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Given a compact strictly pseudoconvex CR manifold M, we study the differentiability of the eigenvalues of the sub-Laplacian ∆ b,θ associated with a compatible contact form (i.e. a pseudo-Hermitian structure) θ on M, under conformal deformations of θ. As a first application, we show that the property of having only simple eigenvalues is generic with respect to θ, i.e. the set of structures θ such that all the eigenvalues of ∆ b,θ are simple, is residual (and hence dense) in the set of all compatible positively oriented contact forms on M. In the last part of the paper, we introduce a natural notion of critical pseudo-Hermitian structure of the functional θ → λ k (θ), where λ k (θ) is the k-th eigenvalue of the sub-Laplacian ∆ b,θ , and obtain necessary and sufficient conditions for a pseudo-Hermitian structure to be critical.

Introduction

Let M be a compact strictly pseudoconvex CR manifold of real dimension 2n + 1. A pseudo-Hermitian structure on M is a contact form θ ∈ Γ(T * M) whose kernel coincides with the horizontal distribution of M. The strict pseudoconvexity of M means that the Levi form associated to such a contact form is either positive definite or negative definite. We denote by P + (M) the set of all pseudo-Hermitian structures with positive definite Levi form on M.

To every pseudo-Hermitian structure θ ∈ P + (M) we associate its sub-Laplacian ∆ b,θ (or simply ∆ b if there is no risk of confusion) which is a sub-elliptic operator of order 1/2, and denote by

0 = λ 0 (θ) < λ 1 (θ) ≤ λ 2 (θ) ≤ • • • ≤ λ k (θ) ≤ • • • → ∞
the nondecreasing sequence of eigenvalues of ∆ b,θ .

Several works published in recent years are devoted to the study of the sub-Laplacian and the investigation of its spectral properties, see for instance [START_REF] Aribi | A lower bound on the spectrum of the sublaplacian[END_REF][START_REF] Aribi | On the continuity of the eigenvalues of a sublaplacian[END_REF][START_REF] Aribi | Dirichlet and Neumann eigenvalue problems on CR manifolds[END_REF][START_REF] Aribi | Inequalities and bounds for the eigenvalues of the sub-Laplacian on a strictly pseudoconvex CR manifold[END_REF][START_REF] Barletta | On the spectrum of a strictly pseudoconvex CR manifold[END_REF][START_REF] Barletta | The Lichnerowicz theorem on CR manifolds[END_REF][START_REF] Barletta | Sublaplacians on CR manifolds[END_REF][START_REF] Chiu | The sharp lower bound for the first positive eigenvalue of the sublaplacian on a pseudohermitian 3-manifold[END_REF][START_REF] Greenleaf | The first eigenvalue of a sub-Laplacian on a pseudo-Hermitian manifold[END_REF][START_REF] Jia | On Riesz mean inequalities for subelliptic Laplacian[END_REF][START_REF] Kokarev | Sub-Laplacian eigenvalue bounds on CR manifolds[END_REF][START_REF] Li | The sharp lower bound for the first positive eigenvalue of a sub-Laplacian on a pseudo-Hermitian manifold[END_REF][START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF][START_REF] Peng | The spectrum of subelliptic operators on S 3[END_REF][START_REF] Raphaël | Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds[END_REF][START_REF] Stanton | Spectral invariants of CR manifolds[END_REF]. The aim of most of them is to extend to the CR context some of the spectral geometric results established in the Riemannian setting for the Laplace-Beltrami operator.

In our previous paper [START_REF] Aribi | On the continuity of the eigenvalues of a sublaplacian[END_REF], we discussed the continuity of the eigenvalues λ k (θ), as functions on the set P + (M) that we have endowed with a natural metric topology. In the present paper, we start by studying the differentiability of the spectrum of the sub-Laplacian ∆ b,θ under one-parameter deformations of the contact structure θ. We apply classical perturbation theory of selfadjoint operators to get a differentiability result (Theorem 3.2). Moreover, we prove that if θ(t) ∈ P + (M) is an analytic deformation of a contact structure θ, then the function t → λ k (θ(t)), which is not differentiable if λ k (θ) is not simple, admits left-sided and right-sided derivatives at t = 0, and relate these derivatives to the eigenvalues of an explicit symmetric operator acting on the λ k (θ)-eigenspace (Theorem 3.3).

In the second part of the paper we use these facts to show that the property of having only simple eigenvalues is generic for the sub-Laplacians on a given compact strictly pseudoconvex CR manifold M. Indeed, we prove that the set of contact structures θ ∈ P + (M) such that all the eigenvalues of ∆ b,θ are simple, is a residual set in the complete metric space P + (M) (see Theorem 4.1). Our proof relies on an eigenvalue splitting technique (Proposition 4.1) used by many authors in the Riemannian setting (see [START_REF] Albert | Genericity of simple eigenvalues for elliptic PDE's[END_REF][START_REF] Bando | Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds[END_REF][START_REF] Bleecker | Splitting the spectrum of a Riemannian manifold[END_REF]; see also [START_REF] Uhlenbeck | Generic properties of eigenfunctions[END_REF] for a different approach).

The last section is devoted to the notion of critical pseudo-Hermitian structure. Despite the lack of differentiability of the eigenvalues λ k (θ) upon analytic deformations θ(t) ∈ P + (M) of the pseudo-Hermitian structure, a natural notion of criticality can be defined using the existence of leftsided and right-sided derivatives of λ k (θ(t)) at t = 0 (see Definition 5.1). Since λ k (θ) is not invariant under scaling of the pseudo-Hermitian structure, we restrict ourselves to the deformations that preserve the global volume vol(θ) = M θ ∧ (dθ) n . We give necessary and sufficient conditions for a pseudo-Hermitian structure to be a critical point of the functional θ ∈ P + (M) → λ k (θ), under the volume-preserving constraint. In particular, we will see that the criticality condition is strongly related to the existence of a finite family of

λ k (θ)-eigenfunctions v 1 , • • • , v d , satisfying v 2 1 + • • • + v 2 d = 1 (Corollary 5.1)
. This last condition is satisfied for instance by the first positive eigenvalue of the standard CR sphere S 2n+1 (see [START_REF] Stanton | Spectral invariants of CR manifolds[END_REF]Proposition 4.4]).

