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EIGENVALUES OF THE SUB-LAPLACIAN AND

DEFORMATIONS OF CONTACT STRUCTURES ON A

COMPACT CR MANIFOLD

AMINE ARIBI, SORIN DRAGOMIR, AND AHMAD EL SOUFI

Abstract. Given a compact strictly pseudoconvex CR manifold M, we

study the differentiability of the eigenvalues of the sub-Laplacian∆b,θ as-

sociated with a compatible contact form (i.e. a pseudo-Hermitian struc-

ture) θ on M, under conformal deformations of θ. As a first application,

we show that the property of having only simple eigenvalues is generic

with respect to θ, i.e. the set of structures θ such that all the eigenvalues

of ∆b,θ are simple, is residual (and hence dense) in the set of all com-

patible positively oriented contact forms on M. In the last part of the

paper, we introduce a natural notion of critical pseudo-Hermitian struc-

ture of the functional θ 7→ λk(θ), where λk(θ) is the k-th eigenvalue of the

sub-Laplacian ∆b,θ, and obtain necessary and sufficient conditions for a

pseudo-Hermitian structure to be critical.

1. Introduction

Let M be a compact strictly pseudoconvex CR manifold of real dimension

2n + 1. A pseudo-Hermitian structure on M is a contact form θ ∈ Γ(T ∗M)

whose kernel coincides with the horizontal distribution of M. The strict

pseudoconvexity of M means that the Levi form associated to such a contact

form is either positive definite or negative definite. We denote byP+(M) the

set of all pseudo-Hermitian structures with positive definite Levi form on M.

To every pseudo-Hermitian structure θ ∈ P+(M) we associate its sub-

Laplacian ∆b,θ (or simply ∆b if there is no risk of confusion) which is a

sub-elliptic operator of order 1/2, and denote by

0 = λ0(θ) < λ1(θ) ≤ λ2(θ) ≤ · · · ≤ λk(θ) ≤ · · · → ∞

the nondecreasing sequence of eigenvalues of ∆b,θ.

Several works published in recent years are devoted to the study of the

sub-Laplacian and the investigation of its spectral properties, see for in-

stance [3, 5, 4, 6, 8, 9, 10, 14, 18, 19, 21, 25, 26, 27, 28, 30]. The aim of

most of them is to extend to the CR context some of the spectral geomet-

ric results established in the Riemannian setting for the Laplace-Beltrami

operator.

In our previous paper [5], we discussed the continuity of the eigenvalues

λk(θ), as functions on the set P+(M) that we have endowed with a natural
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metric topology. In the present paper, we start by studying the differentia-

bility of the spectrum of the sub-Laplacian ∆b,θ under one-parameter defor-

mations of the contact structure θ. We apply classical perturbation theory of

selfadjoint operators to get a differentiability result (Theorem 3.2). More-

over, we prove that if θ(t) ∈ P+(M) is an analytic deformation of a contact

structure θ, then the function t 7→ λk(θ(t)), which is not differentiable if λk(θ)

is not simple, admits left-sided and right-sided derivatives at t = 0, and re-

late these derivatives to the eigenvalues of an explicit symmetric operator

acting on the λk(θ)-eigenspace (Theorem 3.3).

In the second part of the paper we use these facts to show that the property

of having only simple eigenvalues is generic for the sub-Laplacians on a

given compact strictly pseudoconvex CR manifold M. Indeed, we prove

that the set of contact structures θ ∈ P+(M) such that all the eigenvalues

of ∆b,θ are simple, is a residual set in the complete metric space P+(M)

(see Theorem 4.1). Our proof relies on an eigenvalue splitting technique

(Proposition 4.1) used by many authors in the Riemannian setting (see [1,

7, 13]; see also [31] for a different approach).

The last section is devoted to the notion of critical pseudo-Hermitian

structure. Despite the lack of differentiability of the eigenvalues λk(θ) upon

analytic deformations θ(t) ∈ P+(M) of the pseudo-Hermitian structure,

a natural notion of criticality can be defined using the existence of left-

sided and right-sided derivatives of λk(θ(t)) at t = 0 (see Definition 5.1).

Since λk(θ) is not invariant under scaling of the pseudo-Hermitian struc-

ture, we restrict ourselves to the deformations that preserve the global vol-

ume vol(θ) =
∫

M
θ ∧ (dθ)n. We give necessary and sufficient conditions

for a pseudo-Hermitian structure to be a critical point of the functional

θ ∈ P+(M) 7→ λk(θ), under the volume-preserving constraint. In par-

ticular, we will see that the criticality condition is strongly related to the

existence of a finite family of λk(θ)-eigenfunctions v1, · · · , vd, satisfying

v2
1 + · · · + v2

d
= 1 (Corollary 5.1). This last condition is satisfied for in-

stance by the first positive eigenvalue of the standard CR sphere S2n+1 (see

[30, Proposition 4.4]).

2. Preliminaries

Let M be a compact connected orientable CR manifold of CR dimension

n (and real dimension 2n + 1). Such a manifold M is equipped with a pair

(H, J), where H is a sub-bundle of the tangent bundle T M of real rank 2n

(often called Levi distribution) and J is an integrable complex structure on

H which means that, ∀X, Y ∈ Γ(H),

[X, Y] − [JX, JY] ∈ Γ(H)

and

[JX, Y] + [X, JY] = J ([X, Y] − [JX, JY]) .
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Since M is orientable, there exists a nonzero 1-form θ ∈ Γ(T ∗M) whose ker-

nel coincides with H. Such a 1-form, called pseudo-Hermitian structure on

M, is of course not unique. Actually, the set of pseudo-Hermitian structures

on M consists in all the forms ±euθ, u ∈ C∞(M).

