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Abstract

For a large class of non-negative initial data, the solutions to the quasilinear viscous
Hamilton-Jacobi equation ∂tu−∆pu+ |∇u|q = 0 in (0,∞)×R

N are known to vanish
identically after a finite time when 2N/(N + 1) < p ≤ 2 and q ∈ (0, p − 1). Further
properties of this extinction phenomenon are established herein: instantaneous shrink-
ing of the support is shown to take place if the initial condition u0 decays sufficiently
rapidly as |x| → ∞, that is, for each t > 0, the positivity set of u(t) is a bounded
subset of RN even if u0 > 0 in R

N . This decay condition on u0 is also shown to be
optimal by proving that the positivity set of any solution emanating from a positive
initial condition decaying at a slower rate as |x| → ∞ is the whole R

N for all times.
The time evolution of the positivity set is also studied: on the one hand, it is included
in a fixed ball for all times if it is initially bounded (localization). On the other hand,
it converges to a single point at the extinction time for a class of radially symmetric
initial data, a phenomenon referred to as single point extinction. This behavior is in
sharp contrast with what happens when q ranges in [p−1, p/2) and p ∈ (2N/(N+1), 2]
for which we show complete extinction. Instantaneous shrinking and single point ex-
tinction take place in particular for the semilinear viscous Hamilton-Jacobi equation
when p = 2 and q ∈ (0, 1) and seem to have remained unnoticed.
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1 Introduction and results

We perform a detailed study of the finite time extinction phenomenon for a class of diffusion
equations with a gradient absorption term, of the form

∂tu−∆pu+ |∇u|q = 0, u = u(t, x), (t, x) ∈ (0,∞)× R
N , (1.1)

where, as usual,
∆pu = div(|∇u|p−2∇u) ,

supplemented with the initial condition

u(0) = u0, x ∈ R
N . (1.2)

Throughout the paper we assume that

u0 ∈ W 1,∞(RN ) , u0 ≥ 0 , u0 6≡ 0 . (1.3)

The range of exponents under consideration is

pc :=
2N

N + 1
< p ≤ 2, 0 < q < p− 1, (1.4)

in which it is already known that extinction in finite time takes place for initial data
decaying sufficiently rapidly as |x| → ∞, that is: there exists Te ∈ (0,∞) such that
u(Te, x) = 0 for any x ∈ R

N , but ‖u(t)‖∞ > 0 for any t ∈ (0, Te). The time Te is usually
referred to as the extinction time of the solution u. Let us notice at this point that the
range of exponents includes both the semilinear case p = 2 (with q ∈ (0, 1)), and the
singular diffusion case p ∈ (pc, 2) (with q ∈ (0, p − 1)). These two diffusion operators
usually depart strongly in their qualitative properties, but in the range (1.4), the gradient
absorption term is dominating the evolution, thus explaining the similarity of the results
for the linear and singular diffusions.

The main feature concerning equations such as (1.1) is the competition between the two
terms in the equation: a diffusion one and an absorption one, in form of a gradient term.
As the properties of the diffusion equation and of the Hamilton-Jacobi equation (without
diffusion) are very different, it is of interest to study the effects of their merging in the
equation, depending on the relative positions of the exponents p and q.

For the semilinear case p = 2, a number of results are available by now, due to the
possibility of using semigroup theory or linear techniques. Thus, it has been shown that
there appear two critical values for the exponent q, namely q = q∗ := (N +2)/(N +1) and
q = 1. The qualitative theory, including the large time behavior, is now well understood for
exponents q > 1 after the series of works [2, 3, 4, 5, 9, 10, 19, 20, 22]. In this range q > 1,
the diffusion has an important influence on the evolution: either completely dominating,
when q > (N+2)/(N+1), leading to asymptotic simplification, or having a similar effect to
the Hamilton-Jacobi part for q ∈ (1, q∗], leading to a resonant, logarithmic-type behavior
for q = q∗ [19], or a behavior driven by very singular solutions for q ∈ (1, q∗) [4]. Much less
is known for the complementary range of q, that is, 0 < q ≤ 1, where the Hamilton-Jacobi
term starts to have a very strong influence on the dynamics. The limit exponent q = 1 is
highly critical and not yet fully understood though optimal temporal decay estimates are
established in [8], while extinction in finite time has been shown for q ∈ (0, 1), see [6, 7, 22].
Still, a complete understanding of the extinction phenomenon is missing and requires a
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deeper study. So far, the class of initial data for which finite time extinction takes place
has not yet been identified and more qualitative information on the behavior of the support
of the solution and on the rate and shape of the extinction are still lacking. The purpose
of the present work is to shed some further light on the extinction phenomenon for (1.1)
and provide more detailed information on the above mentioned issues, not only in the
semilinear case p = 2 but also when the diffusion is nonlinear and singular corresponding
to p ∈ (pc, 2).

Indeed, considering the quasilinear diffusion operator ∆p is a natural nonlinear generaliza-
tion, but due to the fact that linear techniques are not available anymore, its study is more
involved and results were obtained only recently. We are interested in the fast diffusion
case p ∈ (pc, 2), for which the qualitative theory is developed starting from [25], where all
exponents q > 0 are considered. In particular, two critical exponents are identified in [25]:
q = q∗ := p − N/(N + 1) and q = p/2. These critical values limit ranges of parameters
with different behaviors: diffusion dominates for q > q∗, while there is a balance between
diffusion and absorption for q ∈ [p/2, q∗] leading to logarithmic decay for q = q∗, algebraic
decay for q ∈ (p/2, q∗), and exponential decay for q = p/2. Finally, finite time extinction
occurs for 0 < q < p/2 and this is the range of the parameter q we are interested in. We
actually perform a deeper study of the extinction range 0 < q < p/2 with p ∈ (pc, 2) which
reveals very interesting and surprising features having not been observed before, as far as
we know. We mention at this point that we restrict the analysis to p > pc as there is
a competition in this range between the diffusion term which aims at positivity and the
gradient absorption term which is the driving mechanism of extinction. We left aside the
critical case p = pc which is trickier to handle, as well as the case p ∈ (1, pc), for which
a different competition takes place. Indeed, finite time extinction is also known to take
place for the diffusion equation without the gradient absorption term when p ∈ (1, pc),
and there is then a competition between two extinction mechanisms stemming from the
diffusion and the gradient absorption, respectively.

Before describing more precisely our results, let us recall that the finite time extinction
phenomenon has already been observed as the outcome of a competition between diffusion
and absorption effects, in particular for another important diffusive model, the porous
medium equation with zero order absorption

∂tu−∆um + uq = 0, (t, x) ∈ (0,∞) × R
N , (1.5)

with m > 0 and q ∈ (0, 1). A striking feature is the instantaneous shrinking of the sup-
port for non-negative solutions, that is, the solution u(t) to (1.5) at time t is compactly
supported for all t > 0 even though the initial condition u(0) is positive in R

N . This
phenomenon was first noticed in [14] for m = 1 and later extended to (1.5) and its vari-
ants (including variable coefficients in front of the absorption term and/or an additional
convection term) for q ∈ (0, 1) and m > q in [1, 11, 14, 17, 21, 23, 26, 27, 28], as well as to
other equations such as

∂tu−∆pu+ |u|q−1u = 0, (t, x) ∈ (0,∞) ×R
N ,

for suitable ranges of the parameters p and q, see [12, 29] and the references therein. More
precise information on the behavior near the extinction time are available for (1.5) in one
space dimension N = 1 when 0 < m ≤ 1 and 0 < q < 1, [15, 16, 24]. It is shown that the
case q = m is critical and the mechanism of extinction is different whether m < q < 1 or
0 < q < m: in the former, simultaneous or complete extinction occurs, that is, the solution
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is positive everywhere in R
N prior to the extinction time and vanishes identically at the

extinction time. In the latter, single point extinction takes place as shown in [16], that is,
the positivity set of u(t) shrinks to a point as t approaches the extinction time. The limit
case q = m is simpler and explicit, being the only case studied also for N > 1 [13].

The purpose of this paper is to investigate the occurrence of the above mentioned phe-
nomena for Eq. (1.1). Concerning instantaneous shrinking, we show that it takes place
in the range q ∈ (0, p − 1), but only for initial conditions which decay sufficiently fast as
|x| → ∞. On the contrary, for positive initial data with a slow decay as |x| → ∞, the
solution is positive everywhere in R

N for all times. This is in sharp contrast with the sit-
uation for (1.5), where it is sufficient that the initial condition decays to zero as |x| → ∞
for instantaneous shrinking to take place [1, 11, 14]. The occurrence of instantaneous
shrinking in (1.1) thus not only depends on the parameters p and q but also on the shape
of the initial condition. Coming back to complete extinction, we also show that this is the
generic behavior when q ∈ [p − 1, p/2), while we identify a class of initial data for which
single point extinction occurs when q ∈ (0, p − 1).

Main results. We denote in the sequel the (spatial) positivity set P(t) at time t ≥ 0 of
a solution u to (1.1)-(1.2) by

P(t) := {x ∈ R
N : u(t, x) > 0}. (1.6)

We begin with some features of the time evolution of the positivity set according to the
decay of u0 at infinity.

Theorem 1.1 (Instantaneous shrinking and localization). Let u be a solution to the Cau-
chy problem (1.1)-(1.2) with an initial condition u0 satisfying (1.3) and

u0(x) ≤ C(1 + |x|)−θ, x ∈ R
N , θ >

q

1− q
(1.7)

for some C > 0, and exponents p, q as in (1.4). Then:

(i) Instantaneous shrinking: for any t > 0, P(t) is a bounded subset of RN .

(ii) Localization: for any τ > 0 there exists ̺τ > 0 such that P(t) ⊆ B(0, ̺τ ) for all
t ≥ τ .

(iii) Extinction: there is Te > 0 such that u(t) ≡ 0 for all t ≥ Te.

In other words, the dynamics forces the support of the solution to become compact im-
mediately (at any time t > 0) even if u0 is positive in R

N , that is, P(0) = R
N . It then

remains confined inside a ball for t ≥ τ > 0, the radius of the ball depending only on τ .
Two steps are needed to prove Theorem 1.1: we first construct a supersolution to (1.1) on
(0, t0)×R

N for a sufficiently small time t0 which is positive for t = 0 but has compact sup-
port for t ∈ (0, t0). Due to the gradient absorption term, it does not seem to be possible to
adapt the approach used for (1.5) and the supersolution has to be constructed in a different
way. The second step is to establish that solutions to (1.1)-(1.2) emanating from compactly
supported initial data enjoy the localization property, that is, their support stays forever
in a fixed ball of RN . Combining these two steps provides the first two assertions of Theo-
rem 1.1, the last assertion being a straightforward consequence of the compactness of the
support for positive times, [22, Corollary 9.1], and [25, Theorem 1.2(iii)].
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Theorem 1.1 turns out to be false under a sole condition of decay to zero at infinity of
u0 and the following result shows a strikingly different behavior for initial data with a
sufficiently slow spatial decay at infinity.

Theorem 1.2 (Non-extinction and non-localization). Let u be a solution to the Cauchy
problem (1.1)-(1.2) with an initial condition u0 satisfying (1.3) and

lim
|x|→∞

|x|q/(1−q)u0(x) = ∞, u0(x) > 0 for any x ∈ R
N , (1.8)

and exponents p, q as in (1.4). Then

P(t) = R
N for any t > 0.

Theorem 1.2 means that, when the initial condition has a sufficiently fat tail at infinity,
it has enough mass to remain positive everywhere for all times in spite of the dominating
absorption effect. When p = 2 and q ∈ (0, 1) it is established in [7] with the help of suitable
subsolutions and we extend here this approach to the whole range (1.4).

A consequence of Theorem 1.2 is that the decay condition (1.7) on u0 is optimal for
instantaneous shrinking to take place when the parameters p and q satisfy (1.4). The
optimality of the range (1.4) of the exponents p and q requires a different argument: we
show in Proposition 4.4 that, when p ∈ (pc, 2) and q ∈ [p−1, p/2), only complete extinction
takes place, that is,

P(t) = R
N for any t ∈ (0, Te).

the finiteness of the extinction time Te for that range being proved in [25] for initial data
decaying suffciently rapidly at infinity.

Returning to finite time extinction, we are able to improve Theorem 1.1 as well as [25,
Theorem 1.2(iii)], showing that solutions vanish after a finite time even in the limit case
for the decay θ = q/(1 − q) in (1.7), which is excluded in Theorem 1.1. However, no
information on the evolution of the positivity set is provided.

