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A BOUNDARY DRIVEN GENERALISED CONTACT PROCESS WITH

EXCHANGE OF PARTICLES: HYDRODYNAMICS IN INFINITE VOLUME.

KEVIN KUOCH, MUSTAPHA MOURRAGUI, AND ELLEN SAADA

Abstract. We consider a two species process which evolves in an infinite domain in contact with
particles reservoirs at different densities, according to the superposition of a generalised contact pro-
cess and a rapid-stirring dynamics in the bulk of the domain, and a creation/annihilation mechanism
at its boundaries. For this process, we study the law of large numbers for densities and current.
The limiting equations are given by a system of non-linear reaction-diffusion equations with Dirichlet
boundary conditions.

1. Introduction

In this paper, we consider the evolution on a lattice of two types of populations, according to a
boundary driven generalised contact process with exchange of particles. This process is the superposi-
tion of a contact process with random slowdowns (or CPRS) and a rapid-stirring dynamics in the bulk
of the domain, and a creation/annihilation mechanism at its boundaries, due to stochastic reservoirs.

The CPRS was introduced in [18] to model the sterile insect technique, developed by E. Knipling and
R. Bushland (see [15, 7]) in the fifties to control the New World screw worm, a serious threat to warm-
blooded animals. This pest has been eradicated from the USA and Mexico only in recent decades.
The technique works as follows: Screw worms are reared in captivity and exposed to gamma rays. The
male screw worms become sterile. If a sufficient number of sterile males are released in the wild then
enough female screw worms are mated by sterile males so that the number of offspring will decrease
generation after generation. This technique is well suited for screw worms, because female apparently
mate only once in their lifetime; but it is also being tried for a large variety of pests, including current
projects to fight dengue in South America (Brazil, Panama).

The particle system (ηt)t≥0 we look at has state space {0, 1, 2, 3}S, for S ⊂ Zd (we refer to [20] for
interacting particle systems). Each site of S is either empty (we say it is in state 0), occupied by wild
screw worms only (state 1), by sterile screw worms only (state 2), or by wild and sterile screw worms
together (state 3). On each site, we only keep track of the presence or not of the type of the male
screw worms (and not of their number), and we assume that enough female screw worms are around
as not to limit mating.

For the CPRS dynamics, we introduce a release rate r and growth rates λ1, λ2. A site gets sterile
males at rate r independently of everything else (this corresponds to an artificial introduction of sterile
males). The rate at which wild males give birth (to wild males) on neighbouring sites is λ1 at sites in
state 1, and λ2 at sites in state 3. Sterile males do not give birth. We assume that λ2 < λ1 to reflect
the fact that at sites in state 3 the fertility is decreased. Deaths for each type of male screw worms
occur at all sites at rate 1, they are mutually independent.
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For a configuration η, the transitions of the CPRS at a site x ∈ S are summarized as follows:

0 → 1 at rate λ1n1(x, η) + λ2n3(x, η) 1 → 0 at rate 1
0 → 2 at rate r 2 → 0 at rate 1
1 → 3 at rate r 3 → 1 at rate 1
2 → 3 at rate λ1n1(x, η) + λ2n3(x, η) 3 → 2 at rate 1

(1.1)

where ni(x, η) is the number of nearest neighbours of x in state i for i = 1, 3.
In [18], a phase transition in r is exhibited for the CPRS in S = Zd: Assuming that λ2 ≤ λc < λ1,
where λc denotes the critical value of the d-dimensional basic contact process (see [20] on the basic
contact process), there exists a critical value rc such that wild male screw worms (that is, states 1 and
3) survive for r < rc, and die out for r ≥ rc.

Our goal in the present paper is, for a given infinite volume S with boundaries, to add to the above
dynamics displacements within S, as well as departures from S and immigrations to S. We model
them respectively by an exchange dynamics in the bulk, and by a creation/annihilation mechanism
at the boundaries of S due to the presence of stochastic reservoirs. For the superposition of the
CPRS with these two dynamics, we are interested in the evolution of the empirical densities and
currents corresponding to wild and sterile screw worms, for which we establish hydrodynamic limits.
The limiting equations are given by systems of non-linear reaction-diffusion equations, with Dirichlet
boundary conditions.

Hydrodynamic limits investigate the macroscopic properties of interacting particle systems. (we refer
to [14]). From a probabilistic point of view, it corresponds to a law of large numbers for the evolution
of the spatial density of particles in a given system. After the results of [12, 16], where the intensive use
of large deviation techniques led to a robust proof of the hydrodynamic behaviour of a large class of
finite volume gradient equilibrium systems, the method has been extended to nonequilibrium systems
in a bounded domain in [11, 8, 9], as well as in an infinite volume without boundaries for conservative
dynamics in [10, 23, 19]. In the last years, many papers have been devoted to systems in contact
with reservoirs in a bounded domain; we just quote a few of them, [1, 2, 4, 3] and references therein.
The nonequilibrium systems considered there were provided by lattice gas models also submitted to
an external mechanism of creation and annihilation of particles, modelling exchange reservoirs at the
boundaries. Even though the stochastic dynamics describing the evolution in the bulk was conservative
and in equilibrium, the action of the reservoirs made the full process non reversible.

The hydrodynamic limit of a class of jumps, births and deaths processes has been studied in [5, 6]:
the combination of the Symmetric Simple Exclusion Process and of a Glauber dynamics to model the
annihilation and creation of particles led to reaction-diffusion equations. The density and current large
deviations have then been proved respectively in [13, 3]. All the dynamics considered in these papers
evolve on a one-dimensional bounded interval.

To our knowledge, the present paper is the first work about hydrodynamics of an interacting particle
system evolving in an infinite volume with boundary stochastic reservoirs and leading to a system of
reaction-diffusion equations.
Our set-up is the following. The non-conservative system that we consider evolves in the infinite cylin-
der ΛN = {−N, · · · , N} × Zd−1. In the bulk of ΛN , particles evolve according to the superposition of
the CPRS and of an exchange dynamics. The latter satisfies a detailed balance condition with respect
to a family of Gibbs measures. The reservoirs defining the movements of populations at the boundary
ΓN of ΛN are modelled by a reversible birth and death process.
Our key tools to establish hydrodynamic limits will be first the analysis of the specific entropy and the
specific Dirichlet form in infinite volume, then the use of couplings to derive hydrodynamics by going
from systems evolving in large finite volume to systems in infinite volume. Finally we prove uniqueness
of weak solutions to the limiting system of reaction-diffusion equations.

The paper is organized as follows. In Section 2, we detail our model and state our results, the
hydrodynamic limit of the boundary driven process (Theorem 2.1; we also state two related results,
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Theorem 2.2 and Theorem 2.3), and the law of large numbers for the conservative and non-conservative
currents (Proposition 2.4). Sections 3 to 7 are devoted to the proof of Theorem 2.1: it is outlined in
Section 3; Section 4 deals with specific entropy and Dirichlet forms, Section 5 with hydrodynamics in
large finite volume; Section 6 deals with couplings to derive the boundary conditions in infinite volume;
uniqueness of solutions is proved in Section 7. Finally, in Section 8 we prove Proposition 2.4.

