
HAL Id: hal-01208107
https://hal.science/hal-01208107v1

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determination of the regulated genes in microarray
experiments using local FDR

Julie Aubert, Avner Bar-Hen, Jean-Jacques Daudin, Stephane Robin

To cite this version:
Julie Aubert, Avner Bar-Hen, Jean-Jacques Daudin, Stephane Robin. Determination of the regulated
genes in microarray experiments using local FDR. BMC Bioinformatics, 2004, 5 (125), �10.1186/1471-
2105-5-125�. �hal-01208107�

https://hal.science/hal-01208107v1
https://hal.archives-ouvertes.fr


BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Determination of the differentially expressed genes in microarray 
experiments using local FDR
J Aubert, A Bar-Hen, J-J Daudin* and S Robin

Address: UMR INAPG/INRA/ENGREF 518, 16, rue C. Bernard, 75231 Paris Cedex 05, France

Email: J Aubert - aubert@inapg.fr; A Bar-Hen - avner@inapg.fr; J-J Daudin* - daudin@inapg.fr; S Robin - robin@inapg.fr

* Corresponding author    

Abstract
Background: Thousands of genes in a genomewide data set are tested against some null
hypothesis, for detecting differentially expressed genes in microarray experiments. The expected
proportion of false positive genes in a set of genes, called the False Discovery Rate (FDR), has been
proposed to measure the statistical significance of this set. Various procedures exist for controlling
the FDR. However the threshold (generally 5%) is arbitrary and a specific measure associated with
each gene would be worthwhile.

Results: Using process intensity estimation methods, we define and give estimates of the local
FDR, which may be considered as the probability for a gene to be a false positive. After a global
assessment rule controlling the false positive error, the local FDR is a valuable guideline for deciding
wether a gene is differentially expressed. The interest of the method is illustrated on three well
known data sets. A R routine for computing local FDR estimates from p-values is available at http:/
/www.inapg.fr/ens_rech/mathinfo/recherche/mathematique/outil.html.

Conclusions: The local FDR associated with each gene measures the probability that it is a false
positive. It gives the opportunity to compute the FDR of any given group of clones (of the same
gene) or genes pertaining to the same regulation network or the same chromosomic region.

Background
Microarrays are part of a new class of biotechnologies that
allow the monitoring of the expression level of thousands
of genes simultaneously. Among the applications of
microarrays, an important task is the identification of dif-
ferentially expressed genes, i.e genes whose expressions
are associated with the status of the patient (treatment/
control for example).

The biological question of the identification of differen-
tially expressed genes can be restated as a one (for paired
data) or two-sample (for unpaired data) hypothesis test-
ing procedure: is the gene differentially expressed between

the two situations? However, when thousands of genes in
a microarray data set are evaluated simultaneously by fold
changes or significance tests approach, multiple testing
problems immediately arise and lead to many false posi-
tive genes. In this 'one-by-one gene' approach the proba-
bility of detecting false positives rises sharply.

The False Discovery Rate (FDR), is defined as the expected
fraction of false rejections among those hypotheses
rejected. In their seminal paper Benjamini & Hochberg [1]
provided a distribution free procedure (BH) for choosing
a threshold on p-values that guarantees that the FDR is less
than a target level α. The same paper demonstrated that
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the BH procedure is more powerful than the Bonferroni
method that controls the familywise error rate.

The FDR gives an idea of the expected number of false pos-
itive hypotheses that a practitioner can expect if the exper-
iment is done an infinite number of time. As usual with
expectation, it gives very little information about the
number of false discovery hypotheses in a given
experiment.

Motivation
The value of 1, 5 or 10% for the FDR, which determines
the threshold t, is arbitrary. Storey and Tibshirani [2]
stressed the importance of assessing to each feature its
own measure of significance. They proposed to use the q-
value,

where Pi is the p-value of the ordered gene i, Ri is the total
number of rejected genes whose p-values are less than the

threshold t = Pi and  is an estimate of the total number
of non differentially expressed genes, m0.