Theorem 1.3 (Improved finite time extinction). Let u be a solution to the Cauchy problem
(1.1)-(1.2), with an initial condition u0 satisfying (1.3) and

u0(x) ≤ C0(1 + |x|)−q/(1−q), x ∈ R
N , (1.9)

for some C0 > 0 and p, q as in (1.4). Then extinction in finite time takes place: there
exists Te ∈ (0,∞) such that u(Te, x) = 0 for any x ∈ R

N , but ‖u(t)‖∞ > 0 for any
t ∈ (0, Te).

Theorem 1.3 is proved in [7] when p = 2 and q ∈ (0, 1) and we extend it here to the whole
range (1.4). Its proof relies on the construction of self-similar supersolutions vanishing
identically after a finite time.

We now delve deeper in the extinction mechanism and aim at studying how extinction
takes place. Let u be a solution to (1.1) and Te ∈ (0,∞) its extinction time, assuming
that u vanishes in finite time. Recalling the definition (1.6) of the positivity set P(t), we
define the extinction set of u by

E(u) :=

{

x ∈ R
N : there exist {xn : n ≥ 1} ⊂ R

N , {tn : n ≥ 1} ⊂ (0, Te)
such that xn → x, tn → Te as n → ∞, u(tn, xn) > 0 for all n

}

.
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We say that u presents simultaneous or complete extinction if E(u) = R
N while it presents

single point extinction when E(u) is a singleton. Simultaneous extinction is the most
common phenomenon; for example, it occurs for the standard subcritical fast diffusion
equation (without absorption terms). Here, it happens that the opposite and less standard
phenomenon occurs. More precisely:

Theorem 1.4 (Single point extinction). Let u be a solution to the Cauchy problem (1.1)-
(1.2) with an initial condition u0 satisfying (1.3), and exponents p, q as in (1.4). Assume
further that:

(a) u0 ∈ C1(RN ) is radially symmetric and radially non-increasing,

(b) u0 is compactly supported in B(0, R0) for some R0 > 0 and satisfies the following
condition

u0(x) ≤ κp,q|x− x0|
ω , x ∈ R

N (1.10)

for all x0 ∈ ∂B(0, R0), with

κp,q :=
p− 1− q

p− q

(

p− 1

p− 1− q
+N − 1

)−1/(p−1−q)

and ω :=
p− q

p− 1− q
, (1.11)

(c) and there exists δ0 > 0 such that

∣

∣

∣
∇u

(p−q−1)/(p−q)
0 (x)

∣

∣

∣
≥ δ0|x|

1/(p−1−q) , x ∈ B(0, R0) . (1.12)

Let Te ∈ (0,∞) be the extinction time of u, which is finite according to Theorem 1.1. Then,
there exist ̺1 > 0 and ̺2 > 0 such that

B (0, ̺1(Te − t)σ) ⊆ P(t) ⊆ B (0, ̺2(Te − t)ν) for any t ∈ (Te/2, Te), (1.13)

where

σ :=
p− q − 1

(p− q)(1− q)
, ν :=

p(p− q − 1)2

2(p − q)(p − 2q)
.

Consequently, u presents single point extinction at the origin: E(u) = {0}.

As we shall see below the first inclusion in (1.13) holds true for any radially symmetric and
radially non-increasing initial condition u0 with compact support. The second inclusion
requires the more restrictive conditions (1.10) and (1.12) on u0, the former guaranteeing
that the positivity set of u stays inside the ball B(0, R0).

As far as we know, Theorem 1.4 is the first example of single point extinction for equa-
tions with gradient absorption. Single point extinction was already observed for the heat
equation with zero order absorption term in a bounded domain Ω of RN with homogeneous
Dirichlet boundary conditions

∂tu = ∆u− uq, (t, x) ∈ (0,∞) × Ω,

when q ∈ (0, 1), the result being valid for a specific class of inital conditions [17]. In space
dimension N = 1, similar results are available for (1.5) in the range 0 < q < m < 1 [16].

The proof of Theorem 1.4 is technically involved, following the general strategy used
by Friedman and Herrero [17], but with new and decisive contributions of the optimal
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gradient estimates established in [25, Theorem 1.3]. Notice also that we are able to drop
any restriction of the type ∂tu(0, x) = ∆u0(x)−u0(x)

q ≥ 0 on the initial data, as required
in [17].

Organization of the paper. After recalling the well-posedness of (1.1)-(1.2) and a few
properties of solutions in Section 2, we begin with proving the instantaneous shrinking
phenomenon, as stated in Theorem 1.1, to which we devote Section 3. The proof of
Theorem 1.1 is completed in Section 4, where we prove the localization of P(t), t ≥ 0,
for compactly supported initial data, as well as some side results showing that the range
(1.4) is optimal for localization to take place. The localization property allows us to derive
upper and lower bounds at the extinction time which are gathered in Section 5. We go on
with the proof of Theorem 1.2, performed in Section 6, and the proof of Theorem 1.3, done
in the subsequent Section 7. All these proofs have in common the fact that they rely on
the maximum principle, used in suitable ways according to the case to be dealt with. In
particular, subsolutions and supersolutions of different kinds with suitable behaviors are
constructed along these sections. Finally, we devote Section 8 to the proof of Theorem 1.4,
which is the most involved technically and is further divided into several subsections.
The paper ends with a technical Appendix where we provide rigorous proofs for some
estimates and calculations performed only at a formal level in Section 8 for the simplicity
of the reading.

Notation. We introduce the parabolic operator L defined by

Lz := ∂tz −∆pz + |∇z|q in (0,∞) × R
N . (1.14)

If z is radially symmetric with respect to the space variable then, setting r := |x| and
z(t, r) = z(t, |x|), an alternative formula for Lz is the following:

Lz = ∂tz − (p− 1)|∂rz|
p−2∂2

r z −
N − 1

r
|∂rz|

p−2∂rz + |∂rz|
q . (1.15)

2 Well-posedness

We collect in this section some properties of the Cauchy problem (1.1)-(1.2) and its solu-
tions. We first recall the well-posedness of (1.1)-(1.2), established in [20] for p = 2 and in
[25] for p ∈ (1, 2).

Proposition 2.1. Let p ∈ (pc, 2] and q > 0. Given an initial condition u0 satisfying (1.3),
there is a unique nonnegative viscosity solution

u ∈ BC([0,∞) × R
N ) ∩ L∞(0,∞;W 1,∞(RN ))

to (1.1)-(1.2) which is also a weak solution if p ∈ (pc, 2) and a classical solution if p = 2.
In addition, it satisfies

0 ≤ u(t, x) ≤ ‖u0‖∞ , (t, x) ∈ (0,∞) × R
N . (2.1)

We next show that radial symmetry and radial monotonicity are both preserved by (1.1).

Lemma 2.2. Let u be a solution to (1.1) such that its initial condition u0 satisfies (1.3)
and is radially symmetric and non-increasing (that is, for y ∈ R

N and z ∈ R
N , there

holds u0(y) ≥ u0(z) whenever |y| ≤ |z|). Then x 7→ u(t, x) is radially symmetric and
non-increasing for any t > 0.
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Proof. The radial symmetry is immediate from the rotational invariance of Eq. (1.1) and
the uniqueness statement in Proposition 2.1.

Consider next y ∈ R
N and z ∈ R

N such that |y| < |z| and define x0 := (z − y)/2, the
hyperplane H := {x ∈ R

N : 〈x, x0〉 > 0}, and the functions v±(t, x) := u(t, x ± x0) for
(t, x) ∈ (0,∞)×H. On the one hand, for x ∈ ∂H, there holds 〈x, x0〉 = 0, so that

|x+ x0|
2 = |x|2 + |x0|

2 = |x− x0|
2,

and the radial symmetry of u entails that

v+(t, x) = u(t, x+ x0) = u(t, x− x0) = v−(t, x) for all t > 0 and x ∈ ∂H .

On the other hand, if x ∈ H, then

|x+ x0|
2 = |x|2 + |x0|

2 + 2〈x, x0〉 ≥ |x|2 + |x0|
2 − 2〈x, x0〉 = |x− x0|

2,

and the radial monotonicity of u0 implies that

v+(0, x) = u0(x+ x0) ≤ u0(x− x0) = v−(0, x).

Since v+ and v− both solve (1.1) in (0,∞) × H, we infer from the comparison principle
and the previous properties that v+ ≤ v− in (0,∞)×H. In particular, (y + z)/2 ∈ H and
we obtain

u(t, y) = v−

(

t,
y + z

2

)

≥ v+

(

t,
y + z

2

)

= u(t, z)

as claimed.

We finally recall that extinction in finite time occurs for p ∈ (pc, 2] and q ∈ (0, p/2) when
the initial condition u0 is compactly supported.

Proposition 2.3. Let p ∈ (pc, 2] and q ∈ (0, p/2). Let u0 be an initial condition satisfying
(1.3) and denote the corresponding solution to (1.1)-(1.2) by u. Assume further that u0 is
compactly supported. There exists Te > 0 depending on N , p, q, and u0 such that

P(t) = ∅ for t ≥ Te, P(t) 6= ∅ for t ∈ [0, Te).

Proposition 2.3 is shown in [22, Corollary 9.1] for p = 2 and in [25, Theorem 1.2(iii)]
for p < 2. It is actually proved in the latter that finite time extinction takes place for a
broader class of initial data, namely, if there exist C0 > 0 and Q > 0 such that

u0(x) ≤ C0|x|
−(p−Q)/(Q−p+1), x ∈ R

N , (2.2)

where

Q = q if q ∈ (q1, p/2), Q ∈ (q1, p/2) if q ∈ (0, q1], and q1 := max

{

p− 1,
N

N + 1

}

.

Remark 2.4. It is worth pointing out here that Theorem 1.3 includes [25, Theorem
1.2(iii)] when the range of (p, q) is (1.4). Indeed, if u0 satisfies (2.2) then it satisfies
(1.9).
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3 Instantaneous shrinking

In this section, we show that the phenomenon of instantaneous shrinking takes place, thus
proving the first assertion in Theorem 1.1. Its proof will be completed in the next section,
which deals with the localization part, once the support is known to be compact. More
precisely, we show here the following result.

Proposition 3.1. Let u be a solution to the Cauchy problem (1.1)-(1.2) with an initial
condition u0 satisfying (1.3) and (1.7) for some C > 0, and exponents p, q as in (1.4).
There exists t0 > 0 such that P(t) is bounded for t ∈ (0, t0).

Proof. We look for a supersolution to Eq. (1.1) of the form

Σ(t, x) =

[

A

1 + |x|α
− η(t)

]γ

+

, (t, x) ∈ (0,∞) × R
N , (3.1)

where z+ := max{z, 0} denotes the positive part of the real number z, the positive param-
eters A > 0, α ∈ (0, 1), γ > 1, and the function η being to be determined. For further use,
we set

r := |x|, y :=
A

1 + rα
− η(t).

Owing to the radial symmetry of Σ, it follows from (1.15) that

LΣ = ∂tΣ− (p− 1)|∂rΣ|
p−2∂2

rΣ−
N − 1

r
|∂rΣ|

p−2∂rΣ+ |∂rΣ|
q.

We further require that η(0) = 0 and that η is non-decreasing, that is, η′ ≥ 0. In the
previous notation, we notice that

∂tΣ(t, x) = −γyγ−1
+ η′(t),

∂rΣ(t, x) = −Aαγyγ−1
+

rα−1

(1 + rα)2
,

and

∂2
rΣ(t, x) = A2α2γ(γ − 1)yγ−2

+

r2α−2

(1 + rα)4

−Aαγyγ−1
+

rα−2

(1 + rα)3
[α− 1− (α+ 1)rα] ,
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whence, we get

LΣ = −γyγ−1
+ η′(t) + (Aαγ)qy

q(γ−1)
+

rq(α−1)

(1 + rα)2q
− (Aαγ)p−2y

(γ−1)(p−2)
+

r(α−1)(p−2)

(1 + rα)2(p−2)

×

[

(p− 1)A2α2γ(γ − 1)yγ−2
+

r2α−2

(1 + rα)4
− (p − 1)Aαγyγ−1

+

rα−2

(1 + rα)3
(α− 1− (α+ 1)rα)

−Aαγ(N − 1)yγ−1
+

rα−2

(1 + rα)2

]

= (Aαγ)qy
q(γ−1)
+

rq(α−1)

(1 + rα)2q
− γyγ−1

+ η′(t) + (Aαγ)p−1y
(γ−1)(p−1)−1
+

r(α−1)(p−1)−1

(1 + rα)2(p−1)

×

[

(N − 1)y+ + (p− 1)y+
2α− (1 + α)(1 + rα)

1 + rα
−Aα(γ − 1)(p − 1)

rα

(1 + rα)2

]

≥ (Aαγ)qy
q(γ−1)
+

rq(α−1)

(1 + rα)2q
− γyγ−1

+ η′(t) + (Aαγ)p−1y
(γ−1)(p−1)−1
+

r(α−1)(p−1)−1

(1 + rα)2(p−1)

×

[

−(1 + α)(p − 1)y+ −
Aα(γ − 1)(p − 1)

1 + rα

]

,

or, equivalently,

LΣ ≥ (Aαγ)qy
q(γ−1)
+

rq(α−1)

(1 + rα)2q
− γyγ−1

+ η′(t)

− (Aαγ)p−1Aα(γ − 1)(p − 1)y
(γ−1)(p−1)−1
+

r(α−1)(p−1)−1

(1 + rα)2(p−1)+1

− (1 + α)(p − 1)(Aαγ)p−1y
(γ−1)(p−1)
+

r(α−1)(p−1)−1

(1 + rα)2(p−1)
.