To each pseudo-Hermitian structure θ we associate its Levi form Gθ de-

fined on H by

Gθ(X, Y) = −dθ(JX, Y) = θ([JX, Y]).

The integrability of J implies that Gθ is symmetric and J-invariant. The

CR manifold M is said to be strictly pseudoconvex if the Levi form Gθ of a

pseudo-Hermitian structure θ is either positive definite or negative definite.

Of course, this condition does not depend on the choice of θ. In all the

sequel, we assume that M is strictly pseudoconvex and denote by P+(M)

the set of all pseudo-Hermitian structures with positive definite Levi form

on M. Every θ ∈ P+(M) is in fact a contact form which induces on M the

following volume form

ψθ =
1

2n n!
θ ∧ (dθ)n.

The associated divergence divθ is defined, for every smooth vector field Z

on M, by

LZψθ = divθ(Z) ψθ.

We denote by L2(M) the set of squared integrable functions on M with

respect to ψθ. A function u ∈ L2(M) is weakly differentiable (w.d.) along H

if there is Yu ∈ Γ(H) such that |Yu|Gθ
= Gθ(Yu, Yu)

1
2 ∈ L1

loc
(M) and

∫

M

Gθ(Yu, X) ψθ = −

∫

M

u divθ(X) ψθ

for every X ∈ Γ∞(H). Such Yu is unique up to a set of measure zero and is

denoted by Yu = ∇
Hu and called weak horizontal gradient of u. It is easy to

check that if u is differentiable, then ∀X ∈ Γ∞(H), du(X) = Gθ(X,∇
Hu). Let

D(∇H) =
{

u ∈ L2(M) : u is (w.d.) along H and ∇Hu ∈ L2(H)
}

,

where L2(H) stands for the set of squared integrable sections of H with

respect to the inner product Gθ and the volume element ψθ. Then we may

regard the weak horizontal gradient as a linear operator

∇H : D(∇H) ⊂ L2(M)→ L2(H).

As C∞(M) ⊂ D(∇H) it follows that D(∇H) is a dense subspace of L2(M).

Let

(∇H)∗ : D[(∇H)∗] ⊂ L2(H) → L2(M)

be the adjoint of ∇H. Then Γ∞(H) ⊂ D[(∇H)∗] and, for all X ∈ Γ∞(H), one

has

(∇H)∗X = −divθ(X).
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In particular, (∇H)∗ is densely defined in L2(H). The sub-Laplacian ∆b, or

∆b,θ if it is necessary to avoid confusion, is given by

D(∆b) =
{

u ∈ D(∇H) : ∇Hu ∈ D[(∇H)∗]
}

,

∆b = (∇H)∗ ◦ ∇H
= −divθ ◦ ∇

H.

Note that

(∆bu, u)L2(M) = ‖∇
Hu‖2

L2(H)
≥ 0

for any u ∈ D(∆b). Moreover, the sub-Laplacian is symmetric, i.e.

(1) D(∆b) is dense in L2(M).

(2) D(∆b) ⊂ D(∆∗
b
) and (∆bu, v)L2(M) = (u,∆bv)L2(M) ∀ u, v ∈ D(∆b).

The operator ∆b is also known to be subelliptic of order ε = 1/2. Indeed,

one has (cf. [15, Theorem 2.1]) for any u ∈ C∞(M),

‖u‖2
H1/2(M)

≤ C
(

(∆bu, u)L2(M) + ‖u‖
2
L2(M)

)

, (2.1)

for some constant C independent of u. It is worth noticing that ∆b can be

seen as the real part of the Kohn Laplacian acting on functions �b = ∂̄
∗
b
∂̄b,

where ∂̄bu is the projection of du onto T ∗
(0,1)

M. Indeed, we have (cf. [24,

Theorem 2.3]) �b = ∆b+ i nT , where T is the unique vector field satisfying

T ⌋θ = 1 and T ⌋dθ = 0.

Lemma 2.1. The space H1/2(M) = W1/2, 2(M) admits a compact embedding

into L2(M).

The proof of this Lemma uses standard arguments (see [4]).

Lemma 2.2. The operator (∆b + I)−1 : D((∆b + I)−1) ⊂ L2(M)→ L2(M) is

compact.

Proof. Based on the estimate (2.1) one has Ker(∆b+I) = {0}. Consequently,

∆b + I : C∞(M)→ R(∆b + I) ⊂ C∞(M)

is invertible, where R(A) denotes the range of the operator A. Therefore, we

may consider the inverse

(∆b + I)−1 : D
(

(∆b + I)−1
)

= R(∆b + I) ⊂ L2(M)→ H1/2(M).

Let v ∈ D
(

(∆b + I)−1
)

and let us apply (2.1) to the function u = (∆b+I)−1(v)

followed by the Cauchy-Schwartz inequality

‖(∆b + I)−1v‖2
H1/2(M)

≤ C
(

v , (∆b + I)−1v
)

L2(M)
≤ C‖v‖L2(M) ‖(∆b + I)−1v‖L2(M) .

Moreover, there is a continuous embedding H1/2(M)→ L2(M) so that

‖u‖L2(M) ≤ C′‖u‖H1/2(M) , u ∈ H1/2(M),

for some constant C′ > 0 independent of u. Thus,

‖(∆b + I)−1v‖2
H1/2(M)

≤ C′′‖v‖L2(M)‖(∆b + I)−1v‖H1/2(M)

(with C′′ = CC′) or

‖(∆b + I)−1v‖H1/2(M) ≤ C′′‖v‖L2(M)
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which proves the continuity of the operator (∆b + I)−1. Finally, by Lemma

2.1, the embedding H1/2(M) → L2(M) is compact. Hence, (∆b + I)−1 :

D((∆b + I)−1) ⊂ L2(M) → L2(M) is compact (as the composition of a

compact operator with a continuous operator). �

Corollary 2.1. The spectrum σ(∆b) of the sub-Laplacian is discrete and

consists of eigenvalues of finite multiplicity.