2. Description of the model and results

2.1. The model. Rather than studying directly the process (ηt)t≥0 describing the evolution of states
1, 2, 3, we introduce another interpretation for the model. The configuration space is now

Σ̂N :=
(
{0, 1} × {0, 1}

)ΛN
. (2.1)

Elements of Σ̂N are denoted by (ξ, ω), where ξ-particles represent the wild screw worms, while ω-
particles represent the sterile ones. The correspondence with (ηt)t≥0 is given by the following relations:
For x ∈ ΛN ,

η(x) = 0 ⇐⇒ (1− ξ(x))(1 − ω(x)) = 1 ,
η(x) = 1 ⇐⇒ ξ(x)(1 − ω(x)) = 1 ,
η(x) = 2 ⇐⇒ (1− ξ(x))ω(x) = 1 ,
η(x) = 3 ⇐⇒ ξ(x)ω(x) = 1 .

(2.2)

In other words, ξ(x) = 1 (resp. ω(x) = 1) if wild (resp. sterile) screw worms are present on x. Both
can be present, giving the state 3 for η(x), or only one of them, giving the states 1 or 2 for η(x).

The boundary driven generalised contact process with exchange of particles is the Markov process

on Σ̂N whose generator LN := Lλ1,λ2,r,̂b,N
can be decomposed as

LN := N2LN + LN +N2 Lb̂,N , (2.3)

with the generators LN for the exchanges of particles, LN for the CPRS, and Lb̂,N for the boundary

dynamics. We now detail those dynamics and their properties.

For the exchange dynamics, the action of LN on cylinder functions f : Σ̂N → R is

LNf(ξ, ω) =

d∑

k=1

∑

x,x+ek∈ΛN

Lx,x+ekf(ξ, ω) with (2.4)

Lx,x+ekf(ξ, ω) = f(ξx,x+ek , ωx,x+ek)− f(ξ, ω) , (2.5)

where (e1, . . . , ed) denotes the canonical basis of Rd, and for any ζ ∈ ΣN := {0, 1}ΛN , ζx,y is the
configuration obtained from ζ by exchanging the occupation variables ζ(x) and ζ(y), i.e.

(ζx,y)(z) :=





ζ(y) if z = x ,

ζ(x) if z = y ,

ζ(z) if z 6= x, y .

Since (ξ, ω) ∈ Σ̂N , these exchanges correspond to jumps between sites x and y for ξ-particles and
ω-particles, which do not influence each other.

To exhibit invariant probability measures for LN , for any x ∈ ΛN , according to (2.2), we define




η1(x) = ξ(x)(1 − ω(x)) ≡ 1{η(x)=1} ,

η2(x) = (1− ξ(x))ω(x) ≡ 1{η(x)=2} ,

η3(x) = ξ(x)ω(x) ≡ 1{η(x)=3} .

(2.6)

By abuse of language, when ηi(x) = 1 for i = 1, 2, 3, we say that there is a particle of type i at x.
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We now define a family of invariant probability measures which are product, and parametrized by
three chemical potentials, since the exchange dynamics conserves, in each transition, the number of
particles of each type. It is convenient to complete (2.6) by defining, for x ∈ ΛN ,

η0(x) = (1− ξ(x))(1 − ω(x)) = 1{η(x)=0} = 1− η1(x) − η2(x) − η3(x) . (2.7)

We denote by Λ the macroscopic open cylinder (−1, 1)×Rd−1. For each positive integer n, denote by

ΛN,n = {−N, · · · , N} × {−n, · · · , n}d−1 (2.8)

the sub-lattice of size (2N + 1)× (2n+ 1)d−1 of ΛN . For a vector-valued function m̂ = (m1,m2,m3) :
Λ → R3, let ν̄Nm̂(·) be the product measure on ΛN with varying chemical potential m̂ such that, for all

positive integers n, the restriction ν̄Nm̂(·),n of ν̄Nm̂(·) to

Σ̂N,n =
(
{0, 1} × {0, 1}

)ΛN,n
(2.9)

is given by

ν̄Nm̂(·),n(ξ, ω) = Ẑ−1
m̂,n exp

{ 3∑

i=1

∑

x∈ΛN,n

mi(x/N)ηi(x)
}
, (2.10)

where Ẑm̂,n is the normalization constant:

Ẑm̂,n =
∏

x∈ΛN,n

{
1 +

3∑

i=1

exp(mi(x/N))
}
. (2.11)

Notice that the family of measures
{
ν̄Nm̂ , m̂ ∈ R

3
}
with constant parameters is reversible with respect

to the generator LN . For m̂ ∈ R3 and 1 ≤ i ≤ 3, let ψi(m̂) be the expectation of ηi(0) under ν̄
N
m̂ :

ψi(m̂) = Eν̄N
m̂
[
ηi(0)

]
.

Observe that the function Ψ defined on (0,+∞)3 by Ψ(m̂) = (ψ1(m̂), ψ2(m̂), ψ3(m̂)) is a bijection from
(0,+∞)3 to (0, 1)3. We shall therefore do a change of parameter: For every ρ̂ = (ρ1, ρ2, ρ3) ∈ (0, 1)3,
we denote by νNρ̂ the product measure νNm̂ such that Ψ(m̂) = ρ̂, hence

ρi = EνN
ρ̂
[
ηi(0)

]
, i = 1, 2, 3 . (2.12)

From now on, we work with the representation νNρ̂(·),n of the measure ν̄Nm̂(·),n.

According to (1.1), the generator LN := LN,λ1,λ2,r of the CPRS is given by

LNf(ξ, ω) =
∑

x∈ΛN

L
x
ΛN
f(ξ, ω) where (2.13)

L
x
ΛN
f(ξ, ω) =

(
r(1 − ω(x)) + ω(x)

)[
f(ξ, σxω)− f(ξ, ω)

]
(2.14)

+
∑

x∈ΛN

(
βΛN (x, ξ, ω)

(
1− ξ(x)

)
+ ξ(x)

)[
f(σxξ, ω)− f(ξ, ω)

]
with

βΛN (x, ξ, ω) = λ1
∑

y∈ΛN
‖y−x‖=1

ξ(y)(1 − ω(y)) + λ2
∑

y∈ΛN
‖y−x‖=1

ξ(y)ω(y) , (2.15)

where ‖ · ‖ denotes the norm in Rd, ‖u‖ =

√∑d
i=1 |ui|2, and for ζ ∈ ΣN , σxζ is the configuration

obtained from ζ by flipping the configuration at x, i.e.

(σxζ)(z) :=

{
1− ζ(x) if z = x ,

ζ(z) if z 6= x .

The representation (2.2) sheds light on the fact that (2.13) corresponds to a contact process (the ξ-
particles) in a dynamic random environment, namely the ω-particles. Indeed, the ω-particles move on
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their own and are not influenced by ξ-particles, while ξ-particles have birth rates whose value depends
on the presence or not of ω-particles. In [18] a variant of the CPRS dynamics in a quenched random
environment is also considered, with the (ξ, ω)-formalism. On the other hand, we noticed previously
that ω-particles can also be considered as an environment for the exchange dynamics.