(3.2)

We now choose

γ =
p− q

p− q − 1
> 1,

so that

γ − 1 =
1

p− 1− q
and (γ − 1)(p − 1)− 1 = q(γ − 1).

Since γ > 1 and η ≥ 0, we notice that

y+ ≤
A

1 + rα
, and yγ−1

+ = y
q(γ−1)
+ y

(1−q)(γ−1)
+ ≤ y

q(γ−1)
+

A(1−q)(γ−1)

(1 + rα)(1−q)(γ−1)
. (3.3)

Consequently, owing to the fact that η′(t) ≥ 0 for all t > 0 and plugging (3.3) into (3.2),
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we deduce

LΣ ≥ y
q(γ−1)
+

[

(Aαγ)q
rq(α−1)

(1 + rα)2q
−

A(1−q)(γ−1)γ

(1 + rα)(1−q)(γ−1)
η′(t)

−(p− 1)(αγ)p−1Ap(1 + αγ)
r(α−1)(p−1)−1

(1 + rα)2(p−1)+1

]

≥ y
q(γ−1)
+

[

(Aαγ)q

2

rq(α−1)

(1 + rα)2q
−

A(1−q)(γ−1)γ

(1 + rα)(1−q)(γ−1)
η′(t)

+
(Aαγ)q

2

rq(α−1)

(1 + rα)2q
− (p− 1)(αγ)p−1Ap(1 + αγ)

r(α−1)(p−1)−1

(1 + rα)2(p−1)+1

]

= y
q(γ−1)
+

A(1−q)(γ−1)γ

(1 + rα)(1−q)(γ−1)
S1 + y

q(γ−1)
+

(Aαγ)q

2

r(α−1)(p−1)−1

(1 + rα)2(p−1)+1
S2 ,

(3.4)

where

S1 :=
(αγ)q

2γ

A(q−1)γ+1rq(α−1)

(1 + rα)q(γ+1)+1−γ
− η′(t)

and

S2 :=
r1+(α−1)(q−p+1)

(1 + rα)2(q−p+1)−1
− 2(p − 1)(αγ)p−1−qAp−q(1 + αγ)

Our goal is now to show that Σ is a supersolution to the Cauchy problem (1.1)-(1.2) in
(0, t0)×

(

R
N \B(0, R)

)

for some t0 > 0 small enough and R > 1 sufficiently large. To this
end, we estimate separately S1 and S2. On the one hand, since 2(p − 1− q) > 0 by (1.4),

S2 = r1+(α−1)(q−p+1)(1 + rα)1+2(p−1−q) − 2(p − 1)(αγ)p−1−qAp−q(1 + αγ)

≥ r(α+1)(p−q) − 2(1 + αγ)(p − 1)(αγ)p−1−qAp−q

≥ R(α+1)(p−q) − 2(1 + αγ)(p − 1)(αγ)p−1−qAp−q,

(3.5)

provided r > R. On the other hand, for r > R such that y > 0,

(

rα

1 + rα

)q(α−1)/α

≥ 1 and
1

1 + rα
≥

η(t)

A
,

since α ∈ (0, 1), hence

S1 ≥
(αγ)q

2γ
A(q−1)γ+1

(

1

1 + rα

)(α(1+qγ−γ)+q)/α

− η′(t)

≥
(αγ)q

2γ
A(q−1)γ+1

(

η(t)

A

)(α(1+qγ−γ)+q)/α

− η′(t),

provided that α(1 + qγ − γ) + q > 0. Since q + 1 < p ≤ 2,

1 + qγ − γ =
q(p− q)− 1

p− q − 1
≤

q(2− q)− 1

p− q − 1
= −

(1− q)2

p− q − 1
< 0 ,

and the previous condition on α reads

α < α2 := min

{

q

γ(1− q)− 1
, 1

}

.
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The lower bound on S1 then becomes

S1 ≥
(αγ)q

2γ
A−q/αη(t)(α(1+qγ−γ)+q)/α − η′(t). (3.6)

We thus choose η as the solution to the differential equation

η′(t) =
(αγ)q

2γ
A−q/αη(t)(α(1+qγ−γ)+q)/α , η(0) = 0, (3.7)

which is possible when (α(1 + qγ − γ) + q)/α < 1. Taking into account the precise value
of γ, this condition reads

α > α1 :=
p− 1− q

p− q

q

1− q
=

q

γ(1− q)
.

It is easy to check that α1 < α2, so that, any α ∈ (α1, α2) satisfies the conditions we
assumed up to now. Since S1 ≥ 0 by (3.6) and (3.7), we infer from (3.4) and (3.5) that Σ
is a supersolution to (1.1) in (0,∞)× R

N \B(0, R), provided that

R(α+1)(p−q) ≥ 2(1 + αγ)(p − 1)(αγ)p−1−qAp−q . (3.8)

It remains to check that Σ is a supersolution also for the initial and boundary conditions,
that is

Σ(0, x) =

(

A

1 + rα

)γ

≥ u0(x) for any x ∈ R
N \B(0, R), (3.9)

and
Σ(t, x) ≥ u(t, x), for any t ∈ (0, t0), |x| = R. (3.10)

In order to check (3.9), we first readily notice that in the range given by (1.4)

γ =
p− q

p− 1− q
>

q

1− q
,

so that, owing to (1.7), there exists θ′ > 0 such that

u0(x) ≤ C(1 + |x|)−θ′ ,
q

1− q
= γα1 < θ′ < γα2 = min

{

γq

γ(1− q)− 1
, γ

}

.

Indeed, if the initial decay exponent θ satisfies θ < γα2, then we take θ′ = θ, while, if
θ ≥ γα2, we anyway have

u0(x) ≤ C(1 + |x|)−θ ≤ C(1 + |x|)−θ′ , x ∈ R
N ,

for any θ′ ∈ (q/(1 − q), γα2). Then, we define

α :=
θ′

γ
∈ (α1, α2), (3.11)

and we have

u0(x) ≤ C(1 + |x|)−θ′ =
C

(1 + r)αγ
≤

C

2γ(α−1)(1 + rα)γ

=

(

C1/γ

2α−1

1

1 + rα

)γ

,
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after using the elementary inequality

(1 + r)α ≥ 2α−1(1 + rα).

We thus derive the inequality in (3.9) by requiring that

A ≥
C1/γ

2α−1
. (3.12)

In order to establish (3.10), we further prescribe the following condition:

A > (1 +Rα)‖u0‖
1/γ
∞ , (3.13)

with α already chosen in (3.11). By a direct integration of the differential equation (3.7),
we obtain

η(t) =

[

(αγ)q(1− β)

2γ
A−q/α

]1/(1−β)

t1/(1−β), β :=
α(1 + qγ − γ) + q

α
∈ (0, 1),

for t ≥ 0. Taking into account that η(t) → 0 as t → 0, there exists t0 > 0 sufficiently small
such that, for t ∈ [0, t0] and x ∈ R

N , |x| = R,

(

A

1 +Rα
− η(t)

)γ

≥

(

A

1 +Rα
− η(t0)

)γ

> ‖u0‖∞ ≥ u(t, x),

which implies (3.10). It only remains to show that the conditions (3.8), (3.12) and (3.13)
are compatible. To this end, we first choose R > 0 sufficiently large such that it satisfies
simultaneously the following estimates:

Rα >
C1/γ

2α−1‖u0‖
1/γ
∞

− 1,

Rα+1 > 2
[

2(p − 1)(1 + αγ)(αγ)p−1−q
]1/(p−q)

(1 +Rα)‖u0‖
1/γ
∞ ,

(3.14)

then choose A > 0 such that

(1 +Rα)‖u0‖
1/γ
∞ < A < 2(1 +Rα)‖u0‖

1/γ
∞ . (3.15)

It is immediate to check that these choices of R and A satisfy (3.8), (3.12), and (3.13).
Thus, letting γ = (p − q)/(p − q − 1), α as in (3.11), R as in (3.14), and A as in (3.15),
the function Σ introduced in (3.1) is a supersolution to the Cauchy problem (1.1)-(1.2) in
(0, t0)× R

N \B(0, R). By the comparison principle, we get

u(t, x) ≤ Σ(t, x), t ∈ (0, t0), |x| ≥ R.

Consequently, for t ∈ (0, t0], we infer from the definition (3.1) of Σ that Σ(t, x) = 0 for
|x|α > A/η(t) − 1, so that P(t) is bounded.

4 Propagation of the support. Localization

In this section, we complete the proof of Theorem 1.1 by showing the second statement,
observing that it readily implies the third one by Proposition 2.3. To this end we actually
establish that, if u0 vanishes sufficiently rapidly at x0 ∈ R

N , then u(t, x0) = 0 for all t ≥ 0.
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Proposition 4.1. Let u0 be an initial condition satisfying (1.3) and denote the corre-
sponding solution to (1.1)-(1.2) by u. Assume further that (p, q) satisfies (1.4) and that
there is x0 ∈ R

N such that (1.10) holds true, with constants κp,q and ω given in (1.11).
Then u(t, x0) = 0 for all t ≥ 0.

Proof. Owing to the invariance by translation of (1.1) we may assume without loss of
generality that x0 = 0. Setting Σ(x) := κp,qr

ω and r := |x| for x ∈ R
N , we infer from the

radial symmetry of Σ and (1.15) that

LΣ(x) = (ωκp,q)
qrq(ω−1) − (ωκp,q)

p−1 [(p− 1)(ω − 1) +N − 1] r(ω−1)(p−1)−1 .

Since

q(ω− 1) =
q

p− 1− q
= (ω− 1)(p− 1)− 1 and (p− 1)(ω− 1)+N − 1 = (ωκp,q)

q+1−p ,

we end up with

LΣ(x) = (ωκp,q)
qrq(ω−1)

[

1− (ωκp,q)
p−1−q(ωκp,q)

q+1−p
]

= 0 .

Consequently Σ is a solution to (1.1) and we infer from (1.10) and the comparison principle
that u(t, x) ≤ Σ(x) for (t, x) ∈ [0,∞) × R

N . In particular, u(t, 0) ≤ Σ(0) = 0 for t ≥ 0 as
claimed

The localization property is then a straightforward consequence of Proposition 4.1.

Proposition 4.2. Let u0 be an initial condition satisfying (1.3) and denote the corre-
sponding solution to (1.1)-(1.2) by u. Assume further that (p, q) satisfies (1.4) and that u0
is compactly supported. There exists R > 0 such that

P(t) ⊆ B(0, R), for any t ≥ 0 .

Proof. Let R0 > 0 be such that P(0) ⊆ B(0, R0) and set R := R0 +
(

‖u0‖∞κ−1
p,q

)1/ω
with

κp,q and ω defined in (1.11). Consider x0 ∈ R
N such that |x0| ≥ R. On the one hand, for

x ∈ B(x0, R−R0),
|x| ≥ |x0| − |x− x0| ≥ R− (R−R0) = R0

and u0(x) = 0 ≤ κp,q|x− x0|
ω. On the other hand, for x 6∈ B(x0, R−R0),

u0(x) ≤ ‖u0‖∞ = κp,q(R−R0)
ω ≤ κp,q|x− x0|

ω .

We are then in a position to apply Proposition 4.1 and conclude that u(t, x0) = 0 for all
t ≥ 0. Since x0 is arbitrary in R

N \ B(0, R) we have shown that P(t) ⊆ B(0, R) for all
t ≥ 0 and the proof is complete.

Theorem 1.1 is now an immediate corollary of Propositions 2.3, 3.1 and 4.2. Indeed, there
is t0 > 0 such that P(t) is bounded for t ∈ (0, t0] by Proposition 3.1. Proposition 2.3
applied to u(· + t0) then implies the finite time extinction of u while Proposition 4.2
guarantees the localization property for t ≥ τ and τ > 0.