3. Differentiability of eigenvalues with respect to 1-parameter

deformations of the pseudo-Hermitian structure

We start by recalling the needed notions of functional analysis, cf. e.g. A.

Kriegl & P.W. Michor [22, 23] and T. Kato [20]. Let H be a Hilbert space

and {A(t)}t∈R a family of linear operators A(t) : D(A(t)) ⊂ H → H . We say

that A(t) is a real analytic (respectively C∞, or Ck,α) family of selfadjoint

operators if there is a dense subspace V ⊂ H such that

i)D(A(t)) = V and A(t) is selfadjoint for any t ∈ R and

ii) the function t ∈ R 7−→ (A(t)u, v)H ∈ C is real analytic (respectively C∞,

or Ck,α) for every u ∈ V and v ∈ H .

If this is the case then (by a result in [22]) the (vector valued) function

t ∈ R 7−→ A(t)u ∈ H ,

is of the same class for every u ∈ V .

A sequence {λν}ν≥1 of scalar functions λν : R → C is said to parame-

trize the eigenvalues of {A(t)}t∈R if for any t ∈ R and any λ ∈ σ(A(t)), the

cardinality of the set {ν ≥ 1 : λν(t) = λ} equals the multiplicity of λ.

We shall make use of the following result, which is referred hereafter as

the Rellich-Alekseevsky-Kriegl-Losik-Michor theorem (cf. F. Rellich [29]

for statement (i), D. Alekseevski & A. Kriegl & M. Losik & P.W. Michor

[2] for statement (ii), and A. Kriegl & P.W. Michor [23] for statements (iii)-

(iv)).

Theorem 3.1. Let t ∈ R 7→ A(t) be a curve of unbounded selfadjoint oper-

ators in a Hilbert spaceH , with common domain of definition and compact

resolvent. Then

(i) If A(t) is real analytic in t ∈ R, then the eigenvalues and the eigenvec-

tors of A(t) may be parameterized real analytically in t.

(ii) If A(t) is C∞ in t ∈ R and if no two unequal continuously parameter-

ized eigenvalues meet of infinite order at any t ∈ R, then the eigenvalues and

eigenvectors can be parameterized C∞ in t on the whole parameter domain.

(iii) If A(t) is C∞ in t ∈ R, then the eigenvalues of A(t) may be parame-

terized C2 in t.

(iv) If A(t) is Ck,α in t ∈ R for some α > 0, then the eigenvalues of A(t)

may be parameterized C1 in t.

Among the applications to statements (i) and (iii) in Theorem 3.1 as pro-

posed in [23], one may consider a compact manifold M and a smooth curve
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t 7→ gt of smooth Riemannian metrics on M. If moreover t 7→ ∆gt
is the cor-

responding smooth curve of Laplace-Beltrami operators on L2(M) then (by

(iii) in Theorem 3.1) the eigenvalues may be parameterized C2 in t. This was

exploited by A. El Soufi & S. Ilias, [16]-[17], who discussed an array of re-

lated questions such as critical points of the functional g ∈ M(M) 7→ λk(g),

or suitable deformations of g ∈ M(M) producing quantitative variations of

λk. HereM(M) is the set of all Riemannian metrics on M.

Let M be a compact strictly pseudoconvex CR manifold and let θ be a

pseudo-Hermitian structure on M with positive definite Levi form. Let

θ(t) = eut θ, t ∈ R,

be an analytic deformation of θ, i.e. {ut}t∈R is a family of real valued C∞

functions which is analytic with respect to t and u0 = 0. Here C∞(M,R)

is thought of as organized as a real Fréchet space and the vector valued

function

u : R→ C∞(M,R), u(t) = ut , t ∈ R,

is assumed to be of class Cω. For a theory of power series in Fréchet spaces

we shall use Appendix B in [11].

Let ∆b be the sub-Laplacian on M associated with θ and denote for each

t, by ∆b,t the sub-Laplacian associated with θ(t).

Theorem 3.2. Let θ(t) = eut θ be an analytic deformation of θ and let λ ∈

σ (∆b) be an eigenvalue of multiplicity m. There exist a positive real number

ε, a family of m real analytic functions {Λi}1≤i≤m ⊂ Cω((−ε, ε),R), and m

families of C∞ functions {vi(t)}|t|<ε ∈ C∞(M,R), 1 ≤ i ≤ m, such that each

vi : (−ε, ε)→ C∞(M,R) is real analytic in t and

(1) Λi(0) = λ, 1 ≤ i ≤ m,

(2) ∆b,tvi(t) = Λi(t) vi(t), 1 ≤ i ≤ m, t ∈ (−ε, ε)

(3) {vi(t) : 1 ≤ i ≤ m} is orthonormal in L2(M, ψθ(t)), t ∈ (−ε, ε).

Proof. The proof relies on the Rellich-Alekseevsky-Kriegl-Losik-Michor

theorem (cf. Theorem 3.1 above). To this end we introduce the family of

operators Ut : L2(M, ψθ)→ L2(M, ψθ(t)),

Utv = e−(n+1)ut/2 v, v ∈ L2(M, ψθ).

The family {Ut}t∈R is a real analytic family of unitary operators , i.e.

‖Ut v‖L2(M,ψθ(t)) = ‖v‖L2(M,ψθ),

and U−1
t v = e(n+1)ut/2 v. Moreover, let A(t) be the family of operators

A(t) = U−1
t ◦ ∆b,t ◦ Ut : L2(M, ψθ)→ L2(M, ψθ).

Then

∆b,tv(t) = λ v(t)⇐⇒ A(t)
(

U−1
t v(t)

)

= λU−1
t v(t).

