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MULTIMODAL KALMAN FILTERING

Anthony Bourrier Pierre-Olivier Amblard Olivier Michel Christian Jutten

Gipsa-Lab, 11 Rue des Mathématiques, 38400 St-Martin-d’Hères, France

ABSTRACT

A difficult aspect of multimodal estimation is the possible dis-
crepancy between the sampling rates and/or the noise levels of the
considered data. Many algorithms cope with these dissimilarities
empirically. In this paper, we propose a conceptual analysis of
multimodality where we try to find the “optimal” way of combining
modalities. More specifically, we consider a simple Kalman filter-
ing framework where several noisy sensors with different sampling
frequences and noise variances regularly observe a hidden state.
We experimentally underline some relationships between the sam-
pling grids and the asymptotic variance of the maximum a posteriori
(MAP) estimator. However, the explicit study of the asymptotic
variance seems intractable even in the simplest cases. We describe a
promising idea to circumvent this difficulty: exploiting a stochastic
measurement model for which one can more easily study the average
asymptotic behavior.

1. INTRODUCTION

The term “multimodality” generally refers to the observation of a
latent phenomenon through different acquisition media [1]. Mak-
ing the most of these different measurements is still a challenge, and
may lead to better estimates of the latent phenomenon than the esti-
mation from a sole set of measurements. However, a recurrent prob-
lem in multimodal estimation is the discrepancy between data, which
may not have the same nature, dimension, sampling rate, noise level
or time delay. Examples of applications for which such discrepan-
cies occur include neuronal activity acquisition devices [2] or remote
sensing [3].

In this work, we propose to consider the problem of multimodal
estimation from a more theoretical point of view, basically consider-
ing the question: What is the best possible estimation one can obtain
from multimodal measurements? To tackle this problem, we con-
sider a simple multimodal model where one observes a continuous
latent variable through different noisy sensors, each having its own
measurement noise variance and its own sampling frequency. Tak-
ing a Kalman filter [4] based approach to estimate the hidden state,
the most natural way to evaluate the quality of estimation consists in
studying the asymptotic mean variance of the estimator.

The paper is organized as follows: in Section 2, we present the
multimodal Kalman estimation model we consider. In Section 3,
we experimentally underline the sampling layout which minimizes
the asymptotic variance of the estimator in the case of two modali-
ties. Since the explicit layout is too tedious to compute even in sim-
ple cases, we present in Section 4 a promising approach to provide
bounds on the variance of such a multimodal estimator by replacing
the deterministic model by a stochastic model.

This work has been partly supported by the European project ERC-2012-
AdG-320684-CHESS.

Earlier works. Multimodal Kalman filtering has mainly been
considered in the case of sensor networks, where several sensors
measuring the same hidden state are connected. In this setup, most
work focus on estimation with constraints such as decentralized es-
timation [5], unreliable communication channels subject to packet
losses [6] or time delayed observations [7]. We focus here on a
centralized multimodal estimation with no constraints, showing that
even this simple case is not fully understood. Kalman filtering with
an stochastic observation model has been extensively studied [8, 9,
10] and applied to multimodal estimation for sensor networks [11].
We believe that such studies have the potential to convey answers on
the optimal sampling layout even in the centralized unconstrained
case we consider.

2. MODEL DESCRIPTION

Consider a real Brownian motion θt, satisfying, for t > s, θt−θs ∼
N (0, (t− s)σ2). Suppose n sensors can make measurements of the
form

Xi
t = θt +N i

t (1)
at time t, where 1 ≤ i ≤ n corresponds to the index of the sensor and
N i
t is a centered white Gaussian noise of variance vi. We suppose

N i
t and N j

t are independent for i 6= j and that sensor i performs
regular measurements with period Ti. Without loss of generality, we
can suppose that σ = 1 (if not, replacing each Ti by Ti/σ boils
down to the same model with time being dilated by a factor 1/σ).