Preliminaries

Let M be a compact connected orientable CR manifold of CR dimension n (and real dimension 2n + 1). Such a manifold M is equipped with a pair (H, J), where H is a sub-bundle of the tangent bundle T M of real rank 2n (often called Levi distribution) and J is an integrable complex structure on

H which means that, ∀X, Y ∈ Γ(H), [X, Y] -[JX, JY] ∈ Γ(H) and [JX, Y] + [X, JY] = J ([X, Y] -[JX, JY]) .
Since M is orientable, there exists a nonzero 1-form θ ∈ Γ(T * M) whose kernel coincides with H. Such a 1-form, called pseudo-Hermitian structure on M, is of course not unique. Actually, the set of pseudo-Hermitian structures on M consists in all the forms ±e u θ, u ∈ C ∞ (M).

To each pseudo-Hermitian structure θ we associate its Levi form G θ defined on H by

G θ (X, Y) = -dθ(JX, Y) = θ([JX, Y]).
The integrability of J implies that G θ is symmetric and J-invariant. The CR manifold M is said to be strictly pseudoconvex if the Levi form G θ of a pseudo-Hermitian structure θ is either positive definite or negative definite. Of course, this condition does not depend on the choice of θ. In all the sequel, we assume that M is strictly pseudoconvex and denote by P + (M) the set of all pseudo-Hermitian structures with positive definite Levi form on M. Every θ ∈ P + (M) is in fact a contact form which induces on M the following volume form

ψ θ = 1 2 n n! θ ∧ (dθ) n .
The associated divergence div θ is defined, for every smooth vector field Z on M, by

L Z ψ θ = div θ (Z) ψ θ .
We denote by L 2 (M) the set of squared integrable functions on M with respect to

ψ θ . A function u ∈ L 2 (M) is weakly differentiable (w.d.) along H if there is Y u ∈ Γ(H) such that |Y u | G θ = G θ (Y u , Y u ) 1 2 ∈ L 1 loc (M) and M G θ (Y u , X) ψ θ = - M u div θ (X) ψ θ
for every X ∈ Γ ∞ (H). Such Y u is unique up to a set of measure zero and is denoted by

Y u = ∇ H u and called weak horizontal gradient of u. It is easy to check that if u is differentiable, then ∀X ∈ Γ ∞ (H), du(X) = G θ (X, ∇ H u). Let D(∇ H ) = u ∈ L 2 (M) : u is (w.d.) along H and ∇ H u ∈ L 2 (H) ,
where L 2 (H) stands for the set of squared integrable sections of H with respect to the inner product G θ and the volume element ψ θ . Then we may regard the weak horizontal gradient as a linear operator

∇ H : D(∇ H ) ⊂ L 2 (M) → L 2 (H). As C ∞ (M) ⊂ D(∇ H ) it follows that D(∇ H ) is a dense subspace of L 2 (M). Let (∇ H ) * : D[(∇ H ) * ] ⊂ L 2 (H) → L 2 (M) be the adjoint of ∇ H . Then Γ ∞ (H) ⊂ D[(∇ H ) * ] and, for all X ∈ Γ ∞ (H), one has (∇ H ) * X = -div θ (X).
In particular, (∇ H ) * is densely defined in L 2 (H). The sub-Laplacian ∆ b , or ∆ b,θ if it is necessary to avoid confusion, is given by

D(∆ b ) = u ∈ D(∇ H ) : ∇ H u ∈ D[(∇ H ) * ] , ∆ b = (∇ H ) * • ∇ H = -div θ • ∇ H . Note that (∆ b u, u) L 2 (M) = ∇ H u 2 L 2 (H) ≥ 0 for any u ∈ D(∆ b ). Moreover, the sub-Laplacian is symmetric, i.e. ( 1 
) D(∆ b ) is dense in L 2 (M). (2) D(∆ b ) ⊂ D(∆ * b ) and (∆ b u, v) L 2 (M) = (u, ∆ b v) L 2 (M) ∀ u, v ∈ D(∆ b ).
The operator ∆ b is also known to be subelliptic of order ε = 1/2. Indeed, one has (cf. [15, Theorem 2.1]) for any u ∈ C ∞ (M),

u 2 H 1/2 (M) ≤ C (∆ b u, u) L 2 (M) + u 2 L 2 (M) , (2.1) 
for some constant C independent of u. It is worth noticing that ∆ b can be seen as the real part of the Kohn Laplacian acting on functions b = ∂ * b ∂b , where ∂b u is the projection of du onto T * (0,1) M. Indeed, we have (cf. [24, Theorem 2.3]) b = ∆ b + i nT , where T is the unique vector field satisfying T ⌋θ = 1 and T ⌋dθ = 0.

Lemma 2.1. The space H 1/2 (M) = W 1/2, 2 (M) admits a compact embedding into L 2 (M).
The proof of this Lemma uses standard arguments (see [START_REF] Aribi | Dirichlet and Neumann eigenvalue problems on CR manifolds[END_REF]).