In particular, the spectrum of ∆b,t coincides with that of A(t). Let us show

that the family {A(t)}t∈R is analytic in t. Indeed, the dense subspaceD(∆b) ⊂

L2(M, ψθ) is the domain of A(t) and, as we shall check in a moment, A(t) ⊂
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A(t)∗. Indeed, the sub-Laplacians ∆b and ∆b,t = ∆b,θ(t) are related by (see [8,

Proposition 5] or [30, Lemma 1.8])

∆b,tv = e−ut

(

∆bv − nGθ(∇
Hut,∇

Hv)
)

, v ∈ C2(M). (3.1)

Then, for each v ∈ D(∆b),

A(t)v = (U−1
t ◦ ∆b,t ◦ Ut)v = · · · =

= e−ut

[

∆bv +Gθ(∇
Hut,∇

Hv) −
n + 1

2

(

∆but −
(n − 1)

2
|∇Hut|

2

)

v

]

.

Finally, the family {A(t)}t∈R is an analytic curve of self-adjoint operators

in L2(M, ψθ) with common domain of definition and with compact resol-

vent. Therefore, we can apply Theorem 3.1 (i) to deduce that the eigenval-

ues and the eigenvectors of A(t) depend analytically in t, i.e., there exists m

analytic families of vectors vi(t) and m real analytic valued functions Λi(t)

in t satisfying (1), (2) and (3) of Theorem 3.2. �

For any θ ∈ P+(M), the set of all pseudo-Hermitian structures with posi-

tive definite Levi form on M, let

0 = λ0(θ) < λ1(θ) ≤ λ2(θ) ≤ · · · ≤ λk(θ) ≤ · · ·

be the spectrum of the sub-Laplacian ∆b = ∆b,θ of (M, θ). For every k ∈ N,

let

Ek(θ) = Ker (∆b − λk(θ)I)

be the eigenspace of ∆b corresponding to the eigenvalue λk(θ). Also let

Πk : L2(M, ψθ) → Ek(θ) be the orthogonal projection on Ek(θ). Let us

fix k ∈ N and consider the functional θ ∈ P+(M) 7−→ λk(θ) ∈ R. This

functional is continuous (with respect to an appropriate metric topology on

P+(M), as shown in [5]) but not differentiable in general. However, one has

the following

Theorem 3.3. Let M be a compact strictly pseudoconvex CR manifold and

let θ ∈ P+(M). Let θ(t) = eut θ, t ∈ (−ε, ε), be an analytic deformation of θ.

Then, for every positive k ∈ N,

(1) The function t ∈ (−ε, ε) 7−→ λk(θ(t)) admits left and right derivatives

at t = 0.

(2) The derivatives d
dt
λk(θ(t))

∣

∣

∣

t=0−
and d

dt
λk(θ(t))

∣

∣

∣

t=0+
are eigenvalues of the

operator Πk ◦ ∆
′
b

: Ek(θ)→ Ek(θ) where, ∀v ∈ C∞(M),

∆
′
bv =

d

dt
∆b,tv

∣

∣

∣

t=0
= − f∆bv − n Gθ

(

∇H f ,∇Hv
)

with f = d
dt

ut

∣

∣

∣

t=0
.

(3) If λk(θ) > λk−1(θ), then d
dt
λk(θ(t))

∣

∣

∣

t=0−
and d

dt
λk(θ(t))

∣

∣

∣

t=0+
are the great-

est and the least eigenvalues of Πk ◦ ∆
′
b

on Ek(θ), respectively.

(4) If λk(θ) < λk+1(θ) then d
dt
λk(θ(t))

∣

∣

∣

t=0−
and d

dt
λk(θ(t))

∣

∣

∣

t=0+
∈ R are the

smallest and the greatest eigenvalue of Πk ◦ ∆
′
b

on Ek(θ), respectively.
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Proof. Let us denote by m the dimension of Ek(θ). We apply Theorem

3.2 with λ = λk(θ) to derive the existence of m real analytic functions

{Λi}1≤i≤m ⊂ Cω((−ε, ε),R) and m analytic families of functions {vi(t)}|t|<ε ∈

C∞(M,R), 1 ≤ i ≤ m, satisfying (1)-(3) of Theorem 3.2. Since t 7→ λk(θ(t))

and t 7→ Λi(t) are continuous and Λ1(0) = ... = Λm(0) = λk(θ), one deduces

that λk(θ(t)) ∈ {Λ1(t), · · · ,Λm(t)} for sufficiently small t. Since, moreover,

∀i ≤ m, t 7→ Λi(t) is analytic, there exist δ > 0 and two integers p, q ≤ m

such that

λk(θ(t)) =

{

Λp(t) for t ∈ (−δ, 0)

Λq(t) for t ∈ (0, δ).

Therefore, the function t 7−→ λk(θ(t)) admits left and right derivatives at

t = 0 with

d

dt
λk(θ(t))

∣

∣

∣

t=0−
= Λ

′
p(0) and

d

dt
λk(θ(t))

∣

∣

∣

t=0+
= Λ

′
q(0).

Now, one has for all i ≤ m and t ∈ (−δ, δ), ∆b,tvi(t) = Λi(t)vi(t). Differen-

tiating at t = 0, we get

∆
′
bvi + ∆bv′i = Λ

′
i(0)vi + λk(θ)v

′
i (3.2)

where vi = vi(0) and v′i =
d
dt

vi(t)
∣

∣

∣

t=0
. Multiplication by v j and integration by

parts yield
∫

M

v j∆
′
bviψθ =

{

Λ
′
i(0) if j = i

0 otherwise.

Since {v1, · · · , vm} is an orthonormal basis of Ek(θ) with respect to the inner

product of L2(M, ψθ), we deduce that

(Πk ◦ ∆
′
b)vi = Λ

′
i(0)vi.