We now turn to the dynamics at the boundaries of the domain. We denote the closure of Λ by
Λ = [−1, 1]× Rd−1, and the boundary of Λ by

Γ = ∂Λ = {(u1, . . . , ud) ∈ Λ : u1 = ±1}. (2.16)

For a metric space E and any integer 1 ≤ m ≤ +∞, denote by Cm(Λ;E) (resp. Cm
c (Λ;E)) the space

of m-continuously differentiable functions on Λ (resp. with compact support in Λ) with values in E,
and by C(Λ;E) (resp. C(Λ;E), Cc(Λ;E)) the space of continuous functions on Λ (resp. on Λ, with
compact support in Λ) with values in E.

Fix a positive function b̂ : Γ → R3
+. Assume that there exists a neighbourhood V of Λ and a smooth

function θ̂ = (θ1, θ2, θ3) : V → (0, 1)3 in C2(V ;R3) such that

0 < c∗ ≤ min
1≤i≤3

|θi| ≤ max
1≤i≤3

|θi| ≤ C∗ < 1 (2.17)

for two positive constants c∗, C∗, and such that the restriction of θ̂ to Γ is equal to b̂:

θ̂(·)
∣∣
Γ
= b̂(·) . (2.18)

The boundary dynamics acts as a birth and death process on the boundary

ΓN = {−N,N} × Z
d−1 (2.19)

of ΛN described by the generator Lb̂,N defined by

Lb̂,Nf(ξ, ω) =
∑

x∈ΓN

Lx
b̂,N

f(ξ, ω) , where (2.20)

Lx
b̂,N

f(ξ, ω) =
∑

x∈ΓN

cx
(
b̂(x/N), ξ, σxω

)[
f(ξ, σxω)− f(ξ, ω)

]

+
∑

x∈ΓN

cx
(
b̂(x/N), σxξ, ω

)[
f(σxξ, ω)− f(ξ, ω)

]

+
∑

x∈ΓN

cx
(
b̂(x/N), σxξ, σxω

)[
f(σxξ, σxω)− f(ξ, ω)

]
, (2.21)

where the rates cx
(
b̂(x/N), ξ, ω

)
are given for x ∈ ΓN and (ξ, ω) ∈ Σ̂N by

cx
(̂
b(x/N), ξ, ω

)
=

3∑

i=0

bi(x/N)ηi(x) , (2.22)

where b0(x/N) = 1−∑3
i=1 bi(x/N) and ηi(x), i ∈ {0, 1, 2, 3} are defined in (2.6)–(2.7). In other words,

according to b̂(.), a site x ∈ ΓN goes from state i ∈ {0, 1, 2, 3} to state j (j 6= i) at rate bj(x/N) (see
(6.8) below).
By (2.18), the boundary dynamics is such that the measure νN

θ̂
is reversible with respect to the oper-

ator Lb̂,N (see Consequences 4.3(ii)).

Notice that in view of the diffusive scaling limit, the generator LN has been speeded up by N2 in

(2.3). We fix T > 0. We denote by (ξt, ωt)t∈[0,T ] the Markov process on Σ̂N with generator LN . Given

a probability measure µ on Σ̂N , the probability measure PN,̂b
µ on the path space D([0, T ], Σ̂N), endowed

with the Skorohod topology and the corresponding Borel σ-algebra, is the law of (ξt, ωt)t∈[0,T ] with

initial distribution µ. The associated expectation is denoted by EN,̂b
µ . We denote by M the space of

finite signed measures on Λ, endowed with the weak topology. For m ∈ M and a continuous function
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F ∈ C(Λ;R), we let 〈m,F 〉 be the integral of F with respect to m. For each configuration (ξ, ω) ∈ Σ̂N ,
let π̂N = π̂N (ξ, ω) = (πN,1, πN,2, πN,3) ∈ M3, where for i ∈ {1, 2, 3}, the positive measure πN,i is
obtained by assigning mass N−d to each particle of type i:

πN,i = N−d
∑

x∈ΛN

ηi(x) δx/N ,

where δu is the Dirac measure concentrated on u. For any continuous function Ĝ = (G1, G2, G3) ∈
C(Λ;R3), the integral of Ĝ with respect to π̂N , denoted by 〈π̂N , Ĝ〉, is given by

〈π̂N , Ĝ〉 =
3∑

i=1

〈πN,i , Gi〉 .

Denote respectively by ∆N and ∆ the discrete Laplacian and the Laplacian defined for any function
G ∈ C2(Λ;R), if x, x± ej ∈ ΛN for 1 ≤ j ≤ d and u ∈ Λ \ Γ, by

∆NG(x/N) = N2
d∑

j=1

[
G
(x+ ej

N

)
+G

(x− ej
N

)
− 2G

( x
N

)]
and ∆G(u) =

d∑

j=1

∂2ejG(u).

We have now all the material to state our results.

2.2. Hydrodynamics in infinite volume. This subsection contains the statements of hydrodynamic
results in infinite volume with reservoirs (Theorem 2.1), and in Zd (Theorem 2.2).

For a metric space E, and integers 1 ≤ m, k ≤ +∞ denote by Ck,m
c ([0, T ]×Λ;E) (resp. Ck,m

c,0 ([0, T ]×
Λ;E)) the space of functions from [0, T ]× Λ to E that are k-continuously differentiable in time and
m-continuously differentiable in space, with compact support in [0, T ]×Λ (resp. and vanishing at the
boundary Γ of Λ). Similarly, we define Ck,m

c ([0, T ]×Λ;E) to be the subspace of Ck,m
c ([0, T ]×Λ;E) of

functions with compact support in [0, T ]× Λ.
Let γ̂ = (γ1, γ2, γ3) : Λ → [0, 1]3 be a smooth initial profile, and denote by ρ̂ = (ρ1, ρ2, ρ3) :

[0, T ] × Λ → [0, 1]3 a typical macroscopic trajectory. We shall prove in Theorem 2.1 below that
the macroscopic evolution of the local particles density π̂N is described by the following system of
non-linear reaction-diffusion equations





∂tρ̂ = ∆ρ̂ + F̂ (ρ̂) in Λ× (0, T ),

ρ̂(0, ·) = γ̂(·) in Λ,

ρ̂(t, ·)|Γ = b̂(·) for 0 ≤ t ≤ T ,

(2.23)

where F̂ = (F1, F2, F3) : [0, 1] → R3 is given by




F1(ρ1, ρ2, ρ3) = 2d(λ1ρ1 + λ2ρ3)ρ0 + ρ3 − ρ1(r + 1) ,

F2(ρ1, ρ2, ρ3) = rρ0 + ρ3 − 2d(λ1ρ1 + λ2ρ3)ρ2 − ρ2 ,

F3(ρ1, ρ2, ρ3) = 2d(λ1ρ1 + λ2ρ3)ρ2 + rρ1 − 2ρ3 ,

(2.24)

where ρ0 = 1−ρ1−ρ2−ρ3. A weak solution of (2.23) is a function ρ̂(·, ·) : [0, T ]×Λ→ [0, 1]3 satisfying
(IB1), (IB2) and (IB3) below:

(IB1) For any i ∈ {1, 2, 3}, ρi ∈ L∞ ((0, T )× Λ).