Lemma 2.2. The operator

(∆ b + I) -1 : D((∆ b + I) -1 ) ⊂ L 2 (M) → L 2 (M) is compact.
Proof. Based on the estimate (2.1) one has Ker(∆ b +I) = {0}. Consequently,

∆ b + I : C ∞ (M) → R(∆ b + I) ⊂ C ∞ (M)
is invertible, where R(A) denotes the range of the operator A. Therefore, we may consider the inverse

(∆ b + I) -1 : D (∆ b + I) -1 = R(∆ b + I) ⊂ L 2 (M) → H 1/2 (M).
Let v ∈ D (∆ b + I) -1 and let us apply (2.1) to the function u = (∆ b +I) -1 (v) followed by the Cauchy-Schwartz inequality

(∆ b + I) -1 v 2 H 1/2 (M) ≤ C v , (∆ b + I) -1 v L 2 (M) ≤ C v L 2 (M) (∆ b + I) -1 v L 2 (M) .
Moreover, there is a continuous embedding

H 1/2 (M) → L 2 (M) so that u L 2 (M) ≤ C ′ u H 1/2 (M) , u ∈ H 1/2 (M),
for some constant C ′ > 0 independent of u. Thus,

(∆ b + I) -1 v 2 H 1/2 (M) ≤ C ′′ v L 2 (M) (∆ b + I) -1 v H 1/2 (M) (with C ′′ = CC ′ ) or (∆ b + I) -1 v H 1/2 (M) ≤ C ′′ v L 2 (M)
which proves the continuity of the operator (∆ b + I) -1 . Finally, by Lemma 2.1, the embedding

H 1/2 (M) → L 2 (M) is compact. Hence, (∆ b + I) -1 : D((∆ b + I) -1 ) ⊂ L 2 (M) → L 2 (M)
is compact (as the composition of a compact operator with a continuous operator).

Corollary 2.1. The spectrum σ(∆ b ) of the sub-Laplacian is discrete and consists of eigenvalues of finite multiplicity.

Differentiability of eigenvalues with respect to 1-parameter deformations of the pseudo-Hermitian structure

We start by recalling the needed notions of functional analysis, cf. e.g. A. Kriegl & P.W. Michor [START_REF] Kriegl | The convenient setting of global analysis[END_REF][START_REF] Kriegl | Differentiable perturbation of unbounded operators[END_REF] and T. Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF]. Let H be a Hilbert space and {A(t)} t∈R a family of linear operators

A(t) : D(A(t)) ⊂ H → H. We say that A(t) is a real analytic (respectively C ∞ , or C k,α ) family of selfadjoint operators if there is a dense subspace V ⊂ H such that i) D(A(t)) = V and A(t) is selfadjoint for any t ∈ R and ii) the function t ∈ R -→ (A(t)u, v) H ∈ C is real analytic (respectively C ∞ , or C k,α ) for every u ∈ V and v ∈ H.
If this is the case then (by a result in [START_REF] Kriegl | The convenient setting of global analysis[END_REF]) the (vector valued) function

t ∈ R -→ A(t)u ∈ H, is of the same class for every u ∈ V.
A sequence {λ ν } ν≥1 of scalar functions λ ν : R → C is said to parametrize the eigenvalues of {A(t)} t∈R if for any t ∈ R and any λ ∈ σ(A(t)), the cardinality of the set {ν ≥ 1 : λ ν (t) = λ} equals the multiplicity of λ.

We shall make use of the following result, which is referred hereafter as the Rellich-Alekseevsky-Kriegl-Losik-Michor theorem (cf. F. Rellich [START_REF] Rellich | Perturbation theory of eigenvalue problems[END_REF] for statement (i), D. Alekseevski & A. Kriegl & M. Losik & P.W. Michor [START_REF] Alekseevsky | Choosing roots of polynomials smoothly[END_REF] for statement (ii), and A. Kriegl & P.W. Michor [START_REF] Kriegl | Differentiable perturbation of unbounded operators[END_REF] for statements (iii)-(iv)).

Theorem 3.1. Let t ∈ R → A(t) be a curve of unbounded selfadjoint operators in a Hilbert space H, with common domain of definition and compact resolvent. Then (i) If A(t) is real analytic in t ∈ R, then the eigenvalues and the eigenvectors of A(t) may be parameterized real analytically in t.

(ii

) If A(t) is C ∞ in t ∈ R

and if no two unequal continuously parameterized eigenvalues meet of infinite order at any t ∈ R, then the eigenvalues and eigenvectors can be parameterized C ∞ in t on the whole parameter domain.

(iii

) If A(t) is C ∞ in t ∈ R, then the eigenvalues of A(t) may be parame- terized C 2 in t. (iv) If A(t) is C k,α in t ∈ R
for some α > 0, then the eigenvalues of A(t) may be parameterized C 1 in t.

Among the applications to statements (i) and (iii) in Theorem 3.1 as proposed in [START_REF] Kriegl | Differentiable perturbation of unbounded operators[END_REF], one may consider a compact manifold M and a smooth curve t → g t of smooth Riemannian metrics on M. If moreover t → ∆ g t is the corresponding smooth curve of Laplace-Beltrami operators on L 2 (M) then (by (iii) in Theorem 3.1) the eigenvalues may be parameterized C 2 in t. This was exploited by A. El Soufi & S. Ilias, [START_REF] Ilias | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF]- [START_REF] Ilias | Laplacian eigenvalue functionals and metric deformations on compact manifolds[END_REF], who discussed an array of related questions such as critical points of the functional g ∈ M(M) → λ k (g), or suitable deformations of g ∈ M(M) producing quantitative variations of λ k . Here M(M) is the set of all Riemannian metrics on M.

Let M be a compact strictly pseudoconvex CR manifold and let θ be a pseudo-Hermitian structure on M with positive definite Levi form. Let

θ(t) = e u t θ, t ∈ R,
be an analytic deformation of θ, i.e. {u t } t∈R is a family of real valued C ∞ functions which is analytic with respect to t and u 0 = 0. Here C ∞ (M, R) is thought of as organized as a real Fréchet space and the vector valued function u : R → C ∞ (M, R), u(t) = u t , t ∈ R, is assumed to be of class C ω . For a theory of power series in Fréchet spaces we shall use Appendix B in [START_REF] Barletta | Vector valued holomorphic and CR functions[END_REF].