That is Λ′
1
(0), · · · ,Λ′m(0) are the eigenvalues of Πk ◦ ∆

′
b

: Ek(θ) → Ek(θ).

Differentiating the identity (3.1) at t = 0 we get

∆
′
bv = − f∆bv − nGθ

(

∇Hv,∇H f
)

.

Assume now λk(θ) > λk−1(θ). For any i ≤ m, one then has Λi(0) =

λk(θ) > λk−1(θ). By continuity, we necessarily have Λi(t) > λk−1(θ(t)) for

sufficiently small t. Hence, there exists η > 0 such that, ∀ |t| < η and ∀i ≤ m,

Λi(t) ≥ λk(θ(t)), which means that λk(θ(t)) = min {Λ1(t), · · · ,Λm(t)} . This

implies that
d

dt
λk(θ(t))

∣

∣

∣

t=0−
= max

{

Λ
′
1(0), · · · ,Λ′m(0)

}

and
d

dt
λk(θ(t))

∣

∣

∣

t=0+
= min

{

Λ
′
1(0), · · · ,Λ′m(0)

}

which proves (3).

Smilarily, if λk(θ) < λk+1(θ), one has, for sufficiently small t, Λi(t) ≤

λk(θ(t)) which means that λk(θ(t)) = max {Λ1(t), · · · ,Λm(t)} and, then,

d

dt
λk(θ(t))

∣

∣

∣

t=0+
= max

{

Λ
′
1(0), · · · ,Λ′m(0)

}
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and

d

dt
λk(θ(t))

∣

∣

∣

t=0−
= min

{

Λ
′
1(0), · · · ,Λ′m(0)

}

.

�

Corollary 3.1. Let M be a compact strictly pseudoconvex CR manifold and

let θ ∈ P+(M). Let θ(t) = eut θ, t ∈ (−ε, ε), be an analytic deformation of θ

and set f = d
dt

ut

∣

∣

∣

t=0
. For every positive integer k, let Q f ,k : Ek(θ) → R be

the quadratic form given by

Q f ,k(v) = −

∫

M

(

λk(θ)v
2
+

n

2
∆bv2

)

f ψθ.

(1) If Q f ,k is positive definite on Ek(θ), then there exists ε > 0 such that

λk(θ(−t)) < λk(θ) < λk(θ(t)) for all t ∈ (0, ε).

(2) Assume that λk(θ) > λk−1(θ). If Q f ,k takes negative values somewhere

in Ek(θ), then λk(θ(t)) < λk(θ) for all t ∈ (0, ε), for some ε > 0.

(3) Assume that λk(θ) < λk+1(θ). If Q f ,k takes positive values somewhere

in Ek(θ), then λk(θ(t)) > λk(θ) for all t ∈ (0, ε), for some ε > 0.

Proof. First, we have with the notations of Theorem 3.3, ∀v ∈ Ek(θ),

Q f ,k(v) =

∫

M

v∆′bv ψθ. (3.3)

Indeed, ∀v ∈ Ek(θ),

∫

M

v∆′bv ψθ = −

∫

M

v
(

f∆bv + nGθ(∇
Hv,∇H f )

)

ψθ

= −

∫

M

(

fλk(θ)v
2
+

n

2
Gθ(∇

Hv2,∇H f )

)

ψθ

= −

∫

M

(

λk(θ)v
2
+

n

2
∆bv2

)

f ψθ = Q f ,k(v).

Now, if Q f ,k is positive definite on Ek(θ), then, thanks to (3.3), all the

eigenvalues of the operator Πk ◦ ∆
′
b

: Ek(θ) → Ek(θ) are positive. Applying

Theorem 3.3 (2), it follows that both d
dt
λk(θ(t))

∣

∣

∣

t=0+
and d

dt
λk(θ(t))

∣

∣

∣

t=0−
are

positive and that there exists ε > 0 such that λk(θ(−t)) < λk(θ) < λk(θ(t)) for

all t ∈ (0, ε).

Assume that λk(θ) > λk−1(θ) and that there exists v ∈ Ek(θ) such that

Q f ,k(v) < 0. This implies that the operator Πk ◦ ∆
′
b

: Ek(θ) → Ek(θ) has at

least one negative eigenvalue. Applying Theorem 3.3 (3), we deduce that
d
dt
λk(θ(t))

∣

∣

∣

t=0+
is negative and that there exists ε > 0 such that λk(θ(t)) <

λk(θ) for all t ∈ (0, ε).

The last part of the corollary can be proved using similar arguments.

�
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4. Generic simplicity of sub-Laplacian eigenvalues

Let M be a compact stirctly pseudoconvex CR manifold and denote by

P+(M) the set of all pseudo-Hermitian structures with positive definite Levi

form on M. In [5], we defined a complete distance on P+(M) so that the

eigenvalues of the sub-Laplacian θ ∈ P+(M) 7→ λk(θ) are continuous. This

distance is defined as follows : We fix a form θ ∈ P+(M). Given θ1 = eu1θ

and θ2 = eu2θ in P+(M), we set

d(θ1, θ2) = dC∞(u1, u2) + ρ(Gθ1
,Gθ2

)

where dC∞ is the distance function associated with the canonical Frechet

structure of C∞(M) and

ρ(Gθ1
,Gθ2

) = inf{δ > 0 : e−δGθ1
(X, X) ≤ Gθ2

(X, X) ≤ eδGθ1
(X, X) , ∀X ∈ H}.

In [5], we proved that (P+(M), d) is a complete metric space and that if

ρ(Gθ1
,Gθ2

) < ε, then, ∀k ≥ 1,

e−ε ≤
λk(θ1)

λk(θ2)
≤ eε.