(IB2) For any function Ĝ(t, u) = Ĝt(u) = (G1,t(u), G2,t(u), G3,t(u)) in C1,2
c,0

(
[0, T ]× Λ;R3

)
, writing

similarly the density as ρ̂t(u) = ρ̂(t, u), we have

〈ρ̂T (·), ĜT (·)〉 − 〈ρ̂0(·), Ĝ0(·)〉 −
∫ T

0

ds 〈ρ̂s(·), ∂sĜs(·)〉 =
∫ T

0

ds 〈ρ̂s(·),∆Ĝs(·)〉

+

∫ T

0

ds 〈F̂ (ρs)(·), Ĝs(·)〉 −
3∑

i=1

∫ T

0

ds

∫

Γ

n1(r) bi(r)(∂e1Gi,s)(r) dS(r) ,

(2.25)
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where n=(n1, . . . ,nd) stands for the outward unit normal vector to the boundary surface Γ

and dS for an element of surface on Γ. For Ĝ = (G1, G2, G3), Ĥ = (H1, H2, H3) ∈
(
L2(Λ)

)3
,

〈Ĝ(·), Ĥ(·)〉 is the scalar product:

〈Ĝ(·), Ĥ(·)〉 =
3∑

i=1

〈Gi(·), Hi(·)〉 =
3∑

i=1

∫

Λ

Gi(u)Hi(u)du .

For a smooth function G : [0, T ] × Λ → R, ∂sG(s, u) represents the partial derivative with
respect to the time variable s and for 1 ≤ k ≤ d, ∂ek stands for the partial derivative in the
direction ek with respect to the space variable u.

(IB3) ρ̂(0, u) = γ̂(u) a.e.

Let M1
+ be the subset ofM of all positive measures absolutely continuous with respect to the Lebesgue

measure with positive density bounded by 1:

M1
+ =

{
π ∈ M : π(du) = ρ(u)du and 0 ≤ ρ(u) ≤ 1 a.e.

}
.

Let D([0, T ], (M1
+)

3) be the set of right continuous trajectories with left limits with values in (M1
+)

3,

endowed with the Skorohod topology and equipped with its Borel σ− algebra. We denote by π̂N

the map from D([0, T ], Σ̂N) to D([0, T ], (M1
+)

3) defined by π̂N (ξ·, ω·)t = π̂N (ξt, ωt) and by QN,̂b
µ =

PN,̂b
µ ◦ (π̂N )−1 the law of the process

(
π̂N (ξt, ωt)

)
t∈[0,T ]

.

Our main result is:

Theorem 2.1. Let the sequence (µN )N≥1 be such that µN is a probability measure on Σ̂N for each

N . The sequence of probability measures (QN,̂b
µN

)N≥1 is weakly relatively compact and all its converging

subsequences converge to some limit Qb̂,∗ that is concentrated on absolutely continuous paths whose
densities ρ̂ ∈ C([0, T ], (M1

+)
3) satisfy (IB1) and (IB2).

Moreover, if for any δ > 0 and for any function Ĝ ∈ Cc(Λ;R3),

lim
N→∞

µN

{∣∣∣〈π̂N (ξ, ω), Ĝ(·)〉 − 〈γ̂(·), Ĝ(·)〉
∣∣∣ ≥ δ

}
= 0 , (2.26)

for an initial continuous profile γ̂ : Λ → [0, 1]3, then the sequence (QN,̂b
µN

)N≥1 converges to the Dirac
measure concentrated on the unique weak solution ρ̂(·, ·) of the boundary value problem (2.23). Accord-

ingly, for any t ∈ [0, T ], any δ > 0 and any function Ĝ ∈ C1,2
c

(
[0, T ]× Λ;R3

)
,

lim
N→∞

P
N,̂b
µN

{∣∣∣〈π̂N (ξt, ωt), Ĝ(·)〉 − 〈ρ̂t(·), Ĝ(·)〉
∣∣∣ ≥ δ

}
= 0 .

The proof of Theorem 2.1 will be outlined in Section 3, and done in the following Sections 4, 5, 6, 7.

Our approach enables us to derive as well the hydrodynamic limit in the infinite volume Zd. There,

the reaction-diffusion process (ξt, ωt)t≥0 on
(
{0, 1} × {0, 1}

)Zd

has generator

N2L+ L =

d∑

k=1

∑

x,x+ek∈Zd

Lx,x+ek +
∑

x∈Zd

L
x
Zd

(see (2.5), (2.14)–(2.15)) with law PN
µN

when the initial distribution is µN . It satisfies

Theorem 2.2. Consider a sequence of probability measures (µN )N≥1 on
(
{0, 1}×{0, 1}

)Zd

associated

to a continuous profile γ̂ : Rd → [0, 1]3, that is, for all continuous function Ĝ ∈ Cc(Rd;R3),

lim
N→∞

µN

(∣∣ 1

Nd

3∑

i=1

∑

x∈Zd

Gi(x/N)ηi(x)− 〈γ̂, Ĝ〉
∣∣ > δ

)
= 0
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for all δ > 0. Then for all t ≥ 0,

lim
N→∞

P
N
µN

(∣∣∣ 1

Nd

3∑

i=1

∑

x∈Zd

Gi(x/N)ηi,t(x) − 〈ρ̂t(·), Ĝ(·)〉
∣∣∣ ≥ δ

)
= 0

for any function Ĝ ∈ Cc(Rd;R3) and δ > 0, where ρ̂(t, u) is the unique weak solution of the system
{
∂tρ̂ = ∆ρ̂+ F̂ (ρ̂) in Zd × (0, T ),
ρ̂(0, ·) = γ̂(·) in Zd,

(2.27)

that is, ρ̂(·, ·) satisfies the following assertions:

(I1) For any i ∈ {1, 2, 3}, ρi ∈ L∞
(
[0, T ]

)
× Rd

)
,

(I2) For any function Ĝt(u) = Ĝ(t, u) in C1,2
c

(
[0, T ]× Rd;R3

)
, we have

〈ρ̂T (·), ĜT (·)〉 − 〈ρ̂0(·), Ĝ0(·)〉 −
∫ T

0

ds 〈ρ̂s(·), ∂sĜs(·)〉

=

∫ T

0

ds 〈ρ̂s(·),∆Ĝs(·)〉 +

∫ T

0

ds 〈F̂ (ρs)(·), Ĝs(·)〉 ,
(2.28)

(I3) ρ̂(0, u) = γ̂(u) a.e.