Let ∆ b be the sub-Laplacian on M associated with θ and denote for each t, by ∆ b,t the sub-Laplacian associated with θ(t). Theorem 3.2. Let θ(t) = e u t θ be an analytic deformation of θ and let λ ∈ σ (∆ b ) be an eigenvalue of multiplicity m. There exist a positive real number ε, a family of m real analytic functions

{Λ i } 1≤i≤m ⊂ C ω ((-ε, ε), R), and m families of C ∞ functions {v i (t)} |t|<ε ∈ C ∞ (M, R), 1 ≤ i ≤ m, such that each v i : (-ε, ε) → C ∞ (M, R) is real analytic in t and
(1)

Λ i (0) = λ, 1 ≤ i ≤ m, (2) ∆ b,t v i (t) = Λ i (t) v i (t), 1 ≤ i ≤ m, t ∈ (-ε, ε) (3) {v i (t) : 1 ≤ i ≤ m} is orthonormal in L 2 (M, ψ θ(t) ), t ∈ (-ε, ε).
Proof. The proof relies on the Rellich-Alekseevsky-Kriegl-Losik-Michor theorem (cf. Theorem 3.1 above). To this end we introduce the family of operators

U t : L 2 (M, ψ θ ) → L 2 (M, ψ θ(t) ), U t v = e -(n+1)u t /2 v, v ∈ L 2 (M, ψ θ ).
The family {U t } t∈R is a real analytic family of unitary operators , i.e.

U t v L 2 (M,ψ θ(t) ) = v L 2 (M,ψ θ ) ,
and U -1 t v = e (n+1)u t /2 v. Moreover, let A(t) be the family of operators

A(t) = U -1 t • ∆ b,t • U t : L 2 (M, ψ θ ) → L 2 (M, ψ θ ). Then ∆ b,t v(t) = λ v(t) ⇐⇒ A(t) U -1 t v(t) = λ U -1 t v(t).
In particular, the spectrum of ∆ b,t coincides with that of A(t). Let us show that the family {A(t)} t∈R is analytic in t. Indeed, the dense subspace D(∆ b ) ⊂ L 2 (M, ψ θ ) is the domain of A(t) and, as we shall check in a moment, A(t) ⊂ A(t) * . Indeed, the sub-Laplacians ∆ b and ∆ b,t = ∆ b,θ(t) are related by (see [START_REF] Barletta | On the spectrum of a strictly pseudoconvex CR manifold[END_REF]Proposition 5] or [START_REF] Stanton | Spectral invariants of CR manifolds[END_REF]Lemma 1.8])

∆ b,t v = e -u t ∆ b v -nG θ (∇ H u t , ∇ H v) , v ∈ C 2 (M). (3.1)
Then, for each v ∈ D(∆ b ),

A(t)v = (U -1 t • ∆ b,t • U t )v = • • • = = e -u t ∆ b v + G θ (∇ H u t , ∇ H v) - n + 1 2 ∆ b u t - (n -1) 2 |∇ H u t | 2 v .
Finally, the family {A(t)} t∈R is an analytic curve of self-adjoint operators in L 2 (M, ψ θ ) with common domain of definition and with compact resolvent. Therefore, we can apply Theorem 3.1 (i) to deduce that the eigenvalues and the eigenvectors of A(t) depend analytically in t, i.e., there exists m analytic families of vectors v i (t) and m real analytic valued functions Λ i (t) in t satisfying (1), ( 2) and (3) of Theorem 3.2.

For any θ ∈ P + (M), the set of all pseudo-Hermitian structures with positive definite Levi form on M, let

0 = λ 0 (θ) < λ 1 (θ) ≤ λ 2 (θ) ≤ • • • ≤ λ k (θ) ≤ • • • be the spectrum of the sub-Laplacian ∆ b = ∆ b,θ of (M, θ). For every k ∈ N, let E k (θ) = Ker (∆ b -λ k (θ)I)
be the eigenspace of ∆ b corresponding to the eigenvalue λ k (θ). Also let Π k : L 2 (M, ψ θ ) → E k (θ) be the orthogonal projection on E k (θ). Let us fix k ∈ N and consider the functional θ ∈ P + (M) -→ λ k (θ) ∈ R. This functional is continuous (with respect to an appropriate metric topology on P + (M), as shown in [START_REF] Aribi | On the continuity of the eigenvalues of a sublaplacian[END_REF]) but not differentiable in general. However, one has the following Theorem 3.3. Let M be a compact strictly pseudoconvex CR manifold and let θ ∈ P + (M). Let θ(t) = e u t θ, t ∈ (-ε, ε), be an analytic deformation of θ.

Then, for every positive k ∈ N, (1) The function t ∈ (-ε, ε) -→ λ k (θ(t)) admits left and right derivatives at t = 0.

(

) The derivatives d dt λ k (θ(t)) t=0 -and d dt λ k (θ(t)) t=0 + are eigenvalues of the operator Π k • ∆ ′ b : E k (θ) → E k (θ) where, ∀v ∈ C ∞ (M), ∆ ′ b v = d dt ∆ b,t v t=0 = -f ∆ b v -n G θ ∇ H f, ∇ H v with f = d dt u t t=0 . (3) If λ k (θ) > λ k-1 (θ), then d dt λ k (θ(t)) t=0 -and d dt λ k (θ(t)) t=0 + are the great- est and the least eigenvalues of Π k • ∆ ′ b on E k (θ), respectively. (4) If λ k (θ) < λ k+1 (θ) then d dt λ k (θ(t)) t=0 -and d dt λ k (θ(t)) t=0 + ∈ R are the smallest and the greatest eigenvalue of Π k • ∆ ′ b on E k (θ), respectively. 2 
Proof. Let us denote by m the dimension of E k (θ). We apply Theorem 3.2 with λ = λ k (θ) to derive the existence of m real analytic functions

{Λ i } 1≤i≤m ⊂ C ω ((-ε, ε), R) and m analytic families of functions {v i (t)} |t|<ε ∈ C ∞ (M, R), 1 ≤ i ≤ m, satisfying (1)-(3) of Theorem 3.2. Since t → λ k (θ(t)) and t → Λ i (t) are continuous and Λ 1 (0) = ... = Λ m (0) = λ k (θ), one deduces that λ k (θ(t)) ∈ {Λ 1 (t), • • • , Λ m (t)
} for sufficiently small t. Since, moreover, ∀i ≤ m, t → Λ i (t) is analytic, there exist δ > 0 and two integers p, q ≤ m such that