In the sequel, we denote byJ the set of all elements θ ∈ P+(M) such that

all the eigenvalues of the sub-Laplacian ∆b,θ have multiplicity one, that is,

J = {θ ∈ P+(M) : 0 < λ1(θ) < λ2(θ) < · · · < λk(θ) < · · · }

Our main aim in this section is to prove the following

Theorem 4.1. The set J is a residual set in (P+(M), d), i.e., a countable

intersection of open dense subsets. In particular,J is dense in (P+(M), d).

The proof of this theorem relies on the following proposition which is a

consequence of Theorem 3.3.

Proposition 4.1. Let M be a compact strictly pseudoconvex CR manifold

and let θ ∈ P+(M). Let λ ∈ σ
(

∆b,θ

)

be an eigenvalue of multiplicity m ≥ 2

and let k ∈ N be such that

λ = λk(θ) = λk+1(θ) = · · · = λk+m−1(θ).

There exist f ∈ C∞(M) and ε > 0 such that θ(t) = et f θ satisfies for all

t ∈ (0, ε),

λk (θ(t)) < λk+m−1 (θ(t)) .

Proof. Let E = Ek(θ) = Ek+m−1(θ) be the eigenspace of ∆b,θ corresponding

to the eigenvalue λ and let Π : L2(M) → E be the orthogonal projection on

E. For every f ∈ C∞(M), we denote by L f : E → E the operator defined by

L f v = Π ◦ ∆
′
bv = −Π

[

λ f v + nGθ

(

∇Hv,∇H f
)]

.

From the definition of the integers k and m, one has λk(θ) > λk−1(θ)

and λk+m−1(θ) < λk+m(θ). Therefore, Theorem 3.3 tells us that, for any

f ∈ C∞(M), d
dt
λk(e

t f θ)
∣

∣

∣

t=0+
and d

dt
λk+m−1(et f θ)

∣

∣

∣

t=0+
represent the smallest

and the largest eigenvalues of the operator L f : E → E, respectively.
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Therefore, it suffices to prove the existence of a function f ∈ C∞(M)

so that the operator L f has at least two distinct eigenvalues (i.e. L f is

not proportional to the identity of E). Indeed, in this case, we would

have d
dt
λk(e

t f θ)
∣

∣

∣

t=0+
< d

dt
λk+m−1(et f θ)

∣

∣

∣

t=0+
which implies the conclusion of

the proposition.

Thanks to (3.3), one has, ∀v, w ∈ E

(

L f v,w
)

L2(M)
= · · · = −

∫

M

(

n

2
∆b(vw) + λvw

)

f ψθ.

Let {u1, u2} ⊂ E be a pair of functions with ‖u1‖L2(M) = ‖u2‖L2(M) and u2
1
, u2

2

(recall that E is of dimension at least 2) and set v = u1 − u2 and w = u1 + u2

so that (v,w)L2(M) = 0. The function

f0 =
n

2
∆b(vw) + λvw =

n

2
∆b(u2

1 − u2
2) + λ(u2

1 − u2
2) (4.1)

is such that
(

L f0v,w
)

L2(M)
= −

∫

M

(

n

2
∆b(u2

1 − u2
2) + λ(u2

1 − u2
2)

)2

ψθ

which does not vanish since ∆b has no negative eigenvalues. Thus, L f0

cannot be proportional to the identity of E.

�

Proof of Theorem 4.1. For every positive integer k, let Jk be the subset of

P+(M) defined by

Jk = {θ ∈ P+(M) : 0 < λ1(θ) < λ2(θ) < · · · < λk(θ) } .

We have P+(M) = J1 ⊃ J2 ⊃ ... ⊃ Jk ⊃ ... and

J =

∞
⋂

k=1

Jk.

According to Baire’s category theorem, it suffices to prove that each Jk is

an open dense subset of P+(M).

The fact that Jk is open follows immediately from the continuity of the

eigenvalues θ ∈ P+(M) 7→ λi(θ), i ≤ k.

Let us prove that, for any k ≥ 1,Jk+1 is a dense subset ofJk. An obvious

recursion would then imply that each Jk is a dense subset of P+(M). So, let

θ ∈ Jk \ Jk+1 and let η be any positive real number. Thus, one has

λ1(θ) < λ2(θ) < · · · < λk−1(θ) < λk(θ) = λk+1(θ) = · · · = λk+m−1(θ) < λk+m(θ),

where m is the multiplicity of λk(θ). Using Proposition 4.1 and the continu-

ity of the eigenvalues, one can find f ∈ C∞(M) and ε > 0 such that the form

θ(t) = et f θ satisfies, for every t ∈ (0, ε),

λ1(θ(t)) < λ2(θ(t)) < · · · < λk−1(θ(t)) < λk(θ(t)) < λk+m−1(θ(t))

which means that θ(t) belongs to Jk and the multiplicity of λk(θ) is at most

m−1. Choosing t1 ∈ (0, ε) sufficiently small, one gets a form θ1 = θ(t1) ∈ Jk

such that the multiplicity of λk(θ1) is at most m − 1 and d(θ1, θ) < η/m.
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Repeating this argument at most m − 1 times, we prove the existence of a

1-form θ̂ ∈ Jk+1 such that d(θ̂, θ) < η.

�

5. Critical pseudo-Hermitian structures

The content of this section is patterned after the article [17] by Ilias and

the third author dealing with Laplacian eigenvalues in the Riemannian set-

ting. For the sake of completeness, we shall give self-contained proofs of

the results we obtain in the CR context.

Let M be a compact strictly pseudoconvex CR manifold. For every pos-

itive integer k we consider the map θ ∈ P+(M) 7→ λk(θ) ∈ R, where, as

before, P+(M) denotes the set of all pseudo-Hermitian structures with pos-

itive definite Levi form on M, and λk(θ) is the k-th eigenvalue of the sub-

Laplacian associated to θ. Since the eigenvalues are not invariant under

scaling, we restrict λk to the subset

P+,0(M) = {θ ∈ P+(M) : vol(θ) = 1}

where vol(θ) =
∫

M
ψθ is the volume of M with respect to ψθ.