Another consequence of Proposition 4.1 is the infinite waiting time phenomenon, that is,
the fact that the positivity set might not expand with time.
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Proposition 4.3. Let u0 be an initial condition satisfying (1.3) and denote the correspond-
ing solution to (1.1)-(1.2) by u. Assume further that (p, q) satisfies (1.4) and that u0 is com-
pactly supported in B(0, R0) for some R0 > 0 and satisfies (1.10) for all x0 ∈ ∂B(0, R0).
Then

P(t) ⊆ P(0) , t ≥ 0 .

Proof. In view of Proposition 4.1 it is sufficient to check that u0 satisfies (1.10) for all
x0 ∈ R

N such that |x0| > R0. Indeed, consider x0 ∈ R
N with |x0| > R0. Set ξ := x0/|x0|.

Since (1.10) is satisfied for R0ξ, there holds

u0(x) ≤ κp,q|x−R0ξ|
ω , x ∈ R

N .

Consider now x ∈ B(0, R0). Then x = 〈x, ξ〉ξ + y and, since |〈x, ξ〉| ≤ |x| < R0,

|x−R0ξ|
2 = (R0 − 〈x, ξ〉)2 + |y|2 ≤ (|x0| − 〈x, ξ〉)2 + |y|2 = |x− x0|

2 .

Consequently, u0(x) ≤ κp,q|x − x0|
ω for all x ∈ B(0, R0). This inequality being obviously

true for x 6∈ B(0, R0) since u0(x) = 0, we have thus shown that u0 satisfies (1.10) for all
x0 6∈ B(0, R0) and Proposition 4.3 readily follows from Proposition 4.1.

The last result of this section is devoted to the optimality of the range (1.4) of the
parameters p and q for instantaneous shrinking to take place.

Proposition 4.4. Consider an initial condition u0 satisfying (1.3) and denote the corre-
sponding solution to (1.1)-(1.2) by u. Let p ∈ (pc, 2) and assume that u0 satisfies (2.2). If
q ∈ [p− 1, p/2) then u vanishes identically after a finite time Te and

P(t) = R
N for t ∈ (0, Te) .

Observe that Proposition 4.4 does not apply to p = 2 as the range [p − 1, p/2) is empty
in that case.

Proof. The occurrence of finite time extinction is a consequence of the discussion after
Proposition 2.3. Fix t0 ∈ (0, Te). By Proposition 2.3, there exists x0 ∈ R

N such that
u(t0, x0) > 0. Let B(x0, ̺) be the largest ball centered at x0 and included in P(t0). We
split the analysis into two cases:

• q ∈ (p − 1, p/2): it follows from the gradient estimates [25, Theorem 1.3(iii)] that for
any x ∈ B(x0, ̺), we have

∣

∣

∣
∇u−(q−p+1)/(p−q)(t0, x)

∣

∣

∣
≤ K0 := C

(

1 + ‖u0‖
(p−2q)/p(p−q)
∞ t

−1/p
0

)

,

hence
u−(q−p+1)/(p−q)(t0, x) ≤ u−(q−p+1)/(p−q)(t0, x0) +K0|x− x0|,

or equivalently

[

K0|x− x0|+ u−(q−p+1)/(p−q)(t0, x0)
]−(p−q)/(q−p+1)

≤ u(t0, x).

Assuming now for contradiction that ̺ < ∞, there exists y ∈ ∂B(x0, ̺) such that u(t0, y) =
0, contradicting the previous lower bound. Consequently, ̺ = ∞ and thus P(t0) = R

N .
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• q = p− 1: it follows from [25, Theorem 1.3(iv)] that, for x ∈ B(x0, ̺),

|∇ log u(t0, x)| ≤ K0 := C
(

1 + ‖u0‖
(2−p)/p
∞ t

−1/p
0

)

,

whence
log u(t0, x0) ≤ log u(t0, x) +K0|x− x0|,

which implies
0 < u(t0, x0)e

−K0|x−x0| ≤ u(t0, x),

for any x ∈ B(x0, ̺). Arguing as in the previous case, this readily implies that ̺ = ∞ and
thus P(t0) = R

N .

5 Upper and lower bounds at the extinction time

An interesting consequence of the localization property established in the previous section
is the derivation of temporal upper and lower bounds for the L∞-norm of solutions to
(1.1)-(1.2) with compactly supported initial data.

Proposition 5.1. Let u0 be an initial condition satisfying (1.3) and denote the corre-
sponding solution to (1.1)-(1.2) by u. Assume further that the exponents p and q satisfy
(1.4) and that u0 is compactly supported. Then u vanishes identically at a finite time
Te > 0 and there is C1 > 0 such that

‖u(t)‖∞ ≥ C1(Te − t)1/(1−q) , t ∈ [0, Te] . (5.1)

In addition, given ϑ ∈ (0, 1), there is C2(ϑ) > 0 such that

‖u(t)‖∞ ≤ C2(ϑ)(Te − t)ϑ(p−q)/(p−2q) , t ∈ [Te/2, Te] . (5.2)

Proof. We first infer from the compactness of the support of u0, Proposition 2.3, and
Proposition 4.2 that the extinction time Te of u is positive and finite and that there exists
R > 0 such that

P(t) ⊆ B(0, R) , t ∈ [0, Te] . (5.3)

We next recall the following gradient estimates, the first one being proved in [25, Theo-
rem 1.3(v)] for p ∈ (pc, 2) and in Proposition A.1 for p = 2:

∣

∣

∣
∇u(p−q−1)/(p−q)(t, x)

∣

∣

∣
≤ C1

(

1 + ‖u(s)‖(p−2q)/p(p−q)
∞ (t− s)−1/p

)

, (5.4)

and the next one proved in [25, Theorem 1.7] for p ∈ (pc, 2) and in [20, Theorem 2] for
p = 2:

|∇u(t, x)| ≤ C2‖u(s)‖
1/q
∞ (t− s)−1/q (5.5)

for (t, x) ∈ (0,∞) × R
N and s ∈ [0, t), the constants C1 and C2 depending only on N , p,

and q. Thanks to (5.3) and (5.5), we may argue as in [30, Proposition 3.5] and establish
that

‖u(t)‖∞ ≥ C(Te − t)1/(1−q), t ∈ (0, Te) .

We next deduce from (5.4) that
∣

∣

∣
∇u(p−q−1)/(p−q)(t, x)

∣

∣

∣
≤ C , (t, x) ∈ [Te/2, Te]× R

N ,
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so that
|∇u(t, x)| ≤ Cu(t, x)1/(p−q), x ∈ P(t) , t ∈ [Te/2, Te] . (5.6)

Consider ̺ ≥ 1 and t ∈ [Te/2, Te]. We infer from (1.1) that

1

̺+ 1

d

dt
‖u(t)‖̺+1

̺+1 = −

∫

RN

(

̺u̺−1|∇u|p + u̺|∇u|q
)

dx

= −

∫

P(t)

(

̺u̺−1|∇u|p + u̺|∇u|q
)

dx .

Integrating with respect to time over (t, Te) and using (5.6), we obtain

‖u(t)‖̺+1
̺+1 = (̺+ 1)

∫ Te

t

∫

P(s)

(

̺u̺−1|∇u|p + u̺|∇u|q
)

dxds

≤ C(1 + ̺)2
∫ Te

t

∫

P(s)
u(̺(p−q)+q)/(p−q) dxds .

It then follows from (5.3), the Hölder inequality, and the time monotonicity of s 7→
‖u(s)‖̺+1 that

‖u(t)‖̺+1
̺+1 ≤ C(1 + ̺)2|B(0, R)|(p−2q)/(̺+1)(p−q)

∫ Te

t
‖u(s)‖

(̺(p−q)+q)/(p−q)
̺+1 ds

≤ C(̺)(Te − t)‖u(t)‖
(̺(p−q)+q)/(p−q)
̺+1 .

Consequently,

‖u(t)‖̺+1 ≤ C(̺)(Te − t)(p−q)/(p−2q) , t ∈ [Te/2, Te] . (5.7)

We finally combine (5.6) and the Gagliardo-Nirenberg inequality to obtain, for t ∈ [Te/2, Te],

‖u(t)‖∞ ≤ C(̺)‖∇u(t)‖N/(̺+1+N)
∞ ‖u(t)‖

(̺+1)/(̺+1+N)
̺+1

≤ C(̺)‖u(t)‖N/(̺+1+N)(p−q)
∞ ‖u(t)‖

(̺+1)/(̺+1+N)
̺+1 .

Consequently

‖u(t)‖∞ ≤ C(̺)‖u(t)‖
(̺+1)(p−q)/((̺+1)(p−q)+N(p−1−q))
̺+1 ,

which, together with (5.7), gives (5.2) as ̺ can be chosen arbitrarily large.

When p = 2 the upper bound (5.2) can be improved, allowing the value ϑ = 1 in (5.2).

Proposition 5.2. Let u0 be an initial condition satisfying (1.3) and denote the corre-
sponding solution to (1.1)-(1.2) by u. Assume further that p = 2, q ∈ (0, 1), and that u
has a finite extinction time Te > 0. Then there is C3 > 0 depending on q, Te, and u0 such
that

‖u(t)‖∞ ≤ C3(Te − t)(2−q)/(2−2q) , t ∈ [0, Te] .

Proof. We adapt the proof of [24, Proposition 2.2]. Assume for contradiction that, for
each n ≥ 1, there are xn ∈ R

N and tn ∈ (0, Te) such that

u(tn, xn) ≥ n(Te − tn)
(2−q)/(2−2q) . (5.8)
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Since u ≤ ‖u0‖∞ and q < 1, it readily follows from (5.8) that

lim
n→∞

tn = Te . (5.9)

As u(Te) ≡ 0, we infer from the variation of constants formula for (1.1) that for t ∈ (0, Te)

0 = u(Te) = e(Te−t)∆u(t)−

∫ Te

t
e(Te−s)∆|∇u(s)|qds . (5.10)

Now, for t ∈ (Te/2, Te), it follows from Proposition A.1 and the properties of the funda-
mental solution of the heat equation that there is c1 > 0 such that

I(t, x) :=

(
∫ Te

t
e(Te−s)∆|∇u(s)|qds

)

(x)

=

∫ Te

t

1

(4π(Te − s))N/2

∫

RN

exp

(

−
|x− y|2

4(Te − s)

)

|∇u(s, y)|qdyds

=

(

2− q

1− q

)q ∫ Te

t

1

(4π(Te − s))N/2

×

∫

RN

exp

(

−
|x− y|2

4(Te − s)

)

uq/(2−q)(s, y)|∇u(1−q)/(2−q)(s, y)|qdyds

≤ c1

∫ Te

t

1

(4π(Te − s))N/2

∫

RN

exp

(

−
|x− y|2

4(Te − s)

)

uq/(2−q)(s, y)dyds

≤ c1

∫ Te

t

[

1

(4π(Te − s))N/2

∫

RN

exp

(

−
|x− y|2

4(Te − s)

)

u(s, y)dy

]q/(2−q)

ds,

(5.11)

where we use Jensen’s inequality for concave functions in the last step in view of q < 2− q.
Introducing

h(t, x) :=
(

e(Te−t)∆u(t)
)

(x) =
1

(4π(Te − t))N/2

∫

RN

exp

(

−
|x− y|2

4(Te − t)

)

u(t, y)dy ,

H(t, x) :=

∫ Te

t
hq/(2−q)(s, x)ds

for (t, x) ∈ (Te/2, Te)× R
N , we infer from (5.10) and (5.11) that

h(t, x) = I(t, x) ≤ c1H(t, x), (t, x) ∈ (Te/2, Te)× R
N . (5.12)

This implies that
−∂tH(t, x) = hq/(2−q)(t, x) ≤ c2H

q/(2−q)(t, x)

with some c2 > 0, whence an integration shows that

−
2− q

2− 2q

(

H(2−2q)/(2−q)(Te, x)−H(2−2q)/(2−q)(t, x)
)

≤ c2(Te − t) ,

for (t, x) ∈ (Te/2, Te) × R
N . Consequently, using H(Te) ≡ 0 and (5.12), we obtain c3 > 0

such that

h(t, x) ≤ c1H(t, x) ≤ c3(Te − t)(2−q)/(2−2q) , (t, x) ∈ (Te/2, Te)× R
N . (5.13)
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Now in view of (5.9) there is n0 ∈ N such that tn ∈ (Te/2, Te) for all n ≥ n0. We use
once more Proposition A.1 along with (5.8) to obtain c4 > 0 such that, for all n ≥ n0 and
x ∈ R

N ,

u(1−q)/(2−q)(tn, x) ≥ u(1−q)/(2−q)(tn, xn)− c4|x− xn|

≥ n(1−q)/(2−q)(Te − tn)
1/2 − c4|x− xn| ≥

n(1−q)/(2−q)

2
(Te − tn)

1/2 ,

provided that x ∈ B
(

xn,
n(1−q)/(2−q)

2c4
(Te − tn)

1/2
)

. We then infer from the latter estimate,

(5.13), the definition of h, and the nonnegativity of u that

c3(Te − tn)
(2−q)/(2−2q) ≥ h(tn, xn)

≥
1

(4π(Te − tn))N/2

∫

B
(

xn,
n(1−q)/(2−q)

2c4
(Te−tn)1/2

)

exp

(

−
|xn − y|2

4(Te − tn)

)

×
n

2(2−q)/(1−q)
(Te − tn)

(2−q)/(2−2q)dy

for all n ≥ n0. We conclude that

c3 ≥
n

2(2−q)/(1−q)(4π)N/2

∫

B
(

0,n
(1−q)/(2−q)

2c4

)

exp

(

−
|z|2

4

)

dz

for all n ≥ n0, and a contradiction.

