

Feasibility and sustainability of co-firing biomass in coal power plants in Vietnam

A.H. Truong, M. Ha-Duong, H.A Nguyen-Trinh

truong@centre-cired.fr; haduong@centre-cired.fr ; hoang@centre-cired.fr

Centre International de Recherche sur l'Environnement et le Développement (CIRED), France

Clean Energy an Sustainable Development Laboratory (CleanED), Vietnam

5th Workshop on Cofiring biomass with coal 16-17 September 2015, Drax UK

Content

- 1. Introduction
- 2. Overview of energy sector and energy from biomass in Vietnam
- 3. Why consider biomass co-firing with coal in Vietnam
- 4. Indicators for feasibility and sustainability evaluation
- 5. Case studies for 5% co-firing rate with rice straw
- 6. Conclusion

Introduction

- Co-firing is new concept in Vietnam
- Big gap in study/research on co-firing in Vietnam
- Thus, this study aims to
 - Reviewing biomass potential in Vietnam for cofiring
 - Building a set of indicators to evaluate the feasibility and sustainability of co-firing in Vietnam
 - Applying these indicators in two real cases in Vietnam

Vietnam will depend more on coal for electricity

Source: "National Power Development Plan 7." 2011.

Energy contribute 1/2 total GHG emission in Vietnam

GHG emission reduction target : reduce **20-30%** compare to BAU

Vietnam has significant potential of biomass for power generation

120.0

Biomass potential in 2010 (TWh)

Source: Tran, Q.C. 2011. "Review of Biomass Energy Sector in Vietnam."

Electricity generated from biomass is much lower than its potential

- 40 bagasse cogeneration systems, 5 selling surplus electricity to the grid
 - Total installed capacity: 150 MW
 - Range of capacity: 1-25 MW
- One rice husk CHP plant, no electricity generation yet

Barriers for electricity from biomass:

- Fossil fuel subsidized
- Low electricity tariff
- High investment cost
- Continuously biomass supply required

How biomass in Vietnam is being used?

Cattle fodder

Cooking fuel

Crop residues	Total biomass produced (Mton)	Biomass utilized (Mton)	% biomass utilized
Rice straw	37.57	7.8	21%
Rice husk	7.52	3	40%
Bagasse	7.20	4.3	60%
Other crop residue	20.4	8.5	42%

Source: Tran, Q.C. 2011. "Review of Biomass Energy Sector in Vietnam."

Small facilities

Make briquettes

Why considering biomass co-firing in Vietnam?

Selected indicators

	Indicator	Unit
Technical aspect	Overal efficiency with cofiring	%
	Biomass needed	ton/year
	Biomass available density	ton/km ² ·yr
	Collection radius	km
Economical aspect	Biomass unit cost as delivered at the plant	USD/ton
	Biomass cost per GJ	USD/GJ
	Effect to national trade balance (Extra revenue for	USD/year
	coal export)	
	Levelized cost of electricity	USD/kWh
	Net Present Value	USD
	Fuel cost saved	USD/year
Environmental aspect	GHG emission reduction	ton CO ₂ e/yr
	Local air quality (NO _x , SO ₂ , PM _{2.5} , PM ₁₀)	mg/MJ
	Resource conservation	ton of coal/year
Social aspect	Extra income for farmer	USD/ha
	Number of jobs created per year	FTE jobs/ year

Case study: two coal power plants was selected

Mong Duong 1 Coal Power Plant

- 1080 MW (2 units)
- 6.5 TWh/year
- Fluidized Bed
- 2,752 Mton coal/year
- 38.8 % overall efficiency
- Located next to coal mine

Ninh Binh Coal Power Plant

- 100 MW (4 units)
- 0.75 TWh/year
- Pulverized Coal
- 420 Mton coal/year
- 21.8% overall efficiency
- Located 200 km from coal mines
- Coal transported by barges

Case study: biomass option selected for the cases

- Direct co-firing with biomass blended with coal
- 5% of rice straw co-fired in term of heat

Results

Category	Indicator	Valu	Unit	
		Mong Duong 1 CPP	Ninh Binh CPP	
Technical aspect	Overall efficiency with co-firing	38.59	21.62	%
	Efficiency loss	0.25	0.15	%
	Biomass needed	259,107	53,362	ton/year
	Biomass available density	52.79	68.67	ton/km ^{2.} year
	Collection radius	71	16	km

Local rice straw supply is adequate for biomass co-firing in both case

Results

Category	gory Indicator Value		lue	Unit	
		Mong Duong	Ninh Binh		
		1 CPP	СРР		Coal price: Case 1: 52.7 USD/ton
Economical	Biomass unit cost	41.31	38.15	USD/ton	Case 2: 83.83 USD/ton
aspect	Levelized cost of electricity	4.52	6.6	UScent	Electricity selling tariff: 5.4 Uscent/kWh
	Net Present Value	1,848,558	- 6,450,985	USD	
	Fuel cost saved	-2,485,162	31,533	USD/year	
	Extra revenue for coal export	1,403,882	345,302	USD/year	

How fuel cost saving for case 1 is negative

Fuel cost (per GJ) breakdown for two cases

How LCOE is high in case 2

$$LCOE = \frac{capital \ cost \times CRF + OM_{fix}}{8760 \times capacity \ factor} + fuel \ cost \times Heat \ rate \neq OM_{var}$$

- High heat rate 16.7 MJ/kWh (for case 1 is 9.3 MJ/kWh)
- Higher electricity tariff could make NPV positive
- Co-firing is not yet subjected to supporting mechanisms

Results

Category	Indicator	Val	Unit	
		Mong Duong 1	Ninh Binh CPP	
		СРР		
Environmental	GHG emission	30,460	6,945	ton
aspect	reduction			CO ₂ e/year
	% emission reduced	10.4	11.5	%
	Resource			
	conservation	155,987	24,664	ton of
				coal/year
Social aspect	Extra income for	143 - 194	172	USD/ha
	farmer			
	Number of direct	253	46	FTE jobs/
	job created per year			year

GHG emission reduction from co-firing in two cases

Direct jobs from biomass collection is high because farmers using small straw winders

Direct jobs created from co-firing

Rice straw co-firing could improve local air quality

- 60-90% rice straw is burned in-field
- Gases/pollutants emitted include $\text{CO}_{2,}$ $\text{CH}_{4,}$ $\text{No}_{x,}$ $N_2\text{O},$ SO_x and particulates
- Co-firing rice straw
 - \rightarrow less in-field burning
 - \rightarrow pollutant emission more concentrated but filtered

Conclusion

- In Vietnam, major factors that drive attention to co-firing are
 - National energy security
 - Climate change
 - Environmental concerns
- Co-firing in Vietnam is not yet feasible in term of economic due to
 - Coal subsidies
 - Low electricity tariff
- Co-firing in Vietnam offers various environmental and social benefits
 - GHG emission reduction
 - Local air quality improvement
 - Extra income for local farmers
 - Jobs creation
- Supporting mechanisms could be driving forces for co-firing development in Vietnam
 - Incentive taxes
 - Biomass subsidies
 - Carbon credit

Thank you for your attention!

Questions/Comments