Thanks to Theorem 3.3, one can introduce the following

Definition 5.1. A pseudo-Hermitian structure θ is said to be critical for the

functional λk restricted toP+,0(M) if, for any analytic deformation {θ(t) = eutθ} ⊂

P+,0(M) of θ, we have

d

dt
λk(θ(t))

∣

∣

∣

t=0−
×

d

dt
λk(θ(t))

∣

∣

∣

t=0+
≤ 0.

It is easy to see that

d

dt
λk(θ(t))

∣

∣

∣

t=0+
≤ 0 ≤

d

dt
λk(θ(t))

∣

∣

∣

t=0−
⇐⇒ λk(θ(t)) ≤ λk(θ) + o(t) as t→ 0

and

d

dt
λk(θ(t))

∣

∣

∣

t=0−
≤ 0 ≤

d

dt
λk(θ(t))

∣

∣

∣

t=0+
⇐⇒ λk(θ(t)) ≥ λk(θ) + o(t) as t→ 0.

Of course, if θ is a local maximizer or a local minimizer of λk, then θ is

critical in the sense of the previous definition. We set

A0(M, θ) =

{

f ∈ C∞(M) :

∫

M

f ψθ = 0

}

and recall the definition of the quadratic form Q f ,k : Ek(θ) → R associated

to a pair ( f , k) ∈ C∞(M) × N∗ (see Corollary 3.1):

Q f ,k(v) = −

∫

M

(

λk(θ)v
2
+

n

2
∆bv2

)

f ψθ.

Theorem 5.1. Let M be a compact strictly pseudoconvex CR manifold. Let

θ ∈ P+,0(M) be a pseudo-Hermitian structure and k ∈ N∗.
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1) If θ is a critical pseudo-Hermitian structure of the functional λk re-

stricted to P+,0(M), then, ∀ f ∈ A0(M, θ), the quadratic form Q f ,k is indefi-

nite on Ek(θ).

2) Assume that λk(θ) > λk−1(θ) or λk(θ) < λk+1(θ). The pseudo-Hermitian

structure θ is critical for the functional λk restricted to P+,0(M) if and only

if, ∀ f ∈ A0(M, θ), the quadratic form Q f ,k is indefinite on Ek(θ).

Proof. Let f ∈ A0(M, θ) and let θ(t) be the analytic deformation of θ given

by

θ(t) =

(

vol(θ)

vol(et f θ)

)
1

n+1

et f θ = eutθ, t ∈ R,

with ut = t f − 1
n+1

ln(vol(et f θ)). Since

ψet f θ = e(n+1)t fψθ,

it is easy to check that vol(θ(t)) = 1, that is θ(t) belongs toP+,0(M) for every

t ∈ R. One has

d

dt
vol(et f θ(t))

∣

∣

∣

t=0
=

d

dt

∫

M

e(n+1)t fψθ

∣

∣

∣

∣

t=0
= (n + 1)

∫

M

fψθ = 0.

Therefore,
d

dt
ut

∣

∣

∣

t=0
= · · · = f

and, then,

∆
′
bv =

d

dt
∆b,t

∣

∣

∣

t=0
= − f∆bv − nGθ(∇

Hv,∇H f ).

Thus, we have (see (3.3)),

Q f ,k(v) =

∫

M

v∆′bv ψθ. (5.1)

Now, assuming that θ is a critical pseudo-Hermitian structure of λk re-

stricted to P+,0(M), we obtain, using the definition of criticality and Theo-

rem 3.3 (2), that the operator Πk ◦ ∆
′
b

admits both nonnegative and nonpos-

itive eigenvalues in Ek(θ), which means (thanks to (5.1) that the quadratic

form Q f ,k is indefinite on Ek(θ). This proves the first part of the theorem.

The last part of the theorem follows from Theorem 3.3 (3) and (4), and

(5.1).

�

Proposition 5.1. Let M be a compact strictly pseudoconvex CR manifold

and let θ ∈ P+,0(M) be a pseudo-Hermitian structure. For any positive

integer k, the two following conditions are equivalent:

(1) For all f ∈ A0(M, θ), the quadratic form Q f ,k is indefinite on Ek(θ).

(2) There exists a finite family {v1, · · · , vd} ⊂ Ek(θ) of eigenfunctions

associated with λk(θ) such that
∑d

i=1 v2
i = 1.
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Proof. Assume first that there exist v1, · · · , vd ∈ Ek(θ) such that
∑d

i v2
i
= 1.

Therefore, ∀ f ∈ A0(M, θ),

d
∑

i=1

Q f ,k(vi) = · · · = −λk(θ)

∫

M

fψθ = 0

which implies that Q f ,k is indefinite on Ek(θ).

Conversely, assume that Q f ,k is indefinite on Ek(θ) for all f ∈ A0(M, θ)

and consider the convex set

K =















∑

i∈J

[

λk(θ)v
2
i +

n

2
∆bv2

i

]

; vi ∈ Ek(θ), J ⊂ N, J finite















⊂ L2(M).