2.3. Hydrodynamic limit in finite volume with reservoirs. As Theorem 2.1 deals with an infinite
bulk, we are consequently able to derive the limit in a finite volume in contact with reservoirs as
well. Let BN = {−N, · · · , N} × T

d−1
N and B = (−1, 1) × Td−1, where Td

N is the d-dimensional
microscopic torus of length N and Td is the d-dimensional torus [0, 1)d. In finite volume with stochastic

reservoirs, the reaction-diffusion process (ξt, ωt)t∈[0,T ] on Λ̃N =
(
{0, 1} × {0, 1}

)BN
, with generator

N2L̃N + L̃N +N2L̃b̂,N , given by formulas (2.4), (2.13), (2.14), (2.15), (2.20), where we replace ΛN by

Λ̃N , and ΓN by Γ̃N = {−N,N} × T
d−1
N , satisfies

Theorem 2.3. If for any δ > 0 and for any function Ĝ ∈ C(B;R3),

lim
N→∞

µN

{∣∣∣〈π̂N (ξ, ω), Ĝ(·)〉 − 〈γ̂(·), Ĝ(·)〉
∣∣∣ ≥ δ

}
= 0 , (2.29)

for an initial continuous profile γ̂ : B → [0, 1]3, then the sequence of probability measures (QN,̂b
µN

)N≥1

converges to the Dirac measure concentrated on the unique weak solution ρ̂(·, ·) of the boundary value
problem 




∂tρ̂ = ∆ρ̂ + F̂ (ρ̂) in B × (0, T ),

ρ̂(0, ·) = γ̂(·) in B,

ρ̂(t, ·)|Γ = b̂(·) for 0 ≤ t ≤ T ,

(2.30)

that is, ρ̂(·, ·) : [0, T ]×B → [0, 1]3 satisfies

(B1) For any i ∈ {1, 2, 3}, ρi ∈ L2
(
(0, T );H1(B)

)
, that is, ρi admits a generalised derivative such

that ∫ T

0

ds
(∫

Λ

‖ ∇ρi(s, u) ‖2du
)
<∞ ,

where for a smooth function G, ∇G = (∂e1G, · · · , ∂edG) stands for the gradient of G.

(B2) For any function Ĝt(u) = Ĝ(t, u) ∈ C1,2
0

(
[0, T ]×B;R3

)
, we have

〈ρ̂T (·), ĜT (·)〉 − 〈ρ̂0(·), Ĝ0(·)〉 −
∫ T

0

ds 〈ρ̂s(·), ∂sĜs(·)〉 =
∫ T

0

ds 〈ρ̂s(·),∆Ĝs(·)〉

+

∫ T

0

ds 〈F̂ (ρs)(·), Ĝs(·)〉 −
3∑

i=1

∫ T

0

ds

∫

Γ

n1(r) bi(r)(∂e1Gi,s)(r) dS(r) ,

(2.31)

where Γ is the boundary of B.
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(B3) ρ̂(0, u) = γ̂(u) a.e.

Both proofs of Theorem 2.2 and Theorem 2.3 are given in [17].

2.4. Currents. In this subsection, we study the evolution of the empirical currents, namely the con-
servative one (cf. [1]) and the non-conservative one (cf. [3]). For t ≥ 0, 1 ≤ i ≤ 3 and any y, z ∈ ΛN

such that ‖y − z‖ = 1, denote by Jy,z
t (ηi) the total number of particles of type i that jumped from y

to z before time t and by

W
x,x+ej
t (ηi) = J

x,x+ej
t (ηi)− J

x+ej ,x
t (ηi), 1 ≤ j ≤ d

the conservative current of particles of type i across the bond {x, x + ej} before time t. The corre-
sponding conservative empirical measure WN

t is the product finite signed measure on ΛN defined as
WN

t (ηi) = (WN
1,t(ηi), . . . ,W

N
d,t(ηi)) ∈ Md = {M}d, where for 1 ≤ j ≤ d, 1 ≤ i ≤ 3,

WN
j,t(ηi) = N−(d+1)

∑

x,x+ej∈ΛN

W
x,x+ej
t (ηi)δx/N .

For a continuous vector field G = (G1, . . . , Gd) ∈ Cc(Λ;Rd) the integral of G with respect to WN
t (ηi),

also denoted by 〈WN
t (ηi),G〉, is given by

〈WN
t (ηi),G〉 =

d∑

j=1

〈WN
j,t(ηi), Gj〉 . (2.32)

Finally, we introduce the signed measure ŴN
t (η̂) = (WN

t (η1),W
N
t (η2),W

N
t (η3)) ∈ (Md)

3 and for

Ĝ = (G1,G2,G3) ∈ Cc(Λ; (Rd)3) the notation

〈ŴN
t , Ĝ〉 =

3∑

i=1

〈WN
t (ηi),Gi〉 .

For x ∈ ΛN , 1 ≤ i ≤ 3, we denote by Qx
t (ηi) the total number of particles of type i created minus

the total number of particles of type i annihilated at site x before time t. The corresponding non-
conservative empirical measure is

QN
t (ηi) =

1

Nd

∑

x∈ΛN

Qx
t (ηi)δx/N .

We introduce the signed measure Q̂N
t = (QN

t (η1), Q
N
t (η2), Q

N
t (η3)) ∈ M3 and for Ĥ = (H1, H2, H3) ∈

Cc(Λ;R3) the notation

〈Q̂N
t , Ĥ〉 =

3∑

i=1

〈QN
t (ηi), Hi〉 .

We can now state the law of large numbers for the current:

Proposition 2.4. Fix a smooth initial profile γ̂ : Λ → [0, 1]3. Let (µN )N≥1 be a sequence of probability

measures on Σ̂N satisfying (2.26) and ρ̂ be the weak solution of the system of equations (2.23). Then,

for each T > 0, δ > 0, Ĝ ∈ C1
c (Λ; (R

d)3) and Ĥ ∈ C1
c (Λ;R

3),

lim
N→∞

P
N,̂b
µN

[ 〈
Ŵ

N
T , Ĝ

〉
−
∫ T

0

dt
〈{

−∇ρ̂t
}
, Ĝ
〉∣∣∣ > δ

]
= 0 , (2.33)

lim
N→∞

P
N,̂b
µN

[ 〈
Q̂N

T , Ĥ
〉
−
∫ T

0

dt
〈
F̂ (ρ̂t) , Ĥ

〉∣∣∣ > δ
]

= 0 . (2.34)

We shall prove Proposition 2.4 in Section 8.
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3. Outline of the proof of Theorem 2.1

The proof is divided essentially in two parts. In the first one, we prove the hydrodynamic limit
for the system evolving in large finite volume. By large we mean volume of size MN such that
limN→+∞MN/N = +∞. In the second part, from the first one and coupling arguments, we shall
derive the result in infinite volume. We take

MN = N1+ 1
d . (3.1)

For the first part of the proof of Theorem 2.1, we consider a Markov process with state space Σ̂N,MN

(cf. (2.9)) and generator LN,MN , where for any positive integer n > 1, LN,n denotes the restriction of
the generator LN to the box ΛN,n:

LN,n = N2LN,n + LN,n + N2Lb̂,N,n , (3.2)

with

LN,n =

d∑

k=1

∑

x,x+ek∈ΛN,n

Lx,x+ek , LN,n =
∑

x∈ΛN,n

L
x
ΛN,n

, Lb̂,N,n =
∑

x∈ΛN,n∩ΓN

Lx
b̂,N

, (3.3)

where Lx,x+ek was defined in (2.5), Lx
b̂,N

in (2.21), and the definition of Lx
ΛN,n

is given by (2.14)–(2.15)

with ΛN replaced by ΛN,n.
Remark that this finite volume dynamics can be seen as a dynamics (ζt, χt)t∈[0,T ] evolving in the in-

finite volume ΛN , where transitions taking place outside ΛN,MN , or involving particles outside ΛN,MN ,
are suppressed. For the exchange part of the dynamics, it means that particles outside ΛN,MN do
not move and particles inside ΛN,MN jump as in the original infinite volume process in ΛN , with
the restriction that jumps off ΛN,MN are suppressed. For the CPRS part, it means that transitions
outside ΛN,MN , as well as births in ΛN,MN induced by particles outside ΛN,MN , are suppressed. For
the boundary dynamics part, it means that transitions outside ΛN,MN are suppressed. By abuse of
language, we still denote the generator of (ζt, χt)t∈[0,T ] by LN,MN . Given a probability measure µN on

Σ̂N , we denote by P̃MN ,̂b
µN

the law of the process (ζt, χt)t∈[0,T ] with initial distribution µN , by ẼMN ,̂b
µN

the

corresponding expectation, and by Q̃MN ,̂b
µN

= P̃MN ,̂b
µN

◦ (π̂N )−1 the law of the process
(
π̂N (ζt, χt)

)
t∈[0,T ]

.

We define (η̃1, η̃2, η̃3) then η̃0 associated to (ζ, χ) as we did for (η1, η2, η3) and η0 w.r.t. (ξ, ω) in
(2.6)–(2.7).

Following the Guo, Papanicolaou and Varadhan method [12], to derive the hydrodynamic behaviour
of our system in large finite volume, we divide the proof into several steps:

(1) tightness of the measures (Q̃MN ,̂b
µN

)N≥1 in D([0, T ], (M1
+)

3),
(2) uniqueness of a weak solution to the hydrodynamic equation (2.23),

(3) identification of the limit points of (Q̃MN ,̂b
µN

)N≥1 as unique weak solutions of (2.23).

The proof of (1) and of part of (3) is by now standard and left to the reader (we refer to [14] for
details). We postpone the proof of (2) to Section 7. AsMN ≫ N , the hydrodynamic limit we obtain is
the equation (2.23) in infinite volume with stochastic reservoirs. To understand how (2.23) appears as

limit point in (3), let us consider, for any function Ĝ ∈ C1,2
c,0 ([0, T ]× Λ;R3), the mean-zero martingale

M̂N
T (Ĝ) =

3∑

i=1

MN,i
T (Gi) where, for 1 ≤ i ≤ 3,

MN,i
T (Gi) = 〈πN,i

T , Gi,T 〉 − 〈πN
0 , Gi,0〉 −

∫ T

0

〈πN,i
s , ∂sGi,s〉ds−

∫ T

0

LN,MN 〈πN,i
s , Gi,s〉ds . (3.4)
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To establish the convergence of M̂N
T (Ĝ) and exhibit a limit point, we compute, for 1 ≤ i ≤ 3:

N2LN,MN 〈πN,i
s , Gi,s〉 = 〈πN,i

s ,∆NGi,s〉 −
1

Nd−1

∑

x∈Γ+
N

∂Ne1Gi,s((x − e1)/N)η̃i,s(x)

+
1

Nd−1

∑

x∈Γ−
N

∂Ne1Gi,s(x/N)η̃i,s(x) , (3.5)

where Γ±
N = {(u1, . . . , ud) ∈ ΛN : u1 = ±N} and ∂Ne1 stands for the discrete gradient: ∂Ne1Gi,s(z/N) =

N
(
Gi,s((z + e1)/N) −Gi,s(z/N)

)
, with z, z + e1 ∈ ΛN . Indeed, since MN ≫ N and G has compact

support, for N large enough MN does not appear on the r.h.s. of (3.5).

We also compute f̂ = (f1, f2, f3) : Σ̂N → R3:




f1(ζ, χ) = LN,MN η̃1(0) = βΛN,MN
(0, ζ, χ)η̃0(0) + η̃3(0)− (r + 1)η̃1(0),

f2(ζ, χ) = LN,MN η̃2(0) = rη̃0(0) + η̃3(0)− βΛN,MN
(0, ζ, χ)η̃2(0)− η̃2(0),

f3(ζ, χ) = LN,MN η̃3(0) = βΛN,MN
(0, ζ, χ)η̃2(0) + rη̃1(0)− 2η̃3(0) ,

(3.6)

so that

LN,MN 〈πN,i
s , Gi,s〉 =

1

Nd

∑

x∈ΛN,MN

Gi,s(x/N)τxfi(ζ, χ) . (3.7)

Again, for N large enough, in fact MN does not play any role on the r.h.s. of (3.7).

Since Ĝ vanishes at the boundaries on Λ, the generator Lb̂,N,MN
is not needed.

Therefore, to close the equations in M̂N
t (Ĝ), we need to do two replacements, stated in Lemma 3.2

and Proposition 3.3 below: we have to replace local functions in the bulk by a function of the empirical

density in (3.7), and to replace the density at the boundary by a value of the function b̂ in (3.5). Lemma

3.2 and Proposition 3.3 are the main steps to show that any limit point of the sequence (Q̃MN ,̂b
µN

)N≥1

is concentrated on trajectories that are weak solutions of the system of equations (2.23). The proof of
Lemma 3.2 relies on uniform upper bounds on the entropy production and the Dirichlet form stated
in Subsection 4.1 (Theorem 4.1) and proved in Subsection 4.2. The proof of Proposition 3.3 relies on
the properties of the boundary dynamics.

Remark 3.1. Except for the replacement lemma at the boundary (cf. Proposition 3.3), all the results
needed in steps (1), (2) and (3) are valid both in infinite volume and in a large finite volume with

length MN = N1+ 1
d . Therefore, we shall state and prove all these results in infinite volume.

For any smooth profile θ̂ : Λ → (0, 1)3 satisfying (2.17) and (2.18), and for any cylinder function

φ(ξ, ω), denote by φ̃(θ̂) the expectation of φ with respect to νN
θ̂
. For any ℓ ∈ N, define the empirical

mean densities in a box of size (2ℓ+ 1)d centred at x by η̂ℓ(x) = (ηℓ1(x), η
ℓ
2(x), η

ℓ
3(x)):

ηℓi (x) =
1

(2ℓ+ 1)d

∑

‖y−x‖≤ℓ
y∈ΛN

ηi(y), for 1 ≤ i ≤ 3.

so that we can define for any ǫ > 0 small enough (as usual we omit to write integer parts in bounds of
intervals: ǫN replaces ⌊ǫN⌋),

VǫN (ξ, ω) =
∣∣∣ 1

(2ǫN + 1)d

∑

‖y‖≤ǫN

τyφ(ξ, ω)− φ̃(η̂ǫN (0))
∣∣∣. (3.8)

Lemma 3.2 (replacement in the bulk). For any G ∈ C∞
c ([0, T ]× Λ,R),

lim
ǫ→0

lim
N→∞

E
N,̂b
µN

( 1

Nd

∑

x∈Λ

∫ T

0

|Gs(x/N)|τxVǫN (ξs, ωs)ds
)
= 0.
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The proof of Lemma 3.2 is postponed to Subsection 4.3.
We now state that the limiting trajectories for the system in large finite volume satisfy the Dirichlet

boundary conditions with value b̂(·). The proof of Proposition 3.3 is postponed to Section 5.