6 Non-extinction

This section is devoted to the proof of Theorem 1.2. As in [7] (which only deals with
the case p = 2), it relies on the comparison principle, this time with suitable subsolutions
which we construct now.

Lemma 6.1. Assume that (p, q) satisfies (1.4). There exists b0 > 0 depending only on p
and q such that, given T > 0, a > 0, and b ∈ (0, b0), the function

w(t, x) := (T − t)1/(1−q)
(

a+ b|x|θ
)−γ

, θ =
p

p− 1
, γ =

q(p− 1)

p(1− q)
, (6.1)

is a subsolution to (1.1) in (0, T )× R
N provided a is large enough.

Proof. Since w is radially symmetric and letting r = |x| as usual, we note that

Lw = ∂tw − |∂rw|
p−2

[

(p− 1)∂2
rw +

N − 1

r
∂rw

]

+ |∂rw|
q.

Setting y := a+ b|x|θ, we easily have:

∂tw(t, x) = −
1

1− q
(T − t)q/(1−q)y−γ , ∂rw(t, x) = −γθb(T − t)1/(1−q)rθ−1y−γ−1,

and
∂2
rw(t, x) = −γθb(T − t)1/(1−q)y−γ−2rθ−2

[

(θ − 1)y − (1 + γ)θbrθ
]

,
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whence, after easy manipulations,

Lw = (T − t)q/(1−q)y−γ

[

(γθb)qrq(θ−1)yγ(1−q)−q −
1

1− q

]

+ (γθb)p−1(T − t)(p−1)/(1−q)rθ(p−1)−py−(p−1)γ−p

×
[

((p− 1)(θ − 1) +N − 1)y − (1 + γ)θb(p− 1)rθ
]

,

or equivalently,

(T − t)−q/(1−q)yγLw = (γθb)qrq(θ−1)yγ(1−q)−q −
1

1− q

+ (γθb)p−1(T − t)(p−1−q)/(1−q)rθ(p−1)−py(2−p)γ−p

× [((p − 1)(θ − 1) +N − 1− (p− 1)θ(1 + γ))y + (1 + γ)θ(p− 1)a]

= (γθb)qrq(θ−1)yγ(1−q)−q −
1

1− q

+ (γθb)p−1(T − t)(p−1−q)/(1−q)rθ(p−1)−py(2−p)γ−p

× [(1 + γ)θ(p− 1)a+ (N − 1− (p− 1)(1 + θγ))y] .

Recalling now the values of θ and γ from (6.1) and that q < p− 1, we obtain

(T − t)−q/(1−q)yγLw = (γθ)qbq/θ(brθ)q/pyγ(1−q)−q −
1

1− q

+ (γθb)p−1(T − t)(p−1−q)/(1−q)y(2−p)γ−p

×

[

(1 + γ)pa+

(

N − 1−
p− 1

1− q

)

y

]

≤ (γθ)qbq/θ −
1

1− q

+ (γθb)p−1T (p−1−q)/(1−q)y(2−p)γ−p+1[(1 + γ)p+N − 1]

≤ (γθ)qbq/θ −
1

1− q

+ (γθb)p−1T (p−1−q)/(1−q)a(2−p)γ−p+1[(1 + γ)p +N − 1],

(6.2)

where we have used in the last inequality the fact that

(2− p)γ − p+ 1 =
(p− 1)(2q − p)

p(1− q)
< 0 (6.3)

due to q < p− 1 ≤ p/2. Setting

b0 := (2(1− q)(γθ)q)−θ/q ,

it follows from (6.2) that, for b ∈ (0, b0),

(T − t)−q/(1−q)yγLw ≤ (γθb)p−1T (p−1−q)/(1−q)a(2−p)γ−p+1[(1 + γ)p +N − 1]

−
1

2(1− q)
.

We use once more (6.3) to conclude that the right hand side of the previous inequality is
negative for a large enough, that is, w is a subsolution to (1.1) in (0, T ) × R

N .
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With this technical lemma, we are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let u0 be an initial condition satisfying (1.3) and (1.8). Fix b ∈
(0, b0) and T > 0. Since

lim
|x|→∞

u0(x)|x|
q/(1−q) = ∞,

there exists R > 0 sufficiently large such that

u0(x) ≥ T 1/(1−q)b−q(p−1)/p(1−q)|x|−q/(1−q)

≥ T 1/(1−q)
(

a+ b|x|p/(p−1)
)−q(p−1)/p(1−q)

,
(6.4)

for any a > 0 and x ∈ R
N \ B(0, R). It remains to show that it is possible to choose

a > 0 such that (6.4) also holds true inside B(0, R). Since u0 > 0 in R
N and B(0, R) is a

compact set, we infer from the continuity of u0 that

δ := inf{u0(x) : x ∈ B(0, R)} > 0.

Choose then a > 0 sufficiently large such that

T 1/(1−q)a−q(p−1)/p(1−q) < δ ,

and set

w(t, x) := (T − t)1/(1−q)
(

a+ b|x|p/(p−1)
)−q(p−1)/p(1−q)

, (t, x) ∈ (0, T )× R
N .

Then
u0(x) ≥ δ > T 1/(1−q)a−q(p−1)/p(1−q) ≥ w(0, x), (6.5)

for any x ∈ B(0, R) and we combine (6.4) and (6.5) to conclude that u0(x) ≥ w(0, x) for
any x ∈ R

N . Owing to the choice b ∈ (0, b0), the function w is a subsolution to (1.1)
according to Lemma 6.1, and the comparison principle ensures that

u(t, x) ≥ w(t, x) > 0, for any t ∈ (0, T ), x ∈ R
N .

Consequently, P(t) = R
N for all t ∈ (0, T ) and, since T > 0 is arbitrarily chosen, we

conclude that P(t) = R
N for any t > 0, as stated.

7 Improved finite time extinction property

This section is devoted to the proof of Theorem 1.3, which improves the range of initial
data for which finite time extinction takes place. As in the previous section, the main
argument is again the comparison principle, this time with suitable supersolutions. The
idea to construct them is adapted from [7, Lemma 7], where similar supersolutions are
built in the semilinear case p = 2 and q ∈ (0, 1). To this end we define

α :=
p− q

p− 2q
> 0, β :=

q − p+ 1

p− 2q
< 0, (7.1)

which are the usual self-similar exponents associated to Eq. (1.1) and look for self-similar
supersolutions of (1.1).
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Lemma 7.1. Assume that (p, q) satisfies (1.4) and that p < 2. There exists A0 > 0
depending only on N , p, and q such that, for all T > 0 and A ∈ (0, A0), the function

W (t, x) := (T − t)αf(|x|(T − t)β), (t, x) ∈ (0, T ) × R
N , (7.2)

with
f(y) := A(1 + y2)−γ , y ∈ R, γ :=

q

2(1− q)
,

is a supersolution to (1.1) in (0, T )× R
N .

Proof. Since W is radially symmetric, we again have (with r = |x|)

LW = ∂tW − (p− 1)|∂rW |p−2∂2
rW −

N − 1

r
|∂rW |p−2∂rW + |∂rW |q.

Setting y := |x|(T − t)β = r(T − t)β and taking into account that

α− 1 = (p− 1)(α + β) + β = q(α+ β) =
q

p− 2q
> 0,

we readily find

LW = (T − t)α−1
[

−αf(y)− βy∂yf(y)− (p− 1)|∂yf(y)|
p−2∂2

yf(y)

−
N − 1

y
|∂yf(y)|

p−2∂yf(y) + |∂yf(y)|
q

]

.

Since
∂yf(y) = −2Aγy(1 + y2)−γ−1

and

∂2
yf(y) = −2Aγ(1 + y2)−γ−1

[

1−
2(γ + 1)y2

1 + y2

]

,

we further obtain

LW = (T − t)α−1(1 + y2)−(γ+1)
[

−αA− (α− 2βγ)Ay2

+(p− 1)(2Aγ)p−1 (1 + y2)(2−p)(γ+1)

y2−p

(

1−
2(γ + 1)y2

1 + y2

)

+(N − 1)(2Aγ)p−1 (1 + y2)(2−p)(γ+1)

y2−p
+ (2Aγ)qyq(1 + y2)(1−q)(γ+1)

]

= (T − t)α−1(1 + y2)−(γ+1)H(y),

where

H(y) := (2Aγ)p−1 (1 + y2)(2−p)(γ+1)

y2−p

[

p+N − 2−
2(p− 1)(γ + 1)y2

1 + y2

]

+ (2Aγ)qyq(1 + y2)(1−q)(γ+1) −Aα− (α− 2βγ)Ay2.

We first note that

1

2
(2Aγ)qyq(1 + y2)(1−q)(γ+1) − (α− 2βγ)Ay2

≥
(2Aγ)q

2
yqy2(1−q)(γ+1) − (α− 2βγ)Ay2

≥ Ay2
[

(2γ)q

2
Aq−1 − (α− 2βγ)

]

.

(7.3)
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In order to estimate the remaining terms in the expression of H(y), we have to split the
analysis into two cases according to the values of y. More precisely, set

y0 :=
1

√

4(γ + 1)
.

• If y ∈ [0, y0], we find

(2Aγ)p−1 (1 + y2)(2−p)(γ+1)

y2−p

[

p+N − 2−
2(p − 1)(γ + 1)y2

1 + y2

]

−Aα

≥ (2Aγ)p−1yp−2

[

p− 1−
2(p − 1)(γ + 1)y2

1 + y2

]

−Aα

≥ (2Aγ)p−1(p − 1)yp−2
[

1− 2(γ + 1)y20
]

−Aα

≥ (2Aγ)p−1 p− 1

2
yp−2
0 −Aα

≥ A

[

(p − 1)(2γ)p−1

2y2−p
0

Ap−2 − α

]

.

(7.4)

• If y ≥ y0, we have

(2Aγ)p−1 (1 + y2)(2−p)(γ+1)

y2−p

[

p+N − 2−
2(p − 1)(γ + 1)y2

1 + y2

]

+
1

2
(2Aγ)qyq(1 + y2)(1−q)(γ+1) −Aα

≥ −2(p− 1)(1 + γ)(2Aγ)p−1 (1 + y2)(2−p)(γ+1)

y2−p

y2

1 + y2

+
(2Aγ)q

2
yqy2(1−q)(γ+1) −Aα

≥ −2(p− 1)(1 + γ)(2Aγ)p−1 (1 + y2)(2−p)(γ+1)

y2−p
+

(2Aγ)q

2
y2 −Aα

≥
(2Aγ)q

4
y20 −Aα+

(2Aγ)q

4
y2

− 2(p − 1)(γ + 1)(2Aγ)p−1

(

1 +
1

y20

)(2−p)(γ+1)

y(2−p)(2(γ+1)−1)

≥ A

[

(2γ)q

4
y20A

q−1 − α

]

+ (2Aγ)p−1y(2−p)/(1−q)

×

[

(2γ)q−p+1

4
y
(p−2q)/(1−q)
0 Aq−p+1 − 2(p − 1)(γ + 1)

(

1 + y20
y20

)(2−p)(γ+1)
]

.

(7.5)

Since 0 < q < p− 1 < 1 and p < 2, we realize that the right-hand sides of (7.3), (7.4), and
(7.5) are simultaneously positive provided A is sufficiently small. It then follows that W
defined in (7.2) is a supersolution to (1.1) in (0, T )× R

N for A small enough.

