s
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and the bounding box B; from the selecting tracker T, is passed to a Kalman Filter to provide
a smoother final trajectory.

S Experiments

For our experiments, we used N = 3 On-line AdaBoost (OAB) trackers [8] with different
visual cues for each: Haar-like features (HAAR), Histograms of Oriented Gradients (HOG)
and Histograms of Colour (HOC). The evaluation of the performance of our framework
consists of two parts. First, we measured the classification rate of the proposed scene context
classifier when trained on the different groups of features described in Section 3.1. Secondly,
we evaluated the overall tracking algorithm on a public benchmark analysing the contribution
of the different components, i.e. scene context features, HMM, and Kalman filter.

Training dataset. The context-based classifier is trained on the Princeton Tracking
Benchmark Dataset [22]. It contains 100 RGB-D videos with a diverse set of object types,
backgrounds, and changes in illumination, appearance and motion.

Evaluation dataset. The evaluation of context-based classifier, as well as for the over-
all tracking framework was conducted on the publicly available Visual Object Tracking
(VOT2013) benchmark [13]. The VOT2013 dataset contains 16 image sequences collected
from well-known tracking evaluations, they cover most of the challenging situations in object
tracking: scale variance, complex backgrounds, occlusions, object deformation etc.

5.1 C(lassifier evaluation

In order to understand the relevance of the different scene context features, we conducted a
series of experiments related to the classifier. We first separated the scene features into the
three group presented in Section 3.1: local, global and differential. Then we added several
time steps F;, the confidences C, and the previous tracker identifiers S;_;. For each feature
set, the classifier is trained on the Princeton dataset and tested on the VOT2013 dataset. The
results for the different combinations are shown in Table 1. The recognition rate represents
the proportion of frames where the classifier has successfully predicted the best tracker.

The combination of local, global and differential scene features gives only a low recog-
nition rate of 30.03%, however when introducing features over several time steps F,, we
achieve a higher rate of 35.80%. Adding the confidence values C; and the previous tracker
identifier S;_|, the rate is considerably increased to 81.80%. Given the low recognition rates
without S;_1, one might think that the classifier’s decision is mainly relying on this particular
feature. However, when training solely on the features S;_1, the classifier does not converge
to a viable solution as S,_; alone does not allow for a good generalisation. It tends to just
respond the identifier of the previously selected tracker. In fact, it is the association of both
the context scene features and tracker features that enables the classifier to extract and learn
the correlations between the scene information and the trackers’ performance.

5.2 Tracking evaluation

We further evaluated the performance of the tracking framework and its different compo-
nents following the protocol of the VOT2013 benchmark [13]. It’s a well-known benchmark
among the tracking community, which help us compare our proposed framework to the state
of the art tracking methods. The tracking algorithm is initialised with the ground truth object
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Classifier inputi; Recognition rate

{£} 26.28%
{£L €0} 27.25%
{£E €6 1P} 30.03%
{F:} 35.80%
{F,,C/} 40.06%
{F,,C:.S—1} 81.80%

Table 1: Recognition results for different classifier inputs on the VOT2013 database.

Method Accuracy  Failures
Best Confidence (BC) 0.559 3.513
Context Classifier 0.540 1.617
Context Classifier with HMM 0.574 0.887

Context Classifier with HMM and Kalman Filter 0.553 0.583

Table 2: VOT2013 Benchmark results for the proposed method and baseline (BC).

bounding box in the videos’ first frame and re-initialised whenever the target is lost. The
benchmark provides two evaluation measures: “accuracy” is the average overlap with the
ground truth, and “failures” represents the robustness of the algorithm counting the number
of times the tracking is lost. Here, we present the (sequence-based) average values for the
whole dataset. See [13] for more details.

In Table 2, the results for our proposed tracking method and its different components are
presented along with a baseline method called “Best Confidence” (BC) that selects the best
tracker only by the maximum confidence value. A classification based on the global scene
context features considerably reduces the number of failures compared to using only the
confidence values in BC. We can also see that both the HMM and the Kalman Filter greatly
improve the robustness. However, when decreasing the number of failures the accuracy
decreases slightly as well. These two additional components of the algorithm are important
for the continuity of the tracking and, at the same time, ensure that a different, more suitable
tracker can be selected whenever drastic scene changes occur.

We further compare the proposed framework (i.e. including HMM and Kalman Filter)
with other state-of-the-art tracking algorithms, as well as the three individual (OAB-based)
trackers. Figure 2 shows the ranking and Accuracy-Robustness plots. The proposed algo-
rithm increases the robustness of our individual trackers HAAR, HOG and HOC. In fact, our
method ranks among the top trackers of the challenge in terms of robustness, outperforming
for example EDFT [7], STC [18], Struck [10] and FoT [17] methods. On the other hand, the
accuracy of our method is directly linked and dependent on the accuracy of the individual
trackers. Note that we fixed the scale of the trackers in our experiments as the robustness of
OAB generally decreased when adapting to scale. Using more accurate trackers would in-
crease the general accuracy of our proposed method as well as the robustness. Nevertheless,
we demonstrated that our framework is able to combine the strengths of each OAB tracker
and enhance the overall robustness (Fig. 3).
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Figure 2: VOT2013 Benchmark ranking (left) and Accuracy-Robustness (right) plots: Com-
parison of our proposed framework (Ours) with Online AdaBoost trackers HAAR, HOG,
HOC ; baseline BC ; and state of the art trackers: STC [18], Struck [10], MIL [1], TLD [12],
Meanshift [5], PLT [13], EDFT [7], FoT [17], LGT++ [3].

Figure 3: Illustration of our proposed framework’s tracking results on the “David”(1* row)
and “Bicycle”(2"! row) videos. Different scene context variations in lighting, texture or
background are present throughout the videos. Our framework selects the most suitable
tracker in each scenario (pink: HAAR, blue: HOG, green: HOC).
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6 Conclusion

In this work, we proposed a novel tracker selection framework based on scene context. We
used a classifier to learn the patterns that relate the scene context information with the “suit-
ability” of specific independent trackers under the conditions at a given video frame. We
also introduced a HMM to eliminate outliers and enforce the continuity in our tracking. In
our experiments with the VOT2013 benchmark, the proposed method ranks among the top
state-of-the-art trackers, and we showed the effectiveness of generic scene context features
in challenging tracking environments. Future work will concentrate on studying the effect of
using diversified state of the art trackers, increasing the number of trackers, as well as using
other types of scene context features.
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