Proposition 3.3 (replacement at the boundary). For any bounded function H : [0, T ]× Γ → R with
compact support in Γ, for any δ > 0, for all i ∈ {1, 2, 3},

lim
N→∞

P̃
MN ,̂b
µN

(∣∣∣
∫ T

0

1

Nd−1

∑

x∈ΛN,MN
∩ΓN

Ht(x/N)
(
η̃i,t(x) − bi(x/N)

)
dt
∣∣∣ > δ

)
= 0.

For the second part of the proof of Theorem 2.1, we couple the original process (ξt, ωt)t∈[0,T ] in

infinite volume with (ζt, χt)t∈[0,T ]. Let µN be the measure on Σ̂N × Σ̂N concentrated on its diagonal

and with marginals equal to µN . Denote by P
MN ,̂b

µN
the law of the coupled process ((ξt, ωt), (ζt, χt))t∈[0,T ]

with initial distribution µN , and by E
MN ,̂b

µN
the corresponding expectation. By Tchebycheff inequality,

for all δ > 0 and t ≥ 0,

P
N,̂b
µN

(∣∣∣ 1

Nd

∑

x∈ΛN

Gi,t(x/N)
(
ηi,t(x) − ρi(t, x/N)

)∣∣∣ > δ
)

≤ P̃
MN ,̂b
µN

(∣∣∣ 1

Nd

∑

x∈ΛN

Gi,t(x/N)
(
η̃i,t(x) − ρi(t, x/N)

)∣∣∣ > δ

2

)
(3.9)

+
2

δ
E
MN ,̂b

µN

(∣∣∣ 1

Nd

∑

x∈ΛN

Gi,t(x/N)
(
ηi,t(x) − η̃i,t(x)

)∣∣∣
)
. (3.10)

The hydrodynamic result in large finite volume enables to deal with (3.9). For (3.10), we have to prove
the following coupling result, which will conclude the proof of Theorem 2.1.

Proposition 3.4. For any bounded function Ĝ : [0, T ]× Λ → R3 with compact support in Λ, for all
i ∈ {0, 1, 2, 3},

lim
N→∞

E
MN ,̂b

µN

(∣∣∣ 1

Nd

∑

x∈ΛN

Gi,t(x/N)
(
η̃i,t(x)− ηi,t(x)

)∣∣∣
)
= 0

In Section 6 we shall define the appropriate coupling between (ξt, ωt)t∈[0,T ] and (ζt, χt)t∈[0,T ], and
prove Proposition 3.4.

4. Specific entropy, Dirichlet forms and proof of Lemma 3.2

4.1. Specific entropy: Definitions and results. We start by defining the two main ingredients
needed in the proof of the hydrodynamic limit: the specific entropy and the specific Dirichlet form of

a measure on Σ̂N with respect to some reference product measure. For each positive integer n and a

measure µ on Σ̂N , we denote by µn the marginal of µ on Σ̂N,n: For each (ζ, χ) ∈ Σ̂N,n,

µn(ζ, χ) = µ
{
(ξ, ω) : (ξ(x), ω(x)) = (ζ(x), χ(x)) for x ∈ ΛN,n

}
. (4.1)

We fix as reference measure a product measure νN
θ̂

:= νN
θ̂(·)

, where θ̂ = (θ1, θ2, θ3) : Λ → (0, 1)3 is a

smooth function satisfying (2.17) and (2.18). In other words (recall (2.10), (2.12)), introducing the
function θ0(.) = 1− θ1(.)− θ2(.)− θ3(.), we have

νN
θ̂(·),n

(ξ, ω) = Ẑ−1

θ̂,n
exp

{
3∑

i=1

∑

x∈ΛN,n

(
log

θi(x/N)

θ0(x/N)

)
ηi(x)

}
(4.2)

with Ẑ−1

θ̂,n
=

∏

x∈ΛN,n

θ0(x/N).
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We denote by sn(µn|νNθ̂,n) the relative entropy of µn with respect to νN
θ̂,n

defined by

sn(µn|νNθ̂,n) = sup
U∈Cb(Σ̂N,n)

{∫
U(ξ, ω)dµn(ξ, ω)− log

∫
eU(ξ,ω)dνN

θ̂,n
(η, ξ)

}
. (4.3)

In this formula Cb(Σ̂N,n) stands for the space of all bounded continuous functions on Σ̂N,n. Since the

measure νN
θ̂,n

gives a positive probability to each configuration, all the measures on Σ̂N,n are absolutely

continuous with respect to νN
θ̂,n

and we have an explicit formula for the entropy :

sn(µn|νNθ̂,n) =
∫

log (fn(ξ, ω)) dµn(ξ, ω), (4.4)

where fn is the probability density of µn with respect to νN
θ̂,n

.

Define the Dirichlet forms

Dn(µn|νNθ̂,n) = D0
n(µn|νNθ̂,n) + Db̂

n(µn|νNθ̂,n) , (4.5)

with

D0
n(µn|νNθ̂,n) =

d∑

k=1

∑

x:(x,x+ek)∈ΛN,n×ΛN,n

(D0
n)

x,x+ek(µn|νNθ̂,n) (4.6)

Db̂
n(µn|νNθ̂,n) =

∑

x∈ΛN,n∩ΓN

(Db̂
n)

x(µn|νNθ̂,n) , (4.7)

where, writing y = x+ ek,

(D0
n)

x,y(µn|νNθ̂,n) =
∫ (√

fn(ξx,y, ωx,y)−
√
fn(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω), (4.8)

(Db̂
n)

x(µn|νNθ̂,n) =
∫
cx
(
b̂(x/N), ξ, σxω

)(√
fn(ξ, σxω)−

√
fn(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω)

+

∫
cx
(
b̂(x/N), σxξ, ω

)(√
fn(σxξ, ω)−

√
fn(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω)

+

∫
cx
(
b̂(x/N), σxξ, σxω

)(√
fn(σxξ, σxω)−

√
fn(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω) .

(4.9)

We shall also need

Dn(µn|νNθ̂,n) =
∑

x∈ΛN,n

(Dn)
x(µn|νNθ̂,n) , (4.10)

where

(Dn)
x(µn|νNθ̂,n) =

∫ (
r(1 − ω(x)) + ω(x)

)(√
fn(ξ, σxω)−

√
fn(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω)

+

∫ (
βΛN,n(x, ξ, ω)(1− ξ(x)) + ξ(x)

)(√
fn(σxξ, ω)−

√
fn(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω) .