λ k (θ(t)) = Λ p (t) for t ∈ (-δ, 0)
Λ q (t) for t ∈ (0, δ). Therefore, the function t -→ λ k (θ(t)) admits left and right derivatives at

t = 0 with d dt λ k (θ(t)) t=0 -= Λ ′ p (0) and d dt λ k (θ(t)) t=0 + = Λ ′ q (0). Now, one has for all i ≤ m and t ∈ (-δ, δ), ∆ b,t v i (t) = Λ i (t)v i (t).
Differentiating at t = 0, we get

∆ ′ b v i + ∆ b v ′ i = Λ ′ i (0)v i + λ k (θ)v ′ i (3.2)
where

v i = v i (0) and v ′ i = d dt v i (t) t=0 .
Multiplication by v j and integration by parts yield

M v j ∆ ′ b v i ψ θ = Λ ′ i (0) if j = i 0 otherwise. Since {v 1 , • • • , v m }
is an orthonormal basis of E k (θ) with respect to the inner product of L 2 (M, ψ θ ), we deduce that

(Π k • ∆ ′ b )v i = Λ ′ i (0)v i . That is Λ ′ 1 (0), • • • , Λ ′ m (0) are the eigenvalues of Π k • ∆ ′ b : E k (θ) → E k (θ)
. Differentiating the identity (3.1) at t = 0 we get

∆ ′ b v = -f ∆ b v -nG θ ∇ H v, ∇ H f . Assume now λ k (θ) > λ k-1 (θ). For any i ≤ m, one then has Λ i (0) = λ k (θ) > λ k-1 (θ)
. By continuity, we necessarily have Λ i (t) > λ k-1 (θ(t)) for sufficiently small t. Hence, there exists η > 0 such that, ∀ |t| < η and ∀i ≤ m,

Λ i (t) ≥ λ k (θ(t)), which means that λ k (θ(t)) = min {Λ 1 (t), • • • , Λ m (t)} . This implies that d dt λ k (θ(t)) t=0 -= max Λ ′ 1 (0), • • • , Λ ′ m (0) and d dt λ k (θ(t)) t=0 + = min Λ ′ 1 (0), • • • , Λ ′ m (0) which proves (3).
Smilarily, if λ k (θ) < λ k+1 (θ), one has, for sufficiently small t,

Λ i (t) ≤ λ k (θ(t)) which means that λ k (θ(t)) = max {Λ 1 (t), • • • , Λ m (t)} and, then, d dt λ k (θ(t)) t=0 + = max Λ ′ 1 (0), • • • , Λ ′ m (0) and d dt λ k (θ(t)) t=0 -= min Λ ′ 1 (0), • • • , Λ ′ m (0) . Corollary 3.1.
Let M be a compact strictly pseudoconvex CR manifold and let θ ∈ P + (M). Let θ(t) = e u t θ, t ∈ (-ε, ε), be an analytic deformation of θ and set f = d dt u t t=0 . For every positive integer k, let Q f,k : E k (θ) → R be the quadratic form given by

Q f,k (v) = - M λ k (θ)v 2 + n 2 ∆ b v 2 f ψ θ .
(

) If Q f,k is positive definite on E k (θ), then there exists ε > 0 such that λ k (θ(-t)) < λ k (θ) < λ k (θ(t)) for all t ∈ (0, ε). (2) Assume that λ k (θ) > λ k-1 (θ). If Q f,k takes negative values somewhere in E k (θ), then λ k (θ(t)) < λ k (θ) for all t ∈ (0, ε), for some ε > 0. (3) Assume that λ k (θ) < λ k+1 (θ). If Q f,k takes positive values somewhere in E k (θ), then λ k (θ(t)) > λ k (θ) for all t ∈ (0, ε), for some ε > 0. 1 
Proof. First, we have with the notations of Theorem 3.3, ∀v ∈ E k (θ), 

Q f,k (v) = M v∆ ′ b v ψ θ . (3.3) Indeed, ∀v ∈ E k (θ), M v∆ ′ b v ψ θ = - M v f ∆ b v + nG θ (∇ H v, ∇ H f ) ψ θ = - M f λ k (θ)v 2 + n 2 G θ (∇ H v 2 , ∇ H f ) ψ θ = - M λ k (θ)v 2 + n 2 ∆ b v 2 f ψ θ = Q f,k (v). Now, if Q f,k is positive definite on E k (θ), then, thanks to (3.3), all the eigenvalues of the operator Π k • ∆ ′ b : E k (θ) → E k (θ)
> 0 such that λ k (θ(-t)) < λ k (θ) < λ k (θ(t)) for all t ∈ (0, ε).
Assume that λ k (θ) > λ k-1 (θ) and that there exists

v ∈ E k (θ) such that Q f,k (v) < 0. This implies that the operator Π k • ∆ ′ b : E k (θ) → E k (θ)
has at least one negative eigenvalue. Applying Theorem 3.3 (3), we deduce that d dt λ k (θ(t)) t=0 + is negative and that there exists ε > 0 such that λ k (θ(t)) < λ k (θ) for all t ∈ (0, ε).

The last part of the corollary can be proved using similar arguments.