The q-value is appealing because it gives a measure of sig-
nificance that can be attached to each gene, but it must be
stressed that it is not an estimate of the probability for the
gene to be a false positive. The q-value is generally lower
than the latter because it is computed using all the genes
that are more significant than gene i. Obviously a gene
whose p-value is near to the threshold t does not have the
same probability to be differentially expressed than a gene
whose p-value is close to zero. Therefore the q-value gives
a too optimistic view of the probability for the gene to be
a false positive.

Therefore it is interesting to obtain an estimate of the FDR
attached to each gene, called local FDR, from an inferen-
tial point of view and without any assumption about the
distribution of the p-values under H1.

Results
Let

H0(i) = {gene i is not differentially expressed}.

Let the local FDR be the probability that a given gene is
not differentially expressed. More specifically, FDR(i) is
the probability that a gene, whose p-value is Pi, is not dif-
ferentially expressed, taking into account the whole set of
tests. A raw local FDR estimate is defined in a first step. In
a second step the local FDR estimate is defined as a
smoothed value based on the raw values.

Let P1 < … <Pm denote the ordered p-values for testing
H0(i). The raw local FDR estimate for gene i is:

where

where λ is a tuning parameter and W(λ) = #{i, Pi > λ}, see
Storey [3].

Assume that the p-values for the non-differentially
expressed genes are independent. The raw local FDR esti-
mate has the following properties:

• Under H0(i) and H0(i - 1) and if E( ) = m0, (i, λ)
is unbiased with mean 1.

• Let (i, m0) = m0(Pi - Pi-1). Under H0(i) and H0(i - 1)

and if m0 is known, V( (i, m0)) = /[(m0 + 1)2(m0 +
2)] ≈ 1, for m0 large enough. This value is a lower bound

for V( (i, λ)) when m0 is unknown.

• The variance of the raw local FDR under H1 is generally
much smaller than under H0.

•  where qj is the q-value of gene j.

The q-value may thus be viewed as the mean of the local
FDR of the genes with p-values lower than Pj.

(i, λ) is generally a very variable estimator. Moreover
the local FDR should increase with the p-value. This is not
the case for the raw local FDR. Therefore it is necessary to
use a smoothed estimate.

The smoothed local FDR(i) is

where fi is a smoothing function of the (j, λ) for j = 1,
m, computed at position Pi.

(i, λ) gives a very valuable guideline for the choice
of a threshold. One may consider the curve of the local
FDR versus the index of the gene ordered by their p-values:
a good candidate for the threshold should be a point with
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a high second order derivative, which corresponds to an
abrupt change in the slope of the curve (see the examples
of the following section). The second order derivative of
the smoothed local FDR can be computed numerically
using finite differences.

As an interesting application of the local FDR, it is possi-
ble to compute the FDR associated with a class of genes or
clones by summing up the local FDR estimate of each
clone or gene: one may consider for example clones corre-
sponding to the same gene, genes known involved in a
given regulatory network, or gene from the same chromo-
somic region, and associate a FDR with the whole class.
These genes do not need to have consecutive p-values. The
following sections demonstrate how the local FDR can be
useful using the data of well known experiments.

Local FDR on Golub data set
Golub [4] were interested in identifying genes that are dif-
ferentially expressed in patients with two types of leuke-
mias (ALL, AML). Gene expression levels were measured
using Affymetrix high-density chips containing 6817
human genes. The learning set comprises 27 ALL cases
and 11 AML cases.

Data are available in the R multtest package. We used the
preprocessing proposed by the authors and the p-values
based on random permutations of the ALL/AML labels on
Welch t-statistics for each gene, Dudoit [5], on the 3051
remaining genes. m0 is estimated with bootstrap method
as suggested by Storey and Tibshirani and implemented in
the library GeneTS of software R.

Figure 1(a) presents the (i) for ordered genes and
1(b) presents the smooth curves obtained using lowess
with a span of 0.2 and an adaptative moving average
method.