Let us prove that the constant function 1 belongs to K. Indeed, if 1 <

K, then, applying classical separation theorem in the finite dimensional

subspace of L2(M, θ) generated by K and 1, we deduce the existence of

h ∈ L2(M) such that (h, 1)L2(M) =

∫

M
hψθ > 0 and, ∀ w ∈ K, (h,w)L2 =

∫

M
hwψθ ≤ 0. Let f = h − 1

vol(θ)

∫

M
hψθ ∈ A0(M, θ). Then , ∀v ∈ Ek(θ)

Q f ,k(v) = −

∫

M

(

λk(θ)v
2
+

n

2
∆bv2

)

fψθ

= −

∫

M

(

λk(θ)v
2
+

n

2
∆bv2

)

hψθ +

∫

M
hψθ

vol(θ)
λk(θ)

∫

M

v2ψθ

since
∫

M
∆bv2ψθ = 0. Moreover, ∀v ∈ Ek(θ), the function

(

λk(θ)v
2
+

n
2
∆bv2

)

belongs to K which implies that
∫

M

(

λk(θ)v
2
+

n
2
∆bv2

)

hψθ ≤ 0 and, then

Q f ,k(v) ≥
λk(θ)

∫

M
hψθ

vol(θ)

∫

M

v2ψθ.

Therefore, the quadratic form Q f ,k is positive definite on Ek(θ) which con-

tradicts the assumptions.

Now, since 1 ∈ K, there exist v1, · · · , vd ∈ Ek(θ) such that

d
∑

i=1

(

λk(θ)v
2
i +

n

2
∆bv2

i

)

= λk(θ) (5.2)

which leads to

∆b















∑

i≤d

v2
i − 1















= −
2

n
λk(θ)















∑

i≤d

v2
i − 1















This implies that
∑

i≤d v2
i −1 = 0 since the sub-Laplacian admits no negative

eigenvalues.

�

Theorem 5.1 and Proposition 5.1 lead to the following
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Corollary 5.1. Let M be a compact strictly pseudoconvex CR manifold. Let

θ ∈ P+,0(M) be a pseudo-Hermitian structure and k ∈ N∗.

(1) If θ is a critical pseudo-Hermitian structure of the functional λk re-

stricted to P+,0(M), then there exists a finite family {v1, · · · , vd} ⊂ Ek(θ) of

eigenfunctions associated with λk(θ) such that
∑d

i v2
i = 1.

(2) Assume that λk(θ) > λk−1(θ) or λk(θ) < λk+1(θ). Then, θ is critical

for the functional λk restricted to P+,0(M) if and only if there exists a finite

family {v1, · · · , vd} ⊂ Ek(θ) of eigenfunctions associated with λk(θ) such that
∑d

i v2
i = 1.

According to [30, Proposition 4.4], the first positive eigenvalue of the

standard CR sphere S2n+1 is equal to 2n and the corresponding eigenspace

is generated by the restriction of coordinate functions, the sum of whose

squares is 1 on S2n+1. Hence, the standard contact form of S2n+1 is a critical

pseudo-Hermitian structure of λ1 restricted to P+,0(S2n+1). On the other

hand, the condition that there exists a finite family {v1, · · · , vd} ⊂ Ek(θ) such

that
∑d

i v2
i = 1, is equivalent to the existence of a pseudo-harmonic map

from (M, θ) to the sphere Sd−1 (see [6, Lemma 6.1 ] and [12]).

An immediate consequence of Corollary 5.1 is the following:

Corollary 5.2. Let M be a compact strictly pseudoconvex CR manifold. If

θ ∈ P+,0(M) is a critical metric of the functional λk restricted to P+,0(M),

then λk(θ) is a degenerate eigenvalue, that is

dim Ek(θ) ≥ 2.

In the case when θ is a local maximizer or a local minimizer, we have the

following more precise result

Proposition 5.2. Let M be a compact strictly pseudoconvex CR manifold.

(1) If θ ∈ P+,0(M) is a local minimizer of the functional λk restricted to

P+,0(M), then λk(θ) = λk−1(θ).

(2) If θ ∈ P+,0(M) is a local maximizer of the functional λk restricted to

P+,0(M), then λk(θ) = λk+1(θ).

Proof. Let θ ∈ P+,0(M) be a local minimizer of λk, that is λk(θ̂) ≥ λk(θ)

for every θ̂ in a neighborhood of θ in P+,0(M). Assume for a contradic-

tion that λk(θ) > λk−1(θ). Let f ∈ A0(M, θ) and let θ(t) = eutθ ∈ P+,0(M)

with ut = t f − 1
n+1

ln(vol(et f θ)). Then θ(t) is a volume-preserving analytic

deformation of θ such that d
dt

ut

∣

∣

∣

t=0
= f (see the proof of Theorem 5.1).

Denote by Λ1(t), · · · ,Λm(t) the associated family of eigenvalues of ∆b,t, de-

pending analytically on t and such that Λ1(0) = · · · = Λm(0) = λk(θ) with

m = dim Ek(θ) (see Theorem 3.3). For continuity reasons, we have, for

sufficiently small t and all i ≤ m,

Λi(t) > λk−1(θ(t)).

Hence, ∀i ≤ m and ∀t sufficiently small,

Λi(t) ≥ λk(θ(t)) ≥ λk(θ) = Λi(0).
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Consequently,Λ′i(0) = 0 for all i ≤ m. Since (Theorem 3.3)Λ′1(0), · · · ,Λ′m(0)

are eigenvalues of the operator Πk ◦ ∆
′
b

: Ek(θ) → Ek(θ), it follows that

Πk ◦ ∆
′
b

is identically zero on Ek(θ). Consequently, thanks to (3.3), for any

f ∈ A0(M, θ), the quadratic form Q f ,k is identically zero on Ek(θ) which

implies that, ∀v ∈ Ek(θ),

λk(θ)v
2
+

n

2
∆bv2

= c

for some constant c ∈ R. Therefore,

∆b

(

v2 −
c

λk(θ)

)

= −
2

n
λk(θ)

(

v2 −
c

λk(θ)

)

which leads to a contradiction since the sub-Laplacian admits no negative

eigenvalues.

A similar proof works for (2). �
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de Tours, Parc de Grandmont, 37200 Tours, France.

E-mail address: elsoufi@univ-tours.fr