Generic simplicity of sub-Laplacian eigenvalues

Let M be a compact stirctly pseudoconvex CR manifold and denote by P + (M) the set of all pseudo-Hermitian structures with positive definite Levi form on M. In [START_REF] Aribi | On the continuity of the eigenvalues of a sublaplacian[END_REF], we defined a complete distance on P + (M) so that the eigenvalues of the sub-Laplacian θ ∈ P + (M) → λ k (θ) are continuous. This distance is defined as follows : We fix a form θ ∈ P + (M). Given θ 1 = e u 1 θ and θ 2 = e u 2 θ in P + (M), we set

d(θ 1 , θ 2 ) = d C ∞ (u 1 , u 2 ) + ρ(G θ 1 , G θ 2 )
where d C∞ is the distance function associated with the canonical Frechet structure of C ∞ (M) and

ρ(G θ 1 , G θ 2 ) = inf{δ > 0 : e -δ G θ 1 (X, X) ≤ G θ 2 (X, X) ≤ e δ G θ 1 (X, X) , ∀X ∈ H}.
In [START_REF] Aribi | On the continuity of the eigenvalues of a sublaplacian[END_REF], we proved that (P + (M), d) is a complete metric space and that if

ρ(G θ 1 , G θ 2 ) < ε, then, ∀k ≥ 1, e -ε ≤ λ k (θ 1 ) λ k (θ 2 ) ≤ e ε .
In the sequel, we denote by J the set of all elements θ ∈ P + (M) such that all the eigenvalues of the sub-Laplacian ∆ b,θ have multiplicity one, that is,

J = {θ ∈ P + (M) : 0 < λ 1 (θ) < λ 2 (θ) < • • • < λ k (θ) < • • • }
Our main aim in this section is to prove the following Theorem 4.1. The set J is a residual set in (P + (M), d), i.e., a countable intersection of open dense subsets. In particular, J is dense in (P + (M), d).

The proof of this theorem relies on the following proposition which is a consequence of Theorem 3.3. Proposition 4.1. Let M be a compact strictly pseudoconvex CR manifold and let θ ∈ P + (M). Let λ ∈ σ ∆ b,θ be an eigenvalue of multiplicity m ≥ 2 and let k ∈ N be such that

λ = λ k (θ) = λ k+1 (θ) = • • • = λ k+m-1 (θ). There exist f ∈ C ∞ (M) and ε > 0 such that θ(t) = e t f θ satisfies for all t ∈ (0, ε), λ k (θ(t)) < λ k+m-1 (θ(t)) . Proof. Let E = E k (θ) = E k+m-1 (θ)
be the eigenspace of ∆ b,θ corresponding to the eigenvalue λ and let Π : L 2 (M) → E be the orthogonal projection on E. For every f ∈ C ∞ (M), we denote by L f : E → E the operator defined by

L f v = Π • ∆ ′ b v = -Π λ f v + nG θ ∇ H v, ∇ H f .
From the definition of the integers k and m, one has λ k (θ) > λ k-1 (θ) and λ k+m-1 (θ) < λ k+m (θ). Therefore, Theorem 3.3 tells us that, for any f ∈ C ∞ (M), d dt λ k (e t f θ) t=0 + and d dt λ k+m-1 (e t f θ) t=0 + represent the smallest and the largest eigenvalues of the operator L f : E → E, respectively. Therefore, it suffices to prove the existence of a function f ∈ C ∞ (M) so that the operator L f has at least two distinct eigenvalues (i.e. L f is not proportional to the identity of E). Indeed, in this case, we would have d dt λ k (e t f θ) t=0 + < d dt λ k+m-1 (e t f θ) t=0 + which implies the conclusion of the proposition.

Thanks to (3.3), one has, ∀v,

w ∈ E L f v, w L 2 (M) = • • • = - M n 2 ∆ b (vw) + λvw f ψ θ . Let {u 1 , u 2 } ⊂ E be a pair of functions with u 1 L 2 (M) = u 2 L 2 (M) and u 2 1 u 2 2
(recall that E is of dimension at least 2) and set v = u 1u 2 and w = u 1 + u 2 so that (v, w) L 2 (M) = 0. The function

f 0 = n 2 ∆ b (vw) + λvw = n 2 ∆ b (u 2 1 -u 2 2 ) + λ(u 2 1 -u 2 2 ) (4.1)
is such that

L f 0 v, w L 2 (M) = - M n 2 ∆ b (u 2 1 -u 2 2 ) + λ(u 2 1 -u 2 2 ) 2 ψ θ
which does not vanish since ∆ b has no negative eigenvalues. Thus, L f 0 cannot be proportional to the identity of E.

Proof of Theorem 4.1. For every positive integer k, let J k be the subset of P + (M) defined by

J k = {θ ∈ P + (M) : 0 < λ 1 (θ) < λ 2 (θ) < • • • < λ k (θ) } .
We have

P + (M) = J 1 ⊃ J 2 ⊃ ... ⊃ J k ⊃ ... and J = ∞ k=1 J k .
According to Baire's category theorem, it suffices to prove that each J k is an open dense subset of P + (M). The fact that J k is open follows immediately from the continuity of the eigenvalues

θ ∈ P + (M) → λ i (θ), i ≤ k.
Let us prove that, for any k ≥ 1, J k+1 is a dense subset of J k . An obvious recursion would then imply that each J k is a dense subset of P + (M). So, let θ ∈ J k \ J k+1 and let η be any positive real number. Thus, one has

λ 1 (θ) < λ 2 (θ) < • • • < λ k-1 (θ) < λ k (θ) = λ k+1 (θ) = • • • = λ k+m-1 (θ) < λ k+m (θ),
where m is the multiplicity of λ k (θ). Using Proposition 4.1 and the continuity of the eigenvalues, one can find f ∈ C ∞ (M) and ε > 0 such that the form θ(t) = e t f θ satisfies, for every t ∈ (0, ε),

λ 1 (θ(t)) < λ 2 (θ(t)) < • • • < λ k-1 (θ(t)) < λ k (θ(t)) < λ k+m-1 (θ(t))
which means that θ(t) belongs to J k and the multiplicity of λ k (θ) is at most m-1. Choosing t 1 ∈ (0, ε) sufficiently small, one gets a form θ 1 = θ(t 1 ) ∈ J k such that the multiplicity of λ k (θ 1 ) is at most m -1 and d(θ 1 , θ) < η/m.

Repeating this argument at most m -1 times, we prove the existence of a 1-form θ ∈ J k+1 such that d( θ, θ) < η.