We can see that there is an abrupt change of the smoothed
local FDR around gene number 500 which corresponds to
a threshold t = 0.15 for the p-value. This may be an indi-
cation about the threshold. The Figure 1(c) presents a
zoom of the Figure 1(b) for the first 600 p-values. We can
see in Figure 1(c) that if we select the 438 (14%) top
genes, we obtain a q-value equal to 0.0078 while the 438th

gene has a local FDR equal to 0.027. It must be noticed
that there is a big difference between the two measures of
FDR because the numerous regulated genes with very
small p-values have a great influence on the q-value, which
is not the case of the local FDR (see Figure 1(c)).

The p-values have been obtained using random permuta-
tions. Therefore the p-values are discrete with several
genes possessing the same p-value. Therefore the values of

(i, λ) may be equal to 0 because the difference
between two successive p-values is 0. The discrete structure
of the p-values implies a departure from the theoretical
continuous uniform distribution. This explains why the
moving average smoothing creates discrete jumps which
appear in Figure 1(c).

If the distribution of the statistics under H0 is correct, the
p-values are distributed as a uniform distribution over [0,
1]. The empirical distribution of the high observed p-val-

Plots of the local FDR estimate for Golub dataFigure 1
Plots of the local FDR estimate for Golub data x-axis: index of genes ordered along their p-values, y-axis: local FDR esti-
mate. (a): raw values, (b): smooth estimates: moving average (discrete jumps), lowess (smooth curve), (c): zoom on the first 
600 genes of (b): moving average (discrete jumps), lowess (upper smooth curve), q-value (lower thick smooth curve).
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ues (say above 0.5) is far from the uniform distribution.
There are several non-exclusive possibilities to explain
this: more than 50% of the genes are differentially
expressed, the gene results for non-differentially expressed
are correlated or there is a technical problem in the ran-
dom permutations of the Welch t-statistics.

Local FDR on Breast Cancer data set
Storey and Tibshirani [2], have analysed in detail data
from Hedenfalk [6] on 15 microarrays on breast cancer.
Using the same p-values, we have computed local FDR
estimates. The three genes which have been analysed in
detail by Storey and Tibshirani [2] are presented in Table
1.

One can see that the smooth local FDR estimate is gener-
ally greater than the q-value and gives a better idea of the
probability that a gene is a false positive. For example, at
the level of 5%, CTGF will be considered as differentially
expressed on the basis of the q-value while it will be con-

sidered as non differentially expressed using the local
FDR.

Figure 2(a) presents the (i) for ordered genes and
2(b) presents the smooth curves obtained using lowess
with a span of 0.2 and moving average methods. The two
smoothing methods give similar results.

Setting λ = 0.5, Storey and Tibshirani [2] estimate that
67% of the 3170 genes in the data are not differentially
expressed. The asymptote near 1 of the smooth curve sup-
ports this estimation.

Local FDR on ApoAi data
The goal of the study is to identify genes with altered
expression in the livers of two lines of mice with very low
HDL cholesterol levels compared to inbred control mice.
The mouse model is the apolipoprotein AI (ApoAI)
knock-out mice. ApoAI is a gene known to play a pivotal
role in HDL metabolism. The statistical analysis is

Table 1: p-value, q-value and local FDR estimates for three genes in Hedenfalk data.

gene p-value rank q-value raw local FDR smoothed local FDR

MSH2 0.00005 8 0.013 0.013 0.010
PDCD5 0.00048 47 0.022 0.013 0.033
CTGF 0.0036 159 0.049 0.176 0.098

Plots of the local FDR estimate for Hedenfalk dataFigure 2
Plots of the local FDR estimate for Hedenfalk data x-axis: index of genes ordered along their p-values, y-axis: local FDR 
estimate. (a): raw values, (b): smooth estimates: moving average (discrete jumps), lowess (smooth curve), (c): zoom on the first 
200 genes of (b): raw values (discrete jumps), moving average and lowess (smooth curves), q-value (lower thick smooth curve).
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described in Dudoit [7]. Height clones are expected to be
differentially expressed between the control and the
knock-out mices because they are clones of the ApoAI
gene or of genes coregulated with ApoAI. The height
clones are actually the 8 top clones detected by the statis-
tical tests. However there are other following clones which
seem statistically significant if we consider the q-value. We
can see on the Figure 3(c) that the local FDR values are
much higher than the q-values.

