
HAL Id: hal-01208180
https://hal.science/hal-01208180v1

Submitted on 6 Oct 2015 (v1), last revised 24 Oct 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realtime fusion of depth maps with a film camera in a
popular game engine framework for pre-visualization

compositing
Timothée de Goussencourt, Pascal Bertolino

To cite this version:
Timothée de Goussencourt, Pascal Bertolino. Realtime fusion of depth maps with a film camera in a
popular game engine framework for pre-visualization compositing. International Conference on Image
Processing (ICIP), Sep 2015, Québec, Canada. �hal-01208180v1�

https://hal.science/hal-01208180v1
https://hal.archives-ouvertes.fr


REALTIME FUSION OF DEPTHMAPS WITH A FILM CAMERA IN A POPULAR GAME
ENGINE FRAMEWORK FOR PRE-VISUALIZATION COMPOSITING

Timothée de Goussencourt

SolidAnim,
GIPSA-lab, Grenoble Alpes University

Pascal Bertolino ∗

GIPSA-lab, Grenoble Alpes University

ABSTRACT

The global context of our work is the virtual production film indus-

try. We present an efficient framework to merge a low resolution

depth map sensor with a high resolution film camera. The depth

sensor used is a Kinect 2, based on time of flight technology. Our

method is especially designed for film production requiring live (pre)

visualization. To achieve real-time performance we are not using a

specific customized solution software but the very popular game en-

gine Unity 3D. Our method is directly implemented into this game

engine to give the user all the facilities of a traditional game engine.

Index Terms— Depth map, Real-time, Compositing, Virtual

Production, Previz on-set, Unity

1. INTRODUCTION

The main goal of this article is to present an efficient fusion method

of a low resolution depth sensor with a high resolution film camera.

Adding depth information to color frame is a huge benefit for film

industry, especially for virtual production where real contents need

to be mixed with digital assets (compositing). Different techniques

that achieve this goal are presented in [1].

Some techniques to mix high definition color frames with depth

sensors have already been developed. For instance [2] uses a tri-

focal rig to generate high precision depth map: The authors com-

bine a stereo system with a monocular depth sensor, similar to [3,

4, 5, 6]. Then, a complex global optimization workflow is needed

to merge data. [7] uses a graph-cut optimization whereas [8] for-

mulates a convex optimization problem to make depth image up-

sampling. All of these methods use custom rig. The Arri company

develops a prototype coupling professional video sensor with a ToF

depth sensor called Arri Alexa Scene (http://www.arri.com/

news/prototype-motion-scene-camera/). Conversely,

the method we propose can deal with every film camera.

Our method calibrates sensors in a classic way and remaps the

depth data into the main film camera referential. A depth com-

parison between real and virtual objects of the scene is performed

to compose the final view. An existing custom implementation is

described [9]. [10] is also an interesting work using a depth sen-

sor to produce mixing reality. Our main contribution is to demon-

strate the use of a very popular game engine, Unity 3D (http:

//unity3d.com/public-relations) as a live previewing

tool. With the later, scene edition is available in real-time and the

user can benefit of all the advanced features available in a game en-

gine to really focus on creativity for mixing virtual with reality.

This paper is outlined as follows: in 2 we discuss about impor-

tant choices we made for our system and compare them with relative

∗The authors thank the French FUI for supporting the PREVIZ project.

work on this field. Section 3 describes the main points of our method

and how they are technically implemented into the game engine. The

paper will be concluded with an experiment of our method in 4.

2. BACKGROUND

A prerequisite of our method is the depth information of the real

scene. In the last years, several techniques have been developed to

achieve this goal. Multicamera system around the scene reconstruct

a 3D volume of it. This approach is really effective but requires an

important setup. Other approaches based on stereo could recover the

depth of the scene but are limited by the amount of texture details

available on the scene. To handle this limitation, some active stereo

techniques have been developed based on structured light. The first

generation of Kinect is based on this technique [11]. The use of an

infrared pattern also has the advantage not to disturb the visible spec-

tral domain of the scene. [12] builds a custom system mixing stereo

vision with an infrared pattern projected to the scene. Another tech-

nique using infrared is the time of flight (ToF) technology in which

the time that it takes for an infrared ray to hit an object of the scene

and go back to the sensor is measured, yielding the corresponding

depth. The second version of the Kinect we are using in this work

uses this technology.