Critical pseudo-Hermitian structures

The content of this section is patterned after the article [START_REF] Ilias | Laplacian eigenvalue functionals and metric deformations on compact manifolds[END_REF] by Ilias and the third author dealing with Laplacian eigenvalues in the Riemannian setting. For the sake of completeness, we shall give self-contained proofs of the results we obtain in the CR context.

Let M be a compact strictly pseudoconvex CR manifold. For every positive integer k we consider the map θ ∈ P + (M) → λ k (θ) ∈ R, where, as before, P + (M) denotes the set of all pseudo-Hermitian structures with positive definite Levi form on M, and λ k (θ) is the k-th eigenvalue of the sub-Laplacian associated to θ. Since the eigenvalues are not invariant under scaling, we restrict λ k to the subset

P +,0 (M) = {θ ∈ P + (M) : vol(θ) = 1}
where vol(θ) = M ψ θ is the volume of M with respect to ψ θ .

Thanks to Theorem 3.3, one can introduce the following Definition 5.1. A pseudo-Hermitian structure θ is said to be critical for the functional λ k restricted to P +,0 (M) if, for any analytic deformation {θ(t) = e u t θ} ⊂ P +,0 (M) of θ, we have

d dt λ k (θ(t)) t=0 -× d dt λ k (θ(t)) t=0 + ≤ 0.
It is easy to see that

d dt λ k (θ(t)) t=0 + ≤ 0 ≤ d dt λ k (θ(t)) t=0 -⇐⇒ λ k (θ(t)) ≤ λ k (θ) + o(t) as t → 0 and d dt λ k (θ(t)) t=0 -≤ 0 ≤ d dt λ k (θ(t)) t=0 + ⇐⇒ λ k (θ(t)) ≥ λ k (θ) + o(t) as t → 0.
Of course, if θ is a local maximizer or a local minimizer of λ k , then θ is critical in the sense of the previous definition. We set

A 0 (M, θ) = f ∈ C ∞ (M) : M f ψ θ = 0
and recall the definition of the quadratic form

Q f,k : E k (θ) → R associated to a pair ( f, k) ∈ C ∞ (M) × N * (see Corollary 3.1): Q f,k (v) = - M λ k (θ)v 2 + n 2 ∆ b v 2 f ψ θ .
Theorem 5.1. Let M be a compact strictly pseudoconvex CR manifold. Let θ ∈ P +,0 (M) be a pseudo-Hermitian structure and k ∈ N * .

1) If θ is a critical pseudo-Hermitian structure of the functional λ k restricted to P +,0 (M), then, ∀ f ∈ A 0 (M, θ), the quadratic form Q f,k is indefinite on E k (θ).

2) Assume that λ k (θ) > λ k-1 (θ) or λ k (θ) < λ k+1 (θ). The pseudo-Hermitian structure θ is critical for the functional λ k restricted to P +,0 (M) if and only if, ∀ f ∈ A 0 (M, θ), the quadratic form Q f,k is indefinite on E k (θ).

Proof. Let f ∈ A 0 (M, θ) and let θ(t) be the analytic deformation of θ given by θ(t) = vol(θ) vol(e t f θ)

1 n+1 e t f θ = e u t θ, t ∈ R, with u t = t f -1 n+1 ln(vol(e t f θ)). Since ψ e t f θ = e (n+1)t f ψ θ ,
it is easy to check that vol(θ(t)) = 1, that is θ(t) belongs to P +,0 (M) for every t ∈ R. One has

d dt vol(e t f θ(t)) t=0 = d dt M e (n+1)t f ψ θ t=0 = (n + 1) M f ψ θ = 0. Therefore, d dt u t t=0 = • • • = f
and, then,

∆ ′ b v = d dt ∆ b,t t=0 = -f ∆ b v -nG θ (∇ H v, ∇ H f ).
Thus, we have (see (3.3)),

Q f,k (v) = M v∆ ′ b v ψ θ . (5.1) 
Now, assuming that θ is a critical pseudo-Hermitian structure of λ k restricted to P +,0 (M), we obtain, using the definition of criticality and Theorem 3.3 [START_REF] Alekseevsky | Choosing roots of polynomials smoothly[END_REF], that the operator Π k • ∆ ′ b admits both nonnegative and nonpositive eigenvalues in E k (θ), which means (thanks to (5.1) that the quadratic form Q f,k is indefinite on E k (θ). This proves the first part of the theorem.

The last part of the theorem follows from Theorem 3.3 (3) and (4), and (5.1). Proposition 5.1. Let M be a compact strictly pseudoconvex CR manifold and let θ ∈ P +,0 (M) be a pseudo-Hermitian structure. For any positive integer k, the two following conditions are equivalent:

(1) For all f ∈ A 0 (M, θ), the quadratic form Q f,k is indefinite on E k (θ).

(2) There exists a finite family {v

1 , • • • , v d } ⊂ E k (θ) of eigenfunctions associated with λ k (θ) such that d i=1 v 2 i = 1. Proof. Assume first that there exist v 1 , • • • , v d ∈ E k (θ) such that d i v 2 i = 1. Therefore, ∀ f ∈ A 0 (M, θ), d i=1 Q f,k (v i ) = • • • = -λ k (θ) M f ψ θ = 0 which implies that Q f,k is indefinite on E k (θ).
Conversely, assume that Q f,k is indefinite on E k (θ) for all f ∈ A 0 (M, θ) and consider the convex set