The Kalman filter framework can apply and the maximum like-
lihood estimate θ̂t of θt can be computed at any time t, supposing
we have an unbiased estimate θ̂0 of θ0 with variance V0. In this case,
denoting Vt = Var(θ̂t) and s the time were the latest measurement
was performed (by any sensor), we have at time t [12]:
• if there was no measurements between s and t,

θ̂t = θ̂s and Vt = Vs + (t− s)σ2 = Vs + (t− s); (2)

• if a measurement is performed at time t by the ith sensor,

θ̂t = θ̂s +
Vs + (t− s)

vi + Vs + (t− s) (X
i
t − θ̂s) (3)

and Vt =
vi(Vs + (t− s))
vi + Vs + (t− s) . (4)

Our main goal is to compare the behavior of Vt in a multimodal
case, quantifying the gain in the expected mean square error (MSE)
when one exploits several types of measurements. To this end, we
first establish the behavior of Vt under unimodal regular sampling.

2.1. Unimodal estimation

Let us supposeX1
t = Xt = θt+Nt, the only observation of θt with

measurements taken at times TN = {0, T, 2T, . . .} and note v1 = v
the noise variance. We can explicit the asymptotic mean value of Vt.



0 0.5 1 1.5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

time

va
ria

nc
e

〈Vt〉

Fig. 1. Representation of Vt with respect to t for a unimodal estima-
tion of a Brownian motion. The parameters used are T = 0.25 and
v = 1, and the Kalman filter is initialized with an estimated value
of variance v at t = 0. The discontinuities correspond to the mea-
surements of the sensor (update equation (4)), the lines correspond
to the linear increase of Vt in the absence of measurement (update
equation (2)). The dotted line represents the asymptotic mean value
of Vt.

Property 1. Suppose Xt observes a Brownian motion of variance 1
at times TN, with a white Gaussian measurement noise Nt of vari-
ance v. Then

〈Vt〉 = lim
k→∞

1

T

∫ (k+1)T

kT

Vtdt =
T

2

√
1 + 4

v

T
. (5)

A representation of Vt in a simple case is given in Figure 1.

2.2. Multimodal estimation

Let us now suppose n > 1. In this case, the general sampling grid is
not entirely determined by the sampling periods Ti but also depends
on the “shifts” of the sampling grid of each sensor relatively to the
origin (all sensors do not necessarily begin to sample at time 0).
We therefore consider that sensor i samples at times hi + TiN =
{hi, hi + Ti, hi + 2Ti, . . .}. For 1 ≤ i ≤ n and t ≥ 0, denote

fi,t : x 7→
vi(x+ t)

vi + x+ t
. (6)

If a measurement is performed at time t by the ith sensor, the vari-
ance is updated as Vt = fi,t−s(Vs), where s is the time when the
previous measurement was performed. An illustration of the sam-
pling grid and the corresponding updates of the variances is illus-
trated in Figure 2 in the case of two modalities.

Let us establish that if the ratios between the Ti’s are all rational,
then Vt has a periodic asymptotic behavior. Let us first consider the
case of two modalities with pT1 = qT2 (p, q ∈ N) and h1 = h2 = 0.
The measurements up until time pT1 are performed at times kT1,
k ∈ J0, p − 1K for modality 1 and at times kT2, k ∈ J0, q − 1K
for modality 2. At time pT1 = qT2, a measurement is performed by
both modalities (as for t = 0) and the layout of the measurements for
times [pT1, 2pT1[ is the same as for times [0, pT1[. This periodicity
in the layout of the measurements also holds for any offset h, that
is the layout of the measurements is the same in all intervals of the
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Fig. 3. Bimodal estimation of a Brownian motion. Plot of the
variance when using 2 modalities (blue solid line) and using only
modality 1 (dashed line) or 2 (dotted line). The parameters used are
T1 = 0.25 = T2/2, v1 = 1 = 2v2, h1 = 0 and h2 = T1/2. The
discontinuities are located at the measurement times of any sensor.
Note that when taking into account both sets of measurements, the
variance is below the variance when taking only one measurement.

form [h + kpT1, h + (k + 1)pT1[, k ∈ N. When h1 and/or h2 are
nonzero, this periodicity is subsequently conserved.