So the Kinect 2 choice is a compromise in terms of price and

quality. Moreover Kinect 2 includes other interesting features like

human pose recognition [13]. This sensor delivers a 512×424 pixels
resolution, 16 bits per pixel, real-time depth map. The color sensor

available on the Kinect 2 is not used for our experiment. So our cur-

rent system is designed for indoor small scale scenes, in a controlled

environment which may correspond to an important part of virtual

production needs.

The Kinect is rigidly fixed to a high resolution color sensor with

its lens (film camera) as shown in figure 1.

We make the choice to integrate our fusion method directly into

the popular game engine Unity 3D. This platform was chosen be-

cause of its great performance, versatility and huge developers com-

munity.

3. METHOD

Our method is divided into two main blocks. First a classical offline

process retrieves the intrinsics parameters of each camera. Then an

extrinsic calibration is done to compute relative position of the depth

sensor to the film camera. Second an online process is performed to

back-project in real-time the 3D information from the depth sensor

into the main camera screen space for each frame. Finally a com-

positing step mixes virtual and real assets. These two blocks are



(a) with Blackmagic film camera (b) with Panasonic film camera

Fig. 1. Our system using different film cameras

represented in figure 2. Each step of these blocks is presented in the

sequel.

3.1. Calibration

One of the most important aspect of this application is the internal

and relative calibration of the color camera and the depth camera.

We consider the two sensors as classical perspective camera. The

first step of our method is to retrieve intrinsics and distortion param-

eters of each camera sensor. We are using radial and tangential dis-

tortion models described in [14, 15] and a specific distortion model

for fish-eye lenses described in [16]. A well-known technique for

calibrating perspective camera is based on chessboard pattern recog-

nition [17, 18]. This calibration is independently done for each cam-

era, in color space for the film camera and in infrared for the depth

sensor. This leads to a projection matrix M for intrinsics parameters

(??) and a vector of distortion parameters for each camera. Whereas

distortion for film camera completely depends of the used lens it ap-

pears that Kinect 2 is very few distorted.

The calibration algorithm also gives for each chessboard view

the pose of the chessboard relative to the camera system coordinates.

Combining the relative pose of each camera to the chessboard makes

it possible to compute for each view an estimation of the rotation R

and translation T between the color camera and the depth camera.

We take several captures of the scene with a chessboard at different

depths, simultaneously with the depth and the color camera. Each

couple of images is processed and the measurement of the current

pose is added to a stack. Finally an overall adjustment is performed

using a robust Levenberg-Marquardt iterative algorithm to obtain an

optimal extrinsic calibration [19].

It is possible to retrieve intrinsics and extrinsic parameters in

the same time but it is sometimes more appropriate to use two dif-

ferent sets of chessboards views. Indeed the covered field of view

may differ between sensors. It is better to maximize the pattern size

in the camera view to compute intrinsics and distortion parameters,

whereas we need to see the same chessboard entirely from each sen-

sor point of view for extrinsic calibration.

This calibration is computed only once at the beginning, all cal-

ibration parameters are saved and loaded by the online process.

3.2. Depth map reprojection into the film camera

Each step of the online process is implemented in Unity. Everything

in this game engine relies on the concept of gameobject. In our case

color camera

depth camera

color image virtual assets depth image

final image

Calibration

3D Re-
projection

Space Trans-
formation

2D Projection

Rendering

Compositing

Offline

Online

Fig. 2. Overall system workflow. Offline process is executed once

at the beginning. Online process is executed in real-time for each

frame.

the film and depth camera are represented by two camera gameob-

jects. The depth camera gameobject is parented to the film camera

gameobject. The extrinsic calibration file computed during the of-

fline process is loaded to correctly pose the depth camera object into

the film camera object coordinates space.

Then a mesh gameobject is parented to the depth camera object.