Completing the proof of Theorem 1.3 becomes now an easy task. A noteworthy fact to be
mentioned is that the choice of A > 0 in Lemma 7.1 is independent of the fixed extinction
time T > 0.
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Proof of Theorem 1.3. For p = 2 and q ∈ (0, 1) Theorem 1.3 is proved in [7, Theorem 2].
Consider now p < 2. Let u0 be an initial condition satisfying (1.3) and (1.9) and T > 1.
We fix A ∈ (0, A0) so that the function

W (t, x) = (T − t)αA
(

1 + (T − t)2β|x|2
)−q/2(1−q)

, (t, x) ∈ (0, T )× R
N ,

is a supersolution to (1.1) in (0, T )×R
N according to Lemma 7.1. We notice that, for any

x ∈ R
N ,

W (0, x) = TαA
(

1 + T 2β|x|2
)−q/2(1−q)

≥ TαA
(

T 2β + T 2β |x|2
)−q/2(1−q)

= Tα−βq/(1−q)A
(

1 + |x|2
)−q/2(1−q)

= T 1/(1−q)A
(

1 + |x|2
)−q/2(1−q)

.

Since 1 + |x|2 ≤ (1 + |x|)2, for any x ∈ R
N , we further obtain that

W (0, x) ≥ T 1/(1−q)A(1 + |x|)−q/(1−q)

=
T 1/(1−q)A

C0
C0(1 + |x|)−q/(1−q) ≥

T 1/(1−q)A

C0
u0(x),

for any x ∈ R
N . Letting T > 0 to be sufficiently large such that

T 1/(1−q)A

C0
> 1,

we have W (0, x) ≥ u0(x) for any x ∈ R
N . Consequently, by the comparison principle,

W (t, x) ≥ u(t, x), (t, x) ∈ (0, T ) ×R
N .

Noting that W (t, 0) = A(T − t)α and W (t, x) ≤ A(T − t)1/(1−q)|x|−q/(1−q) for x 6= 0, we
realize that W (t, x) −→ 0 as t → T for all x ∈ R

N , which in particular implies that u
vanishes in finite time. Moreover, its extinction time satisfies Te ≤ T .

8 Single point extinction

This rather long section is devoted to the proof of Theorem 1.4. The single point extinction
is an immediate consequence of the double inclusion (1.13), which is the main result to
prove. This is divided into several steps, corresponding to subsections in the sequel.

8.1 Lower bound for the positivity set

We begin with the first inclusion in (1.13).

Lemma 8.1. Let u be a solution to the Cauchy problem (1.1)-(1.2) with an initial condition
u0 satisfying (1.3) which is radially symmetric and non-increasing. Assume further that
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u0 is compactly supported and denote its finite extinction time by Te. There exists ̺1 > 0
such that

B(0, ̺1(Te − t)σ) ⊆ P(t) for any t ∈ (Te/2, Te) with σ :=
p− q − 1

(p− q)(1 − q)
,

where P(t) denotes the positivity set of u at time t, see (1.6).

Proof. Since ‖u(t)‖∞ = u(t, 0) due to the radial symmetry and monotonicity of u(t) pro-
vided by Lemma 2.2, we infer from Proposition 5.1 that

u(t, 0) ≥ C1(Te − t)1/(1−q), t ∈ (0, Te).

Next, it readily follows from the mean-value theorem and the gradient estimate (5.4) that

u(p−q−1)/(p−q)(t, x)− u(p−q−1)/(p−q)(t, 0) ≥ −C|x|, t ∈ [Te/2, Te],

whence, using the above lower bound for u(t, 0),

u(p−q−1)/(p−q)(t, x) ≥ C
(p−q−1)/(p−q)
1 (Te − t)σ − C|x| > 0,

provided

|x| <
C

σ(1−q)
1

C
(Te − t)σ, t ∈ (Te/2, Te),

ending the proof.

As already pointed out in the Introduction, Lemma 8.1 holds true without requiring the
assumptions (1.10) and (1.12) on u0. It is in the next subsection where they will be needed.

8.2 Upper bound for the positivity set

We move now to the more involved part, that is, to prove the second inclusion in (1.13)
which turns out to be rather technical. Let u0 be a radially symmetric and non-increasing
initial condition satisfying (1.3). Assume further that u0 is compactly supported in
B(0, R0) for some R0 > 0 and satisfies (1.10) for all x0 ∈ ∂B(0, R0) as well as (1.12).
Denoting the corresponding solution to the Cauchy problem (1.1)-(1.2) by u we infer from
Theorem 1.1 and Proposition 4.3 that there is Te > 0 such that

P(t) ⊆ B(0, R0), t ∈ (0, Te), and P(t) = ∅, t ≥ Te. (8.1)

Furthermore, Lemma 2.2 and the assumptions on u0 guarantee that

∂ru(t, r) ≤ 0 , (t, r) ∈ (0, Te)× (0, R0) . (8.2)

Lemma 8.2. There exists δ > 0 such that

|∇u(t, x)| ≥ δ1/(p−1)|x|1/(p−1−q)u(t, x)1/(p−q), (t, x) ∈ (0, Te)×B(0, R0) . (8.3)

Proof. We adapt an idea from [17, Lemma 2.2] which takes its origin in the study of
blow-up problems, see [18, Lemma 2.2]. For z > 0, we set

a(z) := z(p−2)/2 , b(z) := zq/2 ,
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so that, using the radial variable r := |x|, Eq. (1.1) reads

∂t(r
N−1u) = ∂r

(

rN−1a(|∂ru|
2)∂ru

)

− rN−1b(|∂ru|
2) , (t, r) ∈ (0, Te)× (0, R0) . (8.4)

We define the auxiliary function

J(t, r) := rN−1a(|∂ru(t, r)|
2)∂ru(t, r) + c(r)F (u(t, r)), (t, r) ∈ (0, Te)× (0, R0),

where the functions c ≥ 0 and F ≥ 0 are to be determined later and assumed to satisfy

c(0) = 0 , F (0) = 0 , F ′ ≥ 0 , F ′′ ≤ 0 . (8.5)

We aim at finding c and F such that J ≤ 0 in (0, Te) × (0, R0). Since F (0) = 0, we first
note that (8.1) and (8.2) imply that

J(t, 0) = 0 , J(t, R0) = RN−1
0 |∂ru(t, R0)|

p−2∂ru(t, R0) ≤ 0, t ∈ (0, Te) , (8.6)

as well as

J(t, r) = −rN−1|∂ru(t, r)|
p−1 + c(r)F (u(t, r)), (t, r) ∈ (0, Te)× (0, R0) .

The following calculations are performed at a formal level. A rigorous justification requires
some approximating procedures and will be completed in the Appendix, a detailed account
of the formal calculations being given for the easiness of the reading. Introducing

g := −∂ru ≥ 0 and a1(z) := 2za′(z) + a(z) , z > 0 ,

we infer from (8.4) that

∂tJ = a1(g
2)∂t

(

rN−1∂ru
)

+ c(r)F ′(u)∂tu

= a1(g
2)∂t

[

∂r
(

rN−1u
)

− (N − 1)rN−2u
]

+
c(r)

rN−1
F ′(u)∂t(r

N−1u)

= a1(g
2)∂r

[

∂r
(

rN−1a(g2)∂ru
)

− rN−1b(g2)
]

+

(

c(r)

rN−1
F ′(u)−

N − 1

r
a1(g

2)

)

[

∂r
(

rN−1a(g2)∂ru
)

− rN−1b(g2)
]

= a1(g
2)∂2

r

(

rN−1a(g2)∂ru
)

− 2rN−1(a1b
′)(g2)∂ru∂

2
ru

+

(

c(r)

rN−1
F ′(u)−

N − 1

r
a1(g

2)

)

∂r
(

rN−1a(g2)∂ru
)

− c(r)F ′(u)b(g2) .

Next

∂rJ = ∂r
(

rN−1a(g2)∂ru
)

+ c′(r)F (u) + c(r)F ′(u)∂ru ,

∂2
rJ = ∂2

r

(

rN−1a(g2)∂ru
)

+ c′′(r)F (u) + 2c′(r)F ′(u)∂ru

+ c(r)F ′′(u)g2 + c(r)F ′(u)∂2
ru ,

and it follows from the formulas for ∂tJ and ∂2
rJ that

∂tJ − a1(g
2)∂2

rJ = 2rN−1(a1b
′)(g2)g∂2

ru

+

(

c(r)

rN−1
F ′(u)−

N − 1

r
a1(g

2)

)

∂r
(

rN−1a(g2)∂ru
)

− c(r)F ′(u)b(g2)− a1(g
2)c′′(r)F (u) + 2a1(g

2)c′(r)F ′(u)g

− c(r)F ′′(u)a1(g
2)g2 − a1(g

2)c(r)F ′(u)∂2
ru .
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We now use the formula for ∂rJ to replace the terms involving ∂2
ru in the above identity

and obtain

∂tJ − a1(g
2)∂2

rJ =

(

2b′(g2)g −
c(r)

rN−1
F ′(u)

)

rN−1∂r
(

a(g2)∂ru
)

+

(

c(r)

rN−1
F ′(u)−

N − 1

r
a1(g

2)

)

∂r
(

rN−1a(g2)∂ru
)

− c(r)F ′(u)b(g2)− a1(g
2)c′′(r)F (u) + 2a1(g

2)c′(r)F ′(u)g

− c(r)F ′′(u)a1(g
2)g2

= 2b′(g2)g
[

∂rJ − c′(r)F (u) + c(r)F ′(u)g
]

+ 2(N − 1)rN−2(ab′)(g2)g2

−
N − 1

r
c(r)F ′(u)a(g2)g −

N − 1

r
a1(g

2)
[

∂rJ − c′(r)F (u) + c(r)F ′(u)g
]

− c(r)F ′(u)b(g2)− c′′(r)F (u)a1(g
2) + 2c′(r)F ′(u)a1(g

2)g

− c(r)F ′′(u)a1(g
2)g2 .

Consequently

∂tJ − a1(g
2)∂2

rJ +

(

N − 1

r
a1(g

2)− 2b′(g2)g

)

∂rJ

= 2
[

(N − 1)rN−2a(g2)g − c′(r)F (u)
]

b′(g2)g +

[

N − 1

r
c′(r)− c′′(r)

]

F (u)a1(g
2)

+

[

2c′(r)a1(g
2)−

N − 1

r
c(r)(a+ a1)(g

2)

]

F ′(u)g − c(r)F ′′(u)a1(g
2)g2

−
[

b(g2)− 2b′(g2)g2
]

c(r)F ′(u) .

Since

a1(z) = (p − 1)a(z) ≤ a(z) and b(z)− 2zb′(z) = (1− q)b(z) , z > 0 ,

we infer from the non-negativity of c and g, and the monotonicity (8.5) of F , that

∂tJ − a1(g
2)∂2

rJ +

(

N − 1

r
a1(g

2)− 2b′(g2)g

)

∂rJ ≤
3
∑

i=1

Ri , (8.7)

where

R1 := 2
[

(N − 1)rN−2a(g2)g − c′(r)F (u)
]

b′(g2)g ,

R2 :=

[

N − 1

r
c′(r)− c′′(r)

]

F (u)a1(g
2) ,

R3 := 2

[

c′(r)−
N − 1

r
c(r)

]

F ′(u)a1(g
2)g − c(r)F ′′(u)a1(g

2)g2

− (1− q)c(r)F ′(u)b(g2) .

We now choose
c(r) = rλ , r ≥ 0 , F (z) = δzβ , z ≥ 0 ,

where λ > N , δ ∈ (0, 1), and β ∈ (0, 1) are yet to be determined. Note that the latter
constraint on β complies with (8.5). With this choice,

R2 = −λ(λ−N)δ(p − 1)rλ−2uβgp−2 , (8.8)
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while
R1 = 2rλ−1b′(g2)g

[

(N − 1)rN−1−λa(g2)g − δλuβ
]

. (8.9)

Moreover, since λ > N and β ∈ (0, 1),

R3 = δ
[

2(λ−N + 1)β(p − 1)rλ−1uβ−1gp−1

+β(1− β)(p − 1)rλuβ−2gp − (1− q)βrλuβ−1gq
]

≤ βδ

[

2(λ−N + 1)

r
gp−1−q +

1− β

u
gp−q − (1− q)

]

rλuβ−1gq . (8.10)

Now let κ > 0 and define

Jκ := {(t, r) ∈ (0, Te)× (0, R0) : J(t, r) ≥ κ} .