(4.11)

Define the specific entropy S(µ|νN
θ̂
) and the Dirichlet form D(µ|νN

θ̂
) of a measure µ on Σ̂N with respect

to νN
θ̂

as

S(µ|νN
θ̂
) = N−1

∑

n≥1

sn(µn|νNθ̂,n)e
−n/N , (4.12)

D(µ|νN
θ̂
) = N−1

∑

n≥1

Dn(µn|νNθ̂,n)e
−n/N . (4.13)

Notice that by the entropy convexity and since supx∈ΛN
{ξ(x)+ω(x)} is finite, for any positive measure

µ on Σ̂N and any integer n, we have

sn(µn|νNθ̂,n) ≤ C0Nn
d−1 , (4.14)
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for some constant C0 that depends on θ̂ (cf. comments following Remark V.5.6 in [14]). Moreover

there exists a positive constant C′
0 ≡ C(θ̂) such that for any positive measure µ on Σ̂N ,

S(µ|νN
θ̂
) ≤ C′

0N
d . (4.15)

Indeed, by (4.12) and (4.14) we have

S(µ|νN
θ̂
) ≤ NdC0

1

N

∑

n≥1

e−n/N
( n
N

)d−1

(4.16)

that we bound comparing the Riemann sum with an integral.

We denote by (S b̂
N (t))t∈[0,T ] the semigroup associated to the generator LN . For a measure µ on Σ̂N

we shall denote by µ(t) the time evolution of the measure µ under the semigroup S b̂
N : µ(t) = µS b̂

N (t).

We first prove some appropriate bounds on the entropy production and the Dirichlet form.

Theorem 4.1. Let θ̂ : Λ → (0, 1)3 be a smooth function satisfying (2.17) and (2.18). For any time

t ≥ 0, there exists a positive finite constant C1 ≡ C(t, θ̂, λ1, λ2, r), so that
∫ t

0

D(µ(s)|νN
θ̂
) ds ≤ C1N

d−2 .

To get this result, one needs to bound the entropy production in terms of the Dirichlet form. This
is given by the following lemma.

Lemma 4.2. There exist positive constants A0, A1 such that for any t > 0,

∂tS(µ(t)|νNθ̂ ) ≤ −A0N
2
D(µ(t)|νN

θ̂
) +A1N

d . (4.17)

4.2. Specific entropy: Proof of Theorem 4.1. We now prove Theorem 4.1 and Lemma 4.2.

Proof of Theorem 4.1. Integrate the expression (4.17) from 0 to t and use (4.15). �

Proof of Lemma 4.2. For a measure µn on Σ̂N,n, denote by f
t
n the density of µn(t) with respect to νN

θ̂,n
.

For any subset A ⊂ Λ and any function f ∈ L1(νN
θ̂
), denote by 〈f〉A the function on ({0, 1}×{0, 1})Λ\A

obtained by integrating f with respect to νN
θ̂

over the coordinates {(ξ(x), ω(x)), x ∈ A}. In the case

where A = ΛN,n+1 \ ΛN,n, we simplify the notation by 〈f〉n+1. Note that

〈f t
n+1〉n+1 = f t

n . (4.18)

Following the Kolmogorov forward equation, one has

∂tf
t
n = 〈L∗

N,n+1f
t
n+1〉n+1, (4.19)

where L
∗
N,n stands for the adjoint operator of LN,n in L2(νN

θ̂,n
). By (4.19),

∂tsn(µn(t)|νNθ̂,n) = ∂t

∫
f t
n log f

t
ndν

N
θ̂,n

=

∫
log f t

nL
∗
N,n+1f

t
n+1dν

N
θ̂,n+1

= N2

∫
f t
n+1LN,n+1(log f

t
n)dν

N
θ̂,n+1

+

∫
f t
n+1LN,n+1(log f

t
n)dν

N
θ̂,n+1

+N2

∫
f t
n+1Lb̂,N,n+1(log f

t
n)dν

N
θ̂,n+1

(4.20)

=: Ω1 + Ω2 + Ω3 . (4.21)

We now derive bounds on the three integrals Ω1, Ω2 and Ω3 in terms of the entropy and Dirichlet forms.

Step 1: Tools. To do changes of variables, it is convenient to write (4.2) as follows:

νN
θ̂(·),n

(ξ, ω) = exp
{ 3∑

j=0

∑

x∈ΛN,n

ϑj(x/N)ηj(x)
}

with ϑj(x/N) = log θj(x/N) . (4.22)
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• Changes of variables formulas : For a cylinder function f and x, y ∈ ΛN , we have

(i) for (i, j) ∈ {0, 1, 2, 3}2 such that i 6= j,

∫
ηi(x)ηj(y)f(ξ

x,y, ωx,y)dνN
θ̂
(ξ, ω) =

∫
ηj(x)ηi(y)(R

x,y
i,j (θ̂) + 1)f(ξ, ω)dνN

θ̂
(ξ, ω) (4.23)

where Rx,y
i,j (θ̂) = exp

(
(ϑj(y/N)− ϑj(x/N)) − (ϑi(y/N)− ϑi(x/N))

)
− 1 (4.24)

satisfies Rx,y
i,j (θ̂) = O(N−1). (4.25)

(ii) for (i, j) ∈ {(1, 2), (2, 1), (3, 0), (0, 3)},
∫
ηi(x)f(σ

xξ, σxω)dνN
θ̂
(ξ, ω) =

∫
ηj(x)e

(ϑi(x/N)−ϑj(x/N))f(ξ, ω)dνN
θ̂
(ξ, ω), (4.26)

(iii) for (i, j) ∈ {(1, 0), (0, 1), (3, 2), (2, 3)},
∫
ηi(x)f(σ

xξ, ω)dνN
θ̂
(ξ, ω) =

∫
ηj(x)e

(ϑi(x/N)−ϑj(x/N))f(ξ, ω)dνN
θ̂
(ξ, ω), (4.27)

(iv) for (i, j) ∈ {(1, 3), (3, 1), (2, 0), (0, 2)},
∫
ηi(x)f(ξ, σ

xω)dνN
θ̂
(ξ, ω) =

∫
ηj(x)e

(ϑi(x/N)−ϑj(x/N))f(ξ, ω)dνN
θ̂
(ξ, ω) . (4.28)

• Inequalities : For any positive a, b, A,

a(log b− log a) ≤ −
(√
b−

√
a
)2

+ (b − a), (4.29)

log a ≤ 2(
√
a− 1), (4.30)

2ab ≤ N

A
a2 +

A

N
b2. (4.31)

Consequences 4.3. (i) For all x, 1 ≤ k ≤ d such that x, x+ ek ∈ ΛN,n we have,

∫
Lx,x+ekf(ξ, ω)dνN

θ̂,n
(ξ, ω) =

1

2

∫
Lx,x+ekf(ξ, ω)dνN

θ̂,n
(ξ, ω)

+
1

2

∑

0≤i6=j≤3

∫
ηj(x)ηi(x+ ek)(R

x,x+ek
i,j (θ̂) + 1)

(
f(ξ, ω)− f(ξx,x+ek , ωx,x+ek)

)
dνN

θ̂,n
(ξ, ω)

= −1

2

∑

0≤i6=j≤3

∫
ηj(x)ηi(x+ ek)R

x,x+ek
i,j (θ̂)

(
f(ξx,x+ek , ωx,x+ek)− f(ξ, ω)

)
dνN

θ̂,n
(ξ, ω)

≤ 1

2
(D0

n)
x,x+ek(f)

+
1

8

∑

0≤i6=j≤3

∫
ηj(x)ηi(x+ ek)

(
Rx,x+ek

i,j (θ̂)
)2(√

f(ξx,x+ek , ωx