In the case of nmodalities, it is sufficient to suppose that piT1 =
qiTi with all pi’s and qi’s integers, in which case all Ti/Tj are ra-
tional. The layout of the measurements is the same in all intervals of
the form [h + kpT1, h + (k + 1)pT1[, k ∈ N, where p is the least
common multiple of the pi’s. Therefore, if a measurement is per-
formed at time s ∈ [0, pT1[, the variance at time tk = t+ kpT1 can
be expressed as Vtk = fks (s), where fs is a composition of func-
tions of the form fi,t, corresponding to the change in the variance
depending on the layout of the measurements between times tk and
tk+1.

Since all fi,t are homographic functions with positive coeffi-
cients, any function fs is also a homographic function with positive
coefficients. The study of such a function shows that it always has
a unique positive fixed point vs. Since fs is bounded and increas-
ing, the sequence (Vtk )k≥0 converges to vs. Finally, the asymptotic
behavior of Vt is periodic with period pT1.

3. WHAT IS THE BEST SAMPLING GRID?

In this section, we consider the case where the measurements are
performed with two sensors. In this case, the behavior of Vt is
represented in Figure 3 (see explanations in the caption). Figure 4
shows that the shifts hi may have an importance in the value of 〈Vt〉,
which is an indicator of the average asymptotic quality of the esti-
mator. In the example of Figure 4, the minimal asymptotic variance
is achieved when h2 ≈ T1/2, meaning that to reduce the variance
of the estimator through time, one should spread measurements over
time instead of making several measurements at the same time. Also
note that the shift that minimizes the inferior limit of the variance
(which corresponds to the asymptotic variance after the “best” mea-
surement) does not necessarily minimize the asymptotic mean vari-
ance.

By analogy with the unimodal case of Section 2.1, one can aim at
obtaining a closed form expression for 〈Vt〉 in the multimodal case.
To illustrate the difficulty of the asymptotic study, let us consider the
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Fig. 2. Updates on Vt in the case of two modalities, with T2 = 2T1 = 1, h1 = 0 and h2 = 1/2. Between each successive timestamp is
represented the function applied to the variance to get the new value. Since T1/T2 is rational, the sampling grid exhibits a periodic pattern
(see the end of Section 2.2).
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Fig. 4. Influence of the shift h2 of modality 2 with respect to modal-
ity 1 on the value of 〈Vt〉. Here, T1 = T2 = 1. Solid lines represent
the value of 〈Vt〉 when taking into account the two modalities or
either one, dashed lines represent the values of lim inf Vt.

simple bimodal framework where T1 = T2 = T and h1 = 0. Let us
denote h = h2. In this case, there are two different update steps for
the variance : f2,h and f1,T−h. Asymptotically, VnT converges to
the fixed point of f1,T−h ◦ f2,h while VnT+h converges to the fixed
point of f2,h ◦ f1,T−h. One can compute explicit expressions for
these fixed points because these functions are homographies. The
unique positive fixed point of the homography x 7→ ax+b

cx+d
is ex-

pressed as
1

2c

[√
(d− a)2 + 4bc+ a− d

]
(7)

This allows us to explicitly compute the fixed points λ1 and λ2 of
f1,T−h ◦ f2,h and f2,h ◦ f1,T−h. The asymptotic mean of Vt is then
given by

〈Vt〉 =
1

T

[
h

(
λ1 +

h

2

)
+ (T − h)

(
λ2 +

T − h
2

)]
. (8)

Finding the best shift h boils down to minimizing expression (8).
However, the expressions of λ1 and λ2 are heavy and this minimiza-
tion is tedious even in this simple case. The situation is even worse
when more modalities are considered or when the sampling periods
are not equal since the expression of 〈Vt〉 involves fixed points of
compositions of many functions fi,t. Figure 5 represents the quan-

tity (8) with respect to h for several values of T , v1 and v2. Two
conclusions can be drawn from Figure 5:

• Figure 5 Left: As the (common) sampling period T increases,
so is the importance of the shift in the value of 〈Vt〉. There-
fore, the fewer the measurements the more crucial it is to
spread them well over time.