K =        i∈J λ k (θ)v 2 i + n 2 ∆ b v 2 i ; v i ∈ E k (θ), J ⊂ N, J finite        ⊂ L 2 (M).
Let us prove that the constant function 1 belongs to K. Indeed, if 1 K, then, applying classical separation theorem in the finite dimensional subspace of L 2 (M, θ) generated by K and 1, we deduce the existence of

h ∈ L 2 (M) such that (h, 1) L 2 (M) = M hψ θ > 0 and, ∀ w ∈ K, (h, w) L 2 = M hwψ θ ≤ 0. Let f = h -1 vol(θ) M hψ θ ∈ A 0 (M, θ). Then , ∀v ∈ E k (θ) Q f,k (v) = - M λ k (θ)v 2 + n 2 ∆ b v 2 f ψ θ = - M λ k (θ)v 2 + n 2 ∆ b v 2 hψ θ + M hψ θ vol(θ) λ k (θ) M v 2 ψ θ since M ∆ b v 2 ψ θ = 0. Moreover, ∀v ∈ E k (θ), the function λ k (θ)v 2 + n 2 ∆ b v 2 belongs to K which implies that M λ k (θ)v 2 + n 2 ∆ b v 2 hψ θ ≤ 0 and, then Q f,k (v) ≥ λ k (θ) M hψ θ vol(θ) M v 2 ψ θ .
Therefore, the quadratic form Q f,k is positive definite on E k (θ) which contradicts the assumptions. Now, since 1 ∈ K, there exist v

1 , • • • , v d ∈ E k (θ) such that d i=1 λ k (θ)v 2 i + n 2 ∆ b v 2 i = λ k (θ) (5.2) which leads to ∆ b        i≤d v 2 i -1        = - 2 n λ k (θ)        i≤d v 2 i -1       
This implies that i≤d v 2 i -1 = 0 since the sub-Laplacian admits no negative eigenvalues. Theorem 5.1 and Proposition 5.1 lead to the following Corollary 5.1. Let M be a compact strictly pseudoconvex CR manifold. Let θ ∈ P +,0 (M) be a pseudo-Hermitian structure and k ∈ N * .

(1) If θ is a critical pseudo-Hermitian structure of the functional λ k restricted to P +,0 (M), then there exists a finite family {v

1 , • • • , v d } ⊂ E k (θ) of eigenfunctions associated with λ k (θ) such that d i v 2 i = 1. (2) Assume that λ k (θ) > λ k-1 (θ) or λ k (θ) < λ k+1 (θ)
. Then, θ is critical for the functional λ k restricted to P +,0 (M) if and only if there exists a finite family {v 1 , • • • , v d } ⊂ E k (θ) of eigenfunctions associated with λ k (θ) such that d i v 2 i = 1. According to [START_REF] Stanton | Spectral invariants of CR manifolds[END_REF]Proposition 4.4], the first positive eigenvalue of the standard CR sphere S 2n+1 is equal to 2n and the corresponding eigenspace is generated by the restriction of coordinate functions, the sum of whose squares is 1 on S 2n+1 . Hence, the standard contact form of S 2n+1 is a critical pseudo-Hermitian structure of λ 1 restricted to P +,0 (S 2n+1 ). On the other hand, the condition that there exists a finite family {v 1 , • • • , v d } ⊂ E k (θ) such that d i v 2 i = 1, is equivalent to the existence of a pseudo-harmonic map from (M, θ) to the sphere S d-1 (see [START_REF] Aribi | Inequalities and bounds for the eigenvalues of the sub-Laplacian on a strictly pseudoconvex CR manifold[END_REF]Lemma 6.1 ] and [START_REF] Barletta | Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds[END_REF]).

An immediate consequence of Corollary 5.1 is the following:

Corollary 5.2. Let M be a compact strictly pseudoconvex CR manifold. If θ ∈ P +,0 (M) is a critical metric of the functional λ k restricted to P +,0 (M), then λ k (θ) is a degenerate eigenvalue, that is

dim E k (θ) ≥ 2.
In the case when θ is a local maximizer or a local minimizer, we have the following more precise result Proposition 5.2. Let M be a compact strictly pseudoconvex CR manifold.

(1) If θ ∈ P +,0 (M) is a local minimizer of the functional λ k restricted to P +,0 (M), then λ k (θ) = λ k-1 (θ).

(2) If θ ∈ P +,0 (M) is a local maximizer of the functional λ k restricted to P +,0 (M), then λ k (θ) = λ k+1 (θ).

Proof. Let θ ∈ P +,0 (M) be a local minimizer of λ k , that is λ k ( θ) ≥ λ k (θ) for every θ in a neighborhood of θ in P +,0 (M). Assume for a contradiction that λ k (θ) > λ k-1 (θ). Let f ∈ A 0 (M, θ) and let θ(t) = e u t θ ∈ P +,0 (M) with u t = t f -1 n+1 ln(vol(e t f θ)). Then θ(t) is a volume-preserving analytic deformation of θ such that d dt u t t=0 = f (see the proof of Theorem 5.1). Denote by Λ 1 (t), • • • , Λ m (t) the associated family of eigenvalues of ∆ b,t , depending analytically on t and such that Λ 1 (0) = • • • = Λ m (0) = λ k (θ) with m = dim E k (θ) (see Theorem 3.3). For continuity reasons, we have, for sufficiently small t and all i ≤ m, Λ i (t) > λ k-1 (θ(t)).

Hence, ∀i ≤ m and ∀t sufficiently small, Λ i (t) ≥ λ k (θ(t)) ≥ λ k (θ) = Λ i (0). Consequently, Λ ′ i (0) = 0 for all i ≤ m. Since (Theorem 3.3) Λ ′ 1 (0), • • • , Λ ′ m (0) are eigenvalues of the operator

Π k • ∆ ′ b : E k (θ) → E k (θ), it follows that Π k • ∆ ′
b is identically zero on E k (θ). Consequently, thanks to (3.3), for any f ∈ A 0 (M, θ), the quadratic form Q f,k is identically zero on E k (θ) which implies that, ∀v ∈ E k (θ),

λ k (θ)v 2 + n 2 ∆ b v 2 = c
for some constant c ∈ R. Therefore,

∆ b v 2 - c λ k (θ) = - 2 n λ k (θ) v 2 - c λ k (θ)
which leads to a contradiction since the sub-Laplacian admits no negative eigenvalues.

A similar proof works for (2).