Owing to the definition of J there holds

rN−1gp−1 = rN−1a(g2)g ≤ κ+ rN−1gp−1 ≤ c(r)F (u) = δrλuβ in Jκ . (8.11)

A first consequence of (8.11) and the positivity of κ is that r > 0 and u > 0 in Jκ, so that
(8.8) yields

R2 = −λ(λ−N)δ(p − 1)rλ−2uβgp−2 < 0 in Jκ (8.12)

in view of λ > N and p ∈ (1, 2]. Moreover, we deduce from (8.9), (8.10), and (8.11) that,
in Jκ,

R1 ≤ 2rλ−1b′(g2)g
[

(N − 1)r−λδrλuβ − δλuβ
]

≤ −2(λ−N + 1)δrλ−1uβb′(g2)g ≤ 0 (8.13)

and

R3 ≤ βδ

[

2(λ−N + 1)

r

(

δrλ−N+1uβ
)(p−1−q)/(p−1)

+
1− β

u

[

δrλ−N+1uβ
](p−q)/(p−1)

− (1− q)

]

rλuβ−1gq

≤ βδ
[

2(λ−N + 1)δ(p−1−q)/(p−1)r((λ−N)(p−1−q)−q)/(p−1)uβ(p−1−q)/(p−1)

+ (1− β)δ(p−q)/(p−1)r(λ−N+1)(p−q)/(p−1)u(β(p−q)−(p−1))/(p−1)

− (1− q)
]

rλuβ−1gq .

In order to ensure R3 ≤ 0 in Jκ, we choose

β :=
p− 1

p− q
∈ (0, 1) and λ := N +

q

p− 1− q
> N .

Recalling that q < p− 1, we use (2.1) and (8.1) to obtain that, in Jκ,

R3 ≤ βδ
[

2(λ−N + 1)δ(p−1−q)/(p−1)‖u0‖
(p−1−q)/(p−q)
∞

+(1− β)δ(p−q)/(p−1)R
(p−q)/(p−q−1)
0 − (1− q)

]

rλuβ−1gq

≤ −
βδ(1− q)

2
rλuβ−1b(g2) ≤ 0 , (8.14)
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provided δ is chosen suitably small (depending on ‖u0‖∞ and R0). Collecting (8.7), (8.12),
(8.13), and (8.14), we have shown that

∂tJ − a1(g
2)∂2

rJ +

(

N − 1

r
a1(g

2)− 2b′(g2)g

)

∂rJ < 0 , (t, r) ∈ Jκ , (8.15)

as soon as δ is suitably small.

Assume now for contradiction that the maximum of J in [0, Te] × [0, R0] exceeds κ. It
is attained at some point (t0, r0) ∈ [0, Te] × [0, R0] and it readily follows from (8.6) that
r0 ∈ (0, R0). In addition, (1.12) ensures that, for r ∈ (0, R0),

J(0, r) = rλu0(r)
(p−1)/(p−q)

[

δ −

(

1

r1/(p−1−q)

|∂ru0(r)|

u0(r)1/(p−q)

)p−1
]

= rλu0(r)
(p−1)/(p−q)

[

δ −

(

p− q

p− 1− q

1

r1/(p−1−q)
|∂ru

(p−1−q)/(p−q)
0 (r)|

)p−1
]

≤ rλu0(r)
(p−1)/(p−q)

[

δ −

(

p− q

p− 1− q
δ0

)p−1
]

≤ 0

by choosing δ > 0 even smaller. Consequently, t0 > 0 and we conclude that

∂tJ(t0, r0) ≥ 0 , ∂rJ(t0, r0) = 0 , ∂2
rJ(t0, r0) ≤ 0 ,

which contradicts (8.15), since (t0, r0) ∈ Jκ. Therefore, J ≤ κ in [0, Te]× [0, R0]. Since κ
is an arbitrary positive number, we have shown that J ≤ 0 in [0, Te]× [0, R0] from which
(8.3) follows.

We stress once more that this proof holds only at formal level as the coefficients in
the equation solved by J may be singular. A complete justification is postponed to the
Appendix.

The proof of Theorem 1.4 is now an easy consequence of the previous analysis as shown
below.

Proof of Theorem 1.4. We wish to prove (1.13), from which the single point extinction
follows readily. The left inclusion in (1.13) has been proved in Lemma 8.1 and we are thus
left with the proof of the right inclusion. Fix t ∈ (Te/2, Te). Taking into account the radial
symmetry and monotonicity of u(t), we deduce from Lemma 8.2 that

|∇u(t, x)| ≥ δ1/(p−1)|x|1/(p−1−q) u(t, x)1/(p−q) , x ∈ B(0, R0) ,

hence, recalling (8.1),

p− 1− q

p− q
δ1/(p−1)|x|1/(p−1−q) ≤

∣

∣

∣
∇u(p−1−q)/(p−q)(t, x)

∣

∣

∣
, x ∈ P(t) . (8.16)

For x ∈ P(t), the monotonicity properties of u(t) guarantee that ̺x ∈ P(t) for all ̺ ∈ [0, 1]
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and, for any ̺ ∈ (0, 1), we infer from (1.4) and (8.16) that

u(p−1−q)/(p−q)(t, x) = u(p−1−q)/(p−q)(t, ̺x) +

∫ 1

̺

〈

∇u(p−1−q)/(p−q)(t, σx), x
〉

dσ

= u(p−1−q)/(p−q)(t, ̺x)−

∫ 1

̺

∣

∣

∣
∇u(p−1−q)/(p−q)(t, σx)

∣

∣

∣
|x| dσ

≤ ‖u(t)‖(p−1−q)/(p−q)
∞ − C|x|

∫ 1

̺
|σx|1/(p−1−q) dσ

≤ ‖u(t)‖(p−1−q)/(p−q)
∞ − C|x|(p−q)/(p−1−q)

(

1− ̺(p−q)/(p−1−q)
)

.

We now apply Proposition 5.1 and let ̺ → 0 to obtain that, given ϑ ∈ (0, 1),

u(p−q−1)/(p−q)(t, x) ≤ C2(ϑ)
(p−q−1)/(p−q)(Te − t)ϑ(p−q−1)/(p−2q) − C|x|(p−q)/(p−1−q) .

Since x ∈ P(t), this implies in particular that the right-hand side of the previous inequality
is positive, that is,

|x| < C(ϑ)(Te − t)ϑ(p−q−1)2/(p−q)(p−2q) .

Consequently, choosing ϑ = p/2,

P(t) ⊆ B(0, ̺2(Te − t)ν), ν =
p(p− q − 1)2

2(p − q)(p− 2q)
,

for some ̺2 > 0. Since t ∈ (Te/2, Te) is arbitrary, we have established the right inclusion
in (1.13) and thereby completed the proof.

A Proofs of Lemma 8.2 and gradient estimates for p = 2

In this technical section we provide a fully rigorous proof of Lemma 8.2, as well as a
gradient estimate for solutions to (1.1) for p = 2. The latter, besides of its interest as an
independent result, provides an essential technical tool in the proofs of our main results,
and complements the gradient estimates in [25, Theorem 1.3], valid for p ∈ (pc, 2).

Lemma 8.2 was proved in Section 8 at a formal level, presenting the essential calculations
that give the ideas and essence of the proof, but allowing us at that point, for the simplicity
of the exposition, to use results such as the maximum principle (or comparison principle)
that are not automatically granted when we deal with singular coefficients. This is why we
include the rigorous proof of this lemma here. To this end, we introduce a regularization
of (1.1), already successfully used by the authors in [25, Section 6], in order to avoid
the difficulties coming from the singularity at points where ∇u = 0. Let then u be a
solution to the Cauchy problem (1.1)-(1.2) associated to an initial condition u0 satisfying
the assumptions (a)-(c) of Theorem 1.4. We recall that u vanishes identically after a finite
time Te and that its positivity set P(t) is included in B(0, R0) for all t ≥ 0, see (8.1).

For ε ∈ (0, 1/2), we define:

aε(z) := (z + ε2)(p−2)/2, bε(z) := (z + ε2)q/2, z ≥ 0, (A.1)

and consider the following Cauchy problem:
{

∂tũε − div
(

aε(|∇ũε|
2)∇ũε

)

+ bε
(

|∇ũε|
2
)

− εq = 0, (t, x) ∈ (0,∞)× R
N ,

ũε(0) = u0,ε + εγ , x ∈ R
N ,

(A.2)
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where γ ∈ (0, p/4) ∩ (0, q/2) is a small positive parameter such that γ < min{p− 1, 1− q}
and u0,ε ∈ C∞(RN ) is a non-negative smooth approximation of the initial condition u0, in
the sense that it converges to u0 uniformly on compact sets in R

N and satisfies

0 ≤ u0,ε ≤ ‖u0‖∞, ‖∇u0,ε‖∞ ≤ (1 + C(u0)ε)‖∇u0‖∞. (A.3)

It is proved in [5] and [25, Section 6] that (A.2) has a unique classical solution ũε and that,
as ε → 0, it is an approximation of the solution u to (1.1)-(1.2) with initial condition u0
in the following sense:

u(t, x) = lim
ε→0

ũε(t, x), ∇u(t, x) = lim
ε→0

∇ũε(t, x), (A.4)

for almost every (t, x) ∈ (0,∞) × R
N , the first convergence being actually uniform in

compact sets of (0,∞) × R
N . In addition, if u0 is radially symmetric and non-increasing,

then u0,ε can be chosen to be radially symmetric and non-increasing as well, so that
x 7→ ũε(t, x) is radially symmetric and non-increasing for any t ≥ 0 and ε ∈ (0, 1/2). We
next define

uε(t, x) := ũε(t, x)− εqt , (t, x) ∈ (0,∞) ×R
N ,

and observe that the comparison principle and (A.2) imply that

uε(t, x) ≥ εγ − εqt ≥
εγ

2
, (t, x) ∈ (0, τε)× R

N , (A.5)

with τε := εγ−q/2 and that uε solves

{

∂tuε − div
(

aε(|∇uε|
2)∇uε

)

+ bε
(

|∇uε|
2
)

= 0, (t, x) ∈ (0,∞)× R
N ,

uε(0) = u0,ε + εγ , x ∈ R
N .

(A.6)

Since τε → ∞ as ε → 0, we may assume that ε is taken sufficiently small to ensure Te ≤ τε.
With these approximations in mind, we are ready to give the complete proof of Lemma 8.2
as well as that of the gradient estimate (5.4) for p = 2.

A.1 Proof of Lemma 8.2

Owing to the C1-smoothness of u0, the gradient convergence in (A.4) is also uniform on
compact subsets of RN . Consequently,

mε := ε+ ‖u0,ε − u0‖C1(B(0,R0))−→ε→0
0 . (A.7)

Introducing
rε := min{r ∈ [0, R0) : u0(r) ≤ m1/4

ε } ,

the properties of u0 assumed in Theorem 1.4 and (A.7) ensure that there is ε0 ∈ (0, 1/2)
such that

rε > sε := m(p−1−q)/4(p−q)
ε and mε ∈ (0, 1) for any ε ∈ (0, ε0) . (A.8)
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We then infer from the radial monotonicity of u0, (1.12), (A.7), and (A.8) that, for r ∈
[sε, rε],

|∂ru0,ε(r)| ≥ |∂ru0(r)| −mε

≥ δ0r
1/(p−1−q)u0(r)

1/(p−q) −mε

≥
δ0
2
r1/(p−1−q)u

1/(p−q)
0,ε (r) +

δ0
2
r1/(p−1−q)

(

u
1/(p−q)
0 − u

1/(p−q)
0,ε

)

(r)

+
δ0
2
m1/2(p−q)

ε −mε

≥
δ0
2
r1/(p−1−q)u

1/(p−q)
0,ε (r)−

δ0
2
R

1/(p−1−q)
0 m1/(p−q)

ε +
δ0
2
m1/2(p−q)

ε −mε

≥
δ0
2
r1/(p−1−q)u

1/(p−q)
0,ε (r)

+m1/2(p−q)
ε

(

δ0
2

−
δ0
2
R

1/(p−1−q)
0 m1/2(p−q)

ε −m(2(p−q)−1)/2(p−q)
ε

)

.

Since p − q > 1, we infer from (A.7) and the above inequality that, taking ε0 smaller if
necessary, there holds

|∂ru0,ε(r)| ≥
δ0
2
r1/(p−q−1)u0,ε(r)

1/(p−q) , r ∈ [sε, rε] , ε ∈ (0, ε0) . (A.9)

Now fix ε ∈ (0, ε0). Recalling that aε and bε are given by (A.1), we define

a1,ε(z) := 2za′ε(z) + aε(z) , z ≥ 0 ,

and the auxiliary function

Jε(t, r) := rN−1aε(|∂ruε(t, r)|
2)∂ruε(t, r) + c(r)F (uε(t, r)) , (t, r) ∈ (0, Te)× (0, R0) .