• Figure 5 Right: As the ratio v2/v1 increases, the importance
of the shift in the value of 〈Vt〉 decreases. When a sensor is
much less reliable than the other, the placement of the sam-
pling grid is less important than when the two sensors have
similar precision.

However the general study of the covariance of a multimodal
Kalman estimator, even in elementary cases, seems too tedious to be
performed. The next section presents a promising approach to pro-
vide a study of multimodal Kalman filtering on a slightly different
model.

4. OUTLOOK: STOCHASTIC MODELING

In [8], the authors introduce a multidimensional stochastic measure-
ment model where time is discretized and at a time t, a (unique)
sensor has probability 0 ≤ p ≤ 1 to perform a measurement while
no measurement is performed with probability 1−p, these measure-
ment triggers being independent of one another. More precisely, the
model is:

θt+1 = Aθt +Nθ
t (9)

Xt = Cθt +Nt, (10)

where θt is now a multidimensional vector and Nθ
t and Nt being

centered Gaussian noises of respective covariance matrices Q and
R. Denote Vt the covariance matrix of the MAP estimator of θt
knowing all observations up to time t. At time t, the update equa-
tion for Vt depends on whether a measurement has been performed
or not at time t. Therefore Vt becomes a random variable which de-
pends on the times and locations of the previous measurements. The
authors study the asymptotic behavior of E[Vt], proving in particular
that E[Vt] is upper bounded at each time by a matrix Ut which is
obtained by a recursive relationship with a unique function. Thus,
even though the behavior of Vt is random and can involve many dif-
ferent updates layouts, the average behavior can be upper bounded
by a recursive sequence with a unique update equation.

Subsequent works using such a stochastic formulation have been
performed to study sensor networks with unreliable communication
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Fig. 5. Representation of the variation of 〈Vt〉 with respect to its maximal value with respect to the shift of the second modality. Left:
v1 = v2 = 1, representation for various values of T . Right: T1 = T2 = 1, representation for various values of v2/v1.

channels [13, 6, 11]. However, we believe that this formulation also
has the potential to be a useful tool to study the asymptotic behav-
ior of a centralized deterministic multimodal Kalman filter. Indeed,
as we have seen, the difficulty in this case is the potentially huge
number of variance update functions to consider. Instead, one can
consider replacing the deterministic, regular measurements consid-
ered in Section 2.2 by stochastic measurements where the probability
that a sensor performs a measurement is proportional to its sampling
frequency.

Let pi stand for the probability that a measurement is performed
on sensor i, i = 1 . . . n. It is assumed that either no measurement
occurs with probability noted pn+1 or a single measurement occurs
on sensor i with probability pi, i = 1 . . . n (normalization for these
n sensors framework reads

∑n+1
i=1 pi = 1). The model of [8] can be

extended to a multimodal framework by modifying Equation 10 into
n equations:

Xi
t = Ciθ

i
t +N i

t , i = 1, . . . , n, (11)

where N i
t are independent centered Gaussian noises of covariance

matrices Ri. In this setup, the (random) update equation for Vt is:

Vt+1 = f(Vt)−
n∑
i=1

γit+1f(Vt)C
T
i

[
Cif(Vt)C

T
i +Ri

]−1

Cif(Vt),

(12)
where f(X) = AXAT +Q and (γ1

t+1, . . . , γ
n
t+1) equals ei (the ith

vector of the canonical basis) if a measurement is performed by the
ith sensor (which occurs with probability pi) or equals (0, . . . , 0)
if no measurement is performed at time t + 1 (which occurs with
probability p =

∑n
i=1 pi). The bounds of [8] can be generalized:

Property 2. Let V0 be a symmetric positive (SP) matrix and (Vt)
the random process defined from V0 by equation (12). Then for all t,
we get

E[Vt] � Ut1 (13)

with U0 = V0, Ut+1 = g(AUtA
T +Q) and

g(X) = X −
n∑
i=1

piXC
T
i (CiXC

T
i +Ri)

−1CiX. (14)

This result is valid even if the time discretization step is not 1
but any ε > 0. Getting back to the formulation of Section 2, we
can consider for ε small enough that pi = ε/Ti so that the average
waiting time between two consecutive measurements by sensor i is
Ti. We further have Q = ε, A = Ci = 1 and Ri = vi. Property 2
allows us to get an upper bound on E[Vt] which only depends on a
single recursive equation.