Figure 3(a) presents the (i) for ordered clones and
Figure 3(b) presents the smooth curves obtained using
lowess with a span of 0.2 and moving average methods.
The two smoothing methods give different results at the
two ends of the [0, 1] interval. The moving average
method which uses a special adaptative algorithm for the
ends gives a better smoothing. This is particularly impor-
tant for the clones with a small p-value for which it is cru-
cial to obtain good estimates of the probability of being
false positives. The lowess smoothing does not work well
for the 50 first clones. In this particular case the default
smoothing parameter f = 0.2 is not well suited and should
be lower. However if it is chosen too low, the smoothing
will not fit well the rest of the curve.

There are two clones of the gene Apo-AI. If we want to esti-
mate the FDR of these two clones taken in a whole, we
compute the mean of the smoothed local FDR of the two
clones (the first and the height top clones) and obtain a
local FDR for the gene Apo-AI, which is equal to

. This example shows that it is

possible to estimate the local FDR of any group of clones.
This opportunity provided by the local FDR is certainly
one of its major advantage with many potential
applications.

Discussion
The curve of the smoothed local FDR is an efficient tool to
summarize the information about the number and the
statistical significance of differentially expressed genes,
and may also be used to give an indication about the
validity of the statistical assumptions. Moreover it is a
valuable tool to choose the threshold for separating the
differentially expressed genes from the non-differentially
expressed one: one can choose a value of t maximizing the
second derivative. Alternatively one can use a cost func-
tion and choose the threshold that minimizes the mean
cost for a given cost function: using cost of the experi-
ment, cost of false positive gene validation and the profit
of discovering a differentially expressed gene, it is direct to
compute the optimal strategy for choosing the threshold.

Note that a decision rule based on the local FDR would
lead to a different set of selected genes than the usual one
obtained by controlling the FDR. Consider the set of tests
for which the local FDR is below 0.05, say. This set is not
identical to the set identified by the standard criterion that
FDR < 0.05. The local FDR is higher than the q-value.
Therefore the first set is strictly included in the second

Plots of the local FDR estimate for Apo-AI dataFigure 3
Plots of the local FDR estimate for Apo-AI data x-axis: index of clones ordered along their p-values, y-axis: local FDR 
estimate. (a): raw values, (b): smooth estimates: moving average (small discrete jumps), lowess (smooth curve), (c): zoom on 
the 50 first genes of (b): raw values (discrete jumps), moving average (smooth curve) lowess (upper rectangular curve), q-value 
(lower thick smooth curve).
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one. The local FDR rule is therefore more conservative
than the usual FDR one.

Conclusions
The p-value gives the probability that a non differentially
expressed gene would be as or more extreme than the gene
under concern. The q-value indicates the estimated
proportion of genes as or more extreme than the gene
under concern that are a false positive. The local FDR gives
the estimated proportion of genes around the gene under
concern which are false positive. The latter may be used as
the probability that the gene under concern is a false pos-
itive, taking into account the multiplicity of the test. One
of the major interest of the local FDR is that it gives the
opportunity to compute the FDR of any given group of
clones (of the same gene) or genes pertaining to the same
regulatory network or the same chromosome.

Methods
Model
Basically, the various procedures proposed in the litera-
ture aim to test the null hypothesis

H0(i) = {gene i is not differentially expressed}.

Let consider a particular experiment. We observed the dif-
ferential expression of the genes and compute the associ-
ated ordered p-values Pi. In the following we will use the
classical property: the p-values corresponding to non dif-
ferentially expressed genes are uniformly distributed over
[0, 1]. Furthermore, we will assume, as often, that these p-
values are independent. However, the independence of
the p-values of differentially expressed genes is not
required. Consider a multiple testing situation in which m
tests are being performed. Let m0 be the number of non
differentially expressed genes. Let I(t) be the set of the
genes having a p-value lower than t: I(t) = {i : Pi ≤ t} and
R(t) = #I(t), its cardinal. Let

V(t) = #[I(t) ∩ (i ∈ H0)]

and

S(t) = #[I(t) ∩ (i ∈ H1)].