This mesh is a flat grid with the dimension of the depth map with

w × h triangulated vertices. A 2D vector uv is generated for each

vertex to correctly associate its corresponding depth texture pixel.

The GPU computation of the 3D scene is realized with a shader. For

each vertex passed to the vertex shader, we look up into the depth

texture according to the uv coordinates to retrieve the associated

depth data, z = tex(uv). Using the depth camera inverse projec-
tive matrix M−1 it is possible to compute the current 3D vertex

position P3D as detailed in equ. 1. Then a geometry shader dis-

cards the triangle primitives where no depth information is present,

to only display valid data. Finally a fragment shader is used to en-

code the interpolated depth value of the scene for each pixel. This

way a 3D representation of the scene is computed in real-time using

GPU capabilities. Figure 3 gives an illustration of the method.

P3D = M
−1 ·





uv.x · tex(uv)
uv.y · tex(uv)

tex(uv)



 (1)

Considering a grid mesh more than a list of 3D points has the ad-

vantage to observe a dense surface. This 3D mesh is now observed

according to the film camera point of view using the projection ma-

trix of the color camera. Re-projection of the low resolution depth

map becomes a dense interpolation fiting the resolution of the film

camera. This provides a registered depth texture of the real scene.



Grid
Depth texture

Each depth
pixel is

associated
to a vertex

3D view
of the

deformed
grid with
depth

interpolation
inside each
triangle

Fig. 3. 3D mesh reprojection method

3.3. Compositing

Then it is possible to compare the real scene depth map with the

virtual scene depth map to generate a binary mask coding whether

a pixel of the final rendering comes from the virtual asset frame or

from the film camera frame. This way, original color image could

be associated with its registered and distort depth image, making

possible some compositing whatever occlusion between the virtual

and real worlds.

4. EXPERIMENTS

Our system was tested with two different film cameras used tra-

ditionally for broadcast applications (see Figure 1). A live video

stream is transferred from the camera to the computer with an SDI

to USB3 acquisition card. The computer is a laptop with an Intel i7

2.3GHz processor, 16Go RAM and a Nvidia GeForce GTX 670M.

We use special asset AVPro Live Camera to pipe the HD color

frames into Unity. Moreover Microsoft provides Unity plugins to

access Kinect 2 functionality into the game engine. For each camera

a frame buffer is set up to compensate the small delay between depth

and color streams.

The current framework we describe here is used in the context of

the PREVIZ project [20] dedicated to virtual production, especially

previz on-set. In order to enlarge the compositing scenario range,

we coupled our system to the SolidAnim camera tracking solution

(SolidTrack) via a Unity plugin to retrieve for each frame the correct

film camera pose into the 3D world. Thus it was straightforward

to remove real background and replace it with a virtual one without

using green or blue walls or to display a virtual character or object in

the scene while respecting any occlusions between real and virtual

worlds. Figure 4 shows our result.

5. CONCLUSION

We presented a reliable method to align a Kinect 2 depth sensor with

a professional film camera. This method has been implemented into

the popular game engine Unity and achieves realtime performances.

This system is designed for indoor small scale scene. In this work

we do not deal with camera tracking, but this feature could be added

by implementing state of the art tracking algorithms.

In the future, using Unity will allow to simply make powerful

and fast process with the GPU, like improving the quality and regu-

larity of the depth maps or managing interactions between the virtual

world and a human body. Actually, real-time skeleton tracking data

provided by Kinect [13] are also available in Unity 3D.

6. REFERENCES

[1] G. Thomas, “Mixed reality techniques for tv and their appli-

cation for on-set and pre-visualization in film production,” in

International Workshop on Mixed Reality Technology for Film-

making, 2006, pp. 31–36.

[2] G. Boisson, P. Kerbiriou, V. Drazic, O. Bureller, N. Sabater,

and A. Schubert, “Fusion of kinect depth data with trifocal

disparity estimation for near real-time high quality depth maps

generation,” in IS&T/SPIE Electronic Imaging. International

Society for Optics and Photonics, 2014, pp. 90110J–90110J.