Although this upper bound gives a simpler way to study the
asymptotic variance of a stochastic multimodal Kalman filter, the
model is not exactly analog to the deterministic model. An inter-
esting outlook is to find upper bounds on E[Vt] when the update
function h in the update equation Vt+1 = h(Vt) is randomly chosen
among several analog functions, such as the fi,t functions of Equa-
tion 6. This would allow us to study a model closer to the initial
deterministic regular sampling of Section 2.

5. CONCLUSION

In this paper, we proposed to raise the question of the “optimal” es-
timation of a latent variable in the presence of observations having
different sampling rates and/or noise levels. Despite the fact that
this type of multimodal estimation is involved in many applications,
there is no pristine answer on how to design the best sampling pat-
tern even in the simplest cases such as the estimation of a Brownian
motion by two sensors having the same sampling period. The exper-
imental results we observed seem to underline the fact that spreading
the measurements over time instead of synchronizing them can lead
to substantial differences in the average MSE of the MAP estimator
and its limit inferior. Depending on whether one aims at favoring an
estimator which is more reliable over time or at specific timestamps,
the sampling layout will not be the same. However, deriving explicit
rules for a given problem seems too tedious because the involved
expressions are untractable.

Relying on a stochastic measurement model seems to be an el-
egant and efficient approach to the conceptual study of multimodal
Kalman estimation. Indeed, replacing the various deterministic up-
dates by random updates can lead, with a proper upper bound on the
MSE, to a more explicit asymptotic control of the variance of the
estimator.

1A � B means that B −A is a positive matrix.
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[1] Dana Lahat, Tülay Adalı, and Christian Jutten, “Multi-

modal Data Fusion: An Overview of Methods, Challenges and
Prospects,” Proceedings of the IEEE, vol. 103, no. 9, pp. 1449–
1477, Aug. 2015.

[2] Jing Sui, Tlay Adali, Qingbao Yu, Jiayu Chen, and Vince D.
Calhoun, “A review of multivariate methods for multimodal
fusion of brain imaging data,” Journal of Neuroscience Meth-
ods, vol. 204, no. 1, pp. 68 – 81, 2012.

[3] Mauro Dalla Mura, S Prasad, Fabio Pacifici, Paolo Gamba, and
Jocelyn Chanussot, “Challenges and opportunities of multi-
modality and Data Fusion in Remote Sensing,” in Signal Pro-
cessing Conference (EUSIPCO), 2014 Proceedings of the 22nd
European, Lisbonne, Portugal, Sept. 2014, pp. 106–110.

[4] Peter S. Maybeck, Stochastics Models, Estimation, and Con-
trol, Academic Press, 1979.

[5] Shu-Li Sun and Zi-Li Deng, “Multi-sensor optimal informa-
tion fusion kalman filter,” Automatica, vol. 40, no. 6, pp. 1017
– 1023, 2004.

[6] Li Yu Wen-An Zhang, Gang Feng, “Multi-rate distributed fu-
sion estimation for sensor networks with packet losses,” Auto-
matica, vol. 48, no. 9, pp. 2016 – 2028, 2012.

[7] C.L. Robinson and P.R. Kumar, “Sending the most recent ob-
servation is not optimal in networked control: Linear temporal
coding and towards the design of a control specific transport
protocol,” in Proceedings of the 46th IEEE Conference on De-
cision and Control, 2005.

[8] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti,
Kameshwar Poolla, Michael I. Jordan, and Shankar S. Sastry,
“Kalman filtering with intermittent observations,” IEEE Trans.
Automat. Contr., vol. 49, no. 9, pp. 1453–1464, 2004.

[9] Soummya Kar, Bruno Sinopoli, and José M. F. Moura,
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