Using a threshold t, the m genes can be classified accord-
ing to the following 2 × 2 table 2:

The Family Wise Error Rate (FWER) is defined to be

FWER = P [V(t) ≥ 1].

A classical way to control FWER is given by the Bonferroni
inequality. This quantity corresponds to the most direct

extension from a test hypothesis procedure but can be
very restrictive in a multiple testing procedure.

The status of the gene associated with the Pi is an unob-
served value. It is the same framework as point process
(see for example [8]). In fact we observe R(t) = V(t) + S(t)
the sum of two counting processes. The first one V(t) is a
counting process associated with non differentially
expressed gene. Since the p-values under H0 are uniformly
distributed, V(t) has a binomial distribution with param-
eter m0 and t. The intensity of V(t) is constant and propor-
tional to m0. S(t) is the counting process associated with
gene under H1 and very few can be said about its distribu-
tion. One may expect the intensity of S(t) to be decreasing
with t. The false discovery rate is defined as:

It corresponds to the expected proportion of rejections
that are incorrect.

The BH procedure works as follows. Let P1 < … <Pm denote
the ordered p-values. Calculate k = maxi{Pi ≤ αi/m}. The
procedure rejects all null hypotheses for which Pi ≤ Pk. If
the tests are independent, this procedure ensures that

Let FDR(t) be the FDR when rejecting all null hypotheses
with Pi ≤ t. Because the p-values of non-differentially
expressed genes are uniformly distributed over [0, 1], a
natural estimate of FDR(t) is

Therefore the problem is to estimate m0. Storey [3], pro-
posed to estimate m0 with

where λ is a tuning parameter. In particular the case λ = 0

leads to . This is the most conservative case and
corresponds to the BH procedure. Since the practical
implementation of Storey method gives reasonably good
results, we used it in the examples.

FDR is defined as the expectation of the ratio of two
counting processes V(t) and R(t): FDR(t) = E[V(t)/
max(R(t), 1)]. The expectation of V(t) is m0t and R(t) is
observed. Therefore, Storey [3] propose to use the follow-
ing estimate:
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The ratio of the expectations differs from the expectation

ratio but Storey [3] proved that E( (t, λ)) ≥ FDR(t)
using a convexity argument.

Definition and Estimation of the Local FDR
As stated before, V(t) and R(t) are counting (i.e. cumula-
tive) processes. It would be very interesting to estimate the
ratio of the local intensities of the two processes at point
t. The intensity of process V(t) is equal to m0 and thus is
known, provided that we know m0. The intensity of proc-
ess R(t) is unknown, but R(t) is observed. Therefore, using
point process methods it is possible to estimate its inten-
sity at each point t.

We first define the cumulative processes from t1 to t2:

Let 0 ≤ t1 <t2, I(t1, t2) = {i : t1 <Pi ≤ t2},

R(t1, t2) = #I(t1, t2),

V(t1, t2) = #[I(t1, t2) ∩ (i ∈ H0)]

and

S(t1, t2) = #[I(t1, t2) ∩ (i ∈ H1)].

FDR (t1, t2) is defined as the expected ratio of V (t1, t2) and
R(t1, t2):

It is a generalization of the usual FDR: if t1 = 0 and t2 = t
then FDR(t1, t2) = FDR(t). So, the natural estimate of
FDR(t1, t2) is:

The substitution of 0 by t1 does not change the proof, so
using the same convexity argument as Storey [3], we
obtain the following property:

E( (t1, t2, λ)) ≥ FDR (t1, t2).

The local FDR is the FDR(t1, t2) for small intervals [t1, t2].
If we want to estimate the local FDR around the p-value of
the gene i, the question can be restated as how to estimate
the ratio of the intensities of two processes around a given
point Pi.

The intensity of process R(t) has to be estimated at each
value of t. It is possible to consider small windows of size
h, or alternatively, to consider windows of different sizes
corresponding to a fixed count for R(t). We have chosen
the latter solution, for windows of variable size seem
more appealing in the particular context.