[3] J. Zhu, L. Wang, R. Yang, and J. Davis, “Fusion of time-of-

flight depth and stereo for high accuracy depth maps,” in Com-

puter Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on. IEEE, 2008, pp. 1–8.

[4] U. Hahne and M. Alexa, “Combining time-of-flight depth and

stereo images without accurate extrinsic calibration,” Interna-

tional Journal of Intelligent Systems Technologies and Appli-

cations, vol. 5, no. 3, pp. 325–333, 2008.

[5] Y. Song, C.A. Glasbey, G.W. van der Heijden, G. Polder, and

J.A. Dieleman, “Combining stereo and time-of-flight images

with application to automatic plant phenotyping,” in Image

Analysis, pp. 467–478. Springer, 2011.

[6] V. Gandhi, J. Cech, and R. Horaud, “High-resolution depth

maps based on tof-stereo fusion,” in Robotics and Automation

(ICRA), 2012 IEEE International Conference on. IEEE, 2012,

pp. 4742–4749.

[7] S. Patra, B. Bhowmick, S. Banerjee, and P. Kalra, “High reso-

lution point cloud generation from kinect and hd cameras using

graph cut.,” in VISAPP (2), 2012, pp. 311–316.

[8] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof,

“Image guided depth upsampling using anisotropic total gen-

eralized variation,” in Computer Vision (ICCV), 2013 IEEE

International Conference on. IEEE, 2013, pp. 993–1000.

[9] B. Bartczak, I. Schiller, C. Beder, and R. Koch, “Integration

of a time-of-flight camera into a mixed reality system for han-

dling dynamic scenes, moving viewpoints and occlusions in

real-time,” in Proceedings of the 3DPVT Workshop, Atlanta,

GA, USA (June 2008), 2008.

[10] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, et al.,

“Kinectfusion: real-time 3d reconstruction and interaction us-

ing a moving depth camera,” in Proceedings of the 24th annual

ACM symposium on User interface software and technology.

ACM, 2011, pp. 559–568.



Fig. 4. Examples of compositing. First row: depth map. Second row: registered depth map. Third row: virtual characters depth map. fourth

row: virtual character frame. Fifth row: film frame. Sixth row: final compositing

[11] A. Shpunt and Z. Zalevsky, “Three-dimensional sensing using

speckle patterns,” Mar. 5 2013, US Patent 8,390,821.

[12] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach,

M. Fisher, C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, et al.,

“Real-time non-rigid reconstruction using an rgb-d camera,”

ACM Transactions on Graphics, TOG, vol. 4, 2014.

[13] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio,

A. Blake, M. Cook, and R. Moore, “Real-time human pose

recognition in parts from single depth images,” Communica-

tions of the ACM, vol. 56, no. 1, pp. 116–124, 2013.

[14] D.C. Brown, “Close-range camera calibration,” Photogramm.

Eng, vol. 37, pp. 855–866, 1971.

[15] J.G. Fryer and D.C. Brown, “Lens distortion for close-range

photogrammetry,” Photogrammetric engineering and remote

sensing, vol. 52, no. 1, pp. 51–58, 1986.

[16] F. Devernay and O. Faugeras, “Straight lines have to be

straight,” Machine vision and applications, vol. 13, no. 1, pp.

14–24, 2001.

[17] Z. Zhang, “Flexible camera calibration by viewing a plane

from unknown orientations,” in Computer Vision, 1999. The

Proceedings of the Seventh IEEE International Conference on.

IEEE, 1999, vol. 1, pp. 666–673.

[18] Z. Zhang, “A flexible new technique for camera calibration,”

Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 22, no. 11, pp. 1330–1334, 2000.

[19] G. Bradski and A. Kaehler, Learning OpenCV: Computer vi-

sion with the OpenCV library, ” O’Reilly Media, Inc.”, 2008.

[20] G. Briand, F. Bidgolirad, J.F. Zlapka, J.M Lavalou,

M. Lanouiller, M. Christie, J. Lvoff, P. Bertolino, and E. Guil-

lou, “On-set previsualization for vfx film production,” in Inter-

national Broadcasting Convention (IBC), Amsterdam, Nether-

land, 2014.