Since uε solves (A.6) and

(p− 1)aε(z) ≤ a1,ε(z) = (z + ε2)(p−4)/2[(p − 1)z + ε2] ≤ aε(z) ,

bε(z)− 2zb′ε(z) = (z + ε2)(q−2)/2[(1 − q)z + ε2] ≥ (1− q)bε(z)

for z ≥ 0, we may perform the same computations as in the proof of Lemma 8.2 with
(aε, bε) instead of (a, b) and derive the analogue of (8.7):

∂tJε − a1,ε(g
2
ε)∂

2
rJε +

(

N − 1

r
a1,ε(g

2
ε)− 2b′ε(g

2
ε)gε

)

∂rJε ≤
3
∑

i=1

Ri,ε , (A.10)

where gε := −∂ruε ≥ 0 and

R1,ε := 2
[

(N − 1)rN−2aε(g
2
ε)gε − c′(r)F (uε)

]

b′ε(g
2
ε )gε ,

R2,ε :=

[

N − 1

r
c′(r)− c′′(r)

]

F (uε)a1,ε(g
2
ε ) ,

R3,ε := 2

[

c′(r)−
N − 1

r
c(r)

]

F ′(uε)a1,ε(g
2
ε)gε − c(r)F ′′(uε)a1,ε(g

2
ε)g

2
ε

− (1− q)c(r)F ′(uε)bε(g
2
ε) .
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Observe that the positivity (A.5) of uε guarantees that F
′(uε) and F ′′(uε) are well-defined,

even if F is not twice differentiable at zero. As in the proof of Lemma 8.2 we choose

c(r) = rλ , r ≥ 0 , F (z) = δzβ , z ≥ 0 ,

where δ > 0 is to be determined and

λ = N +
q

p− 1− q
> N , β =

p− 1

p− q
∈ (0, 1) .

With this choice,
R2,ε ≤ −λ(λ−N)δ(p − 1)rλ−2uβε aε(g

2
ε) , (A.11)

while
R1,ε = 2rλ−1b′ε(g

2
ε)gε

[

(N − 1)rN−1−λaε(g
2
ε)gε − δλuβε

]

(A.12)

and

R3,ε ≤ βδ

[

2(λ−N + 1)

r

(

g2ε + ε2
)(p−1−q)/2

+
1− β

uε

(

g2ε + ε2
)(p−q)/2

− (1− q)
]

rλuβ−1
ε bε(g

2
ε) . (A.13)

Now let κ > 0 and define

Jκ,ε := {(t, r) ∈ (0, Te)× (0, R0) : Jε(t, r) ≥ κ} .

Then
κ+ rN−1aε(g

2
ε)gε ≤ c(r)F (uε) = δrλuβε in Jκ,ε ,

from which we deduce that, if κ ≥ RN−1
0 εp−1, then

rN−1(g2ε + ε2)(p−1)/2 ≤ rN−1aε(g
2
ε )gε +RN−1

0 εp−1 ≤ δrλuβε in Jκ,ε . (A.14)

This inequality implies in particular that r > 0 and uε > 0 in Jκ,ε and (A.11) yields

R2 ≤ −λ(λ−N)δ(p − 1)rλ−2uβε
(

g2ε + ε2
)(p−2)/2

< 0 in Jκ,ε (A.15)

in view of λ > N and p ∈ (1, 2]. We then infer from (A.12), (A.13), and (A.14) that, in
Jκ,ε,

R1,ε ≤ −2(λ−N + 1)δrλ−1uβε b
′
ε(g

2
ε)gε ≤ 0 (A.16)

and

R3,ε ≤ βδ
[

2(λ−N + 1)δ(p−1−q)/(p−1) (‖u0‖∞ + εγ)(p−1−q)/(p−q)

+(1− β)δ(p−q)/(p−1)R
(p−q)/(p−1−q)
0 − (1− q)

]

rλuβ−1
ε bε(g

2
ε )

≤ −
βδ(1− q)

2
rλuβ−1

ε bε(g
2
ε ) ≤ 0 , (A.17)

provided δ is chosen suitably small (depending on ‖u0‖∞ and R0) and independent of
ε ∈ (0, ε0) as ‖u0‖∞ + εγ ≤ ‖u0‖∞ + 1. Collecting (A.10), (A.15), (A.16), and (A.17), we
end up with

∂tJε − a1,ε(g
2
ε )∂

2
rJε +

(

N − 1

r
a1,ε(g

2
ε )− 2b′ε(g

2
ε )gε

)

∂rJε < 0 for (t, r) ∈ Jκ,ε , (A.18)
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this inequality being true only for κ ≥ RN−1
0 εp−1.

Next, introducing
Mε := sup

t∈[0,Te]
uε(t, R0) ,

we infer from the monotonicity of r 7→ uε(t, r) that

Jε(t, 0) = 0 , Jε(t, R0) ≤ δRλ
0M

β
ε , t ∈ [0, Te] . (A.19)

In addition, given r ∈ (0, R0),

Jε(0, r) ≤ rN−1aε(|∂ru0,ε(r)|
2)∂ru0,ε(r) + δrλuβ0,ε(r) + δRλ

0ε
γβ .

As ∂ru0,ε(r) ≤ 0, we obtain from (A.3) and (A.7) that

Jε(0, r) ≤ δsλε‖u0‖
β
∞ + δRλ

0ε
γβ , r ∈ (0, sε) , (A.20)

as well as

Jε(0, r) ≤ δRλ
0

(

mε +m1/4
ε

)β
+ δRλ

0ε
γβ, r ∈ (rε, R0) . (A.21)

For r ∈ [sε, rε], we now divide the analysis into two regions with respect to the magnitude
of |∂ru0,ε(r)|. Either |∂ru0,ε(r)| ≤ ε and we deduce from (A.9) that

u0,ε(r)
1/(p−q) ≤

2ε

δ0
r−1/(p−q−1) .

Thus, taking also into account that ∂ru0,ε(r) ≤ 0 for any r ≥ 0, we realize that

Jε(0, r) ≤ δrλ(2ε)p−1δ1−p
0 r−(p−1)/(p−1−q) + δRλ

0ε
γβ

≤ δδ1−p
0 RN−1

0 (2ε)p−1 + δRλ
0ε

γβ .
(A.22)

Or |∂ru0,ε(r)| > ε which implies that

aε(|∂ru0,ε(r)|
2) ≥ 2(p−2)/2|∂ru0,ε(r)|

p−2 .

Therefore, using again (A.9),

Jε(0, r) ≤ δrλu0,ε(r)
β − 2(p−2)/2rN−1|∂ru0,ε(r)|

p−1 + δRλ
0ε

γβ

≤
(

δ − 2−p/2δp−1
0

)

rλu0,ε(r)
β + δRλ

0ε
γβ

≤ δRλ
0ε

γβ ,

(A.23)

provided δ < 2−p/2δp−1
0 . In view of (A.8) and (A.20)-(A.23) we have thus shown that, if δ

is sufficiently small,

Jε(0, r) ≤ δδ1−p
0 RN−1

0 (2ε)p−1 + δ‖u0‖
β
∞sλε + δRλ

0

(

(2mε)
β/4 + εγβ

)

, r ∈ (0, R0) .

Consequently, if δ is sufficiently small and

κ = κε := δδ1−p
0 RN−1

0 (2ε)p−1 + δ‖u0‖
β
∞sλε + δRλ

0

(

(2mε)
β/4 + εγβ

)

+RN−1
0 εp−1 + δRλ

0M
β
ε ,
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then the parabolic boundary {0}× (0, R0) and [0, Te)×{0, R0} of (0, Te)× (0, R0) contains
no point in Jκε,ε. Recalling (A.18) we may then argue as in the proof of Lemma 8.2 to
conclude that

Jε ≤ κε in (0, Te)× (0, R0) . (A.24)

To complete the proof, we observe that Mε → 0 as ε → 0 due to the uniform convergence
(A.4) and the vanishing of u on (0, Te) × ∂B(0, R0). Combining this fact with (A.7) and
(A.8) yields

lim
ε→0

κε = 0 ,

and we may let ε → 0 in (A.24) and use (A.4) and (A.7) to obtain the expected result.

A.2 Proof of (5.4) for p = 2.

Finally, we prove the gradient estimate (5.4) for p = 2.

Proposition A.1. Consider an initial condition u0 satisfying (1.3) and denote the cor-
responding solution to (1.1)-(1.2) by u. Assume further that p = 2 and q ∈ (0, 1). Then
there is C1 > 0 depending only on q such that

∣

∣

∣
∇u(1−q)/(2−q)(t, x)

∣

∣

∣
≤ C1

(

1 + ‖u0‖
(1−q)/(2−q)
∞ t−1/2

)

, (A.25)

for (t, x) ∈ (0,∞) ×R
N .

Proof. We fix ε ∈ (0, 1/2) and denote the classical solution to (A.2) by ũε. Observe that
aε ≡ 1 due to p = 2. In view of (A.3), the comparison principle implies

εγ ≤ ũε(t, x) ≤ ‖u0‖∞ + εγ , (t, x) ∈ [0,∞) × R
N . (A.26)

We further set

f(ξ) :=
1− q

2− q
ξ(2−q)/(1−q), ξ ≥ 0, vε := f−1(ũε), wε := |∇vε|

2,

and note that f ∈ C2([0,∞)) ∩ C∞((0,∞)) is strictly increasing. Hence, according to [5,
formula (10)], we have

Pεwε ≤ 2

(

f ′′

f ′

)′

(vε)w
2
ε − 2

(

f ′′

(f ′)2

)

(vε)Θε

(

(f ′)2(vε)wε

)

wε (A.27)

in (0,∞)× R
N , where

Pεwε := ∂twε −∆wε + 2

(

f ′(vε)b
′
ε

(

(f ′)2(vε)wε

)

−

(

f ′′

f ′

)

(vε)

)

∇vε · ∇wε ,

Θε(ξ) := 2ξb′ε(ξ)− bε(ξ) + εq , ξ ≥ 0 .

Since q ∈ (0, 1), we have

Θε(ξ) = qξ(ξ + ε2)(q−2)/2 − (ξ + ε2)q/2 + εq

= −(1− q)(ξ + ε2)q/2 − qε2(ξ + ε2)(q−2)/2 + εq

≥ −(1− q)(ξ + ε2)q/2 + (1− q)εq

≥ −(1− q)ξq/2 , ξ ≥ 0 .
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Hence, (A.27), the choice of f , the nonnegativity of wε, and Young’s inequality imply

Pεwε ≤ −
2

(1− q)v2ε
w2
ε + 2 ·

1

1− q
v(q−2)/(1−q)
ε · (1− q)

(

v2/(1−q)
ε wε

)q/2
wε

≤ −
2

(1− q)v2ε
w2
ε +

2

(1− q)v2ε
w1+q/2
ε

≤
2

(1− q)v2ε

(

−w2
ε +

2 + q

4
w2
ε +

2− q

4

)

= −
2− q

2(1− q)v2ε

(

w2
ε − 1

)

.

(A.28)

Considering next

W (t) := 1 +
a

t
, t > 0, with a := 2

(

1− q

2− q

)q/(2−q)

(‖u0‖∞ + 1)2(1−q)/(2−q),

noticing that (A.26) implies

vε =

(

2− q

1− q
ũε

)(1−q)/(2−q)

≤

(

2− q

1− q
(‖u0‖∞ + 1)

)(1−q)/(2−q)

,

and using the fact that a > 0, we obtain

PεW +
2− q

2(1− q)v2ε

(

W 2 − 1
)

≥ −
a

t2
+

2− q

2(1 − q)v2ε
·
a2

t2

≥
a

t2

[

−1 +
a

2

(

2− q

1− q

)q/(2−q)

(‖u0‖∞ + 1)−2(1−q)/(2−q)

]

≥ 0

for any t > 0. Since wε(0, x) < W (0) = ∞ for x ∈ R
N , we deduce from (A.28) and the

comparison principle that

(

2− q

1− q

)(1−q)/(2−q) ∣
∣

∣
∇ũ(1−q)/(2−q)

ε (t, x)
∣

∣

∣
= |∇vε(t, x)| = w1/2

ε (t, x) ≤
(

1 +
a

t

)1/2

in (0,∞)× R
N . Letting ε ց 0 and recalling (A.4), we end up with (A.25).
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