Let FDR(i) be the local FDR around Pi. To estimate FDR(i)
we need to define a neighborhood around Pi. Let Vi = V(Pi-

1, Pi). Remarking that R(Pi-1, Pi) = 1, we have FDR(i) =
E(Vi). Furthermore

E(Vi) = P(Vi = 1)

since Vi is a binary variable. Thus FDR(i) provides an unbi-
ased estimation of P(Vi = 1), the probability for gene i to
be a false positive.

The raw local FDR estimate for gene i is:

Assume that H0(i) and H0(i - 1) are true and E( ) = m0.
Therefore this estimate is unbiased with mean 1.

Table 2: Classification of m genes using threshold

H0 accepted H0 rejected Total

H0 true U(t) V(t) m0

H0 false T(t) S(t) m1

Total W(t) R(t) m
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Using definition (1), it is direct to obtain:

which equals the q-value of gene j. The q-value may thus
be viewed as the mean of the raw local FDR of the genes
with p-values lower than Pj.

Under the hypothesis H0, it is known that the differences
between successive ordered values of independent realiza-
tions of the uniform([0,1]) distribution have a Beta distri-
bution with parameters 1 and m0 (see Johnson [9] Chap.
26). Therefore the variance of the raw local FDR estimate
for non-differentially expressed genes when m0 is known

is equal to /[(m0 + 1)2 (m0 + 2)] ≈ 1, for m0 large
enough.

The variance of estimates (1) under H1 is generally much
smaller than under H0 (see Figures 1(a), 2(a) and 3(a) for
an illustration). However, one may see on these Figures

that (i, λ) is a very variable estimator.

This fact is well known in point process literature, [8].
Moreover, the interval ]Pi-1, Pi[ is not symmetric. If we
consider the neighborhood interval around Pi defined by
t1 = (Pi-1 + Pi)/2, t2 = (Pi+1 + Pi)/2 then we obtain another
estimate of the local FDR:

Note that (2) is a moving average of order 2 of (1). It is
well known that estimates provided by moving average
(or kernel estimators) are more stable, see [8].

This smoothing is generally not enough to obtain usable
results and we can consider any kind of smoothing. We
propose to estimate FDR(i) by

where fi is a smoothing function of the (j, λ) for j = 1,
m, computed at position Pi.

The smoothing method must be suited to the properties
of the raw FDR:

• its variance is low for low p-values corresponding to
highly differentially expressed genes

• its variance is very high for p-values corresponding to
non differentially expressed genes

Therefore the window of smoothing should be short for
low p-values and large for p-values corresponding high p-
values. The lowess smoothing method has a fixed number
of neighbor points. Therefore its window size depends of
the density of points around the p-value under concern.
The density of points is higher for low p-values which in
turn implies a shorter window size, which is a good prop-
erty. However the adaptation of the window size is not
sufficient in some cases such as in the Apo-AI example.
Moreover the smoothed FDR should be an increasing
function of the p-values, a property which is not satisfied
by the lowess smoothing. Therefore we prefer to use an ad
hoc moving average smoothing using the following algo-

rithm for computing (i, λ): let 0 <t1 <t2 <t3 be three
pre-definite thresholds and m1 <m2 <m3 <m4 four pre-defi-
nite integers.

• if maxj≤i (j, λ) <t1 use a moving average of order
min(2i - 1, m1)

• if t1 < maxj≤i (j, λ) <t2 use a moving average of order
min(2i - 1, m2)

• if t2 < maxj≤i (j, λ) <t3 use a moving average of order
min(2i - 1, m3).

• if maxj≤i (j, λ) >t3 use a moving average of order
min(2i - 1, m4).

We have obtained good empirical results on many data
sets with t1 = 0.01, t2 = 0.05, t3 = 0.2, m1 = 3, m2 = 5, m3 =

15 and  with the con-

straint that (i, λ) is not decreasing. This adaptative
moving average method is quite empirical. This topic
deserve some more work to build a well assessed smooth-
ing method. This is one of our ongoing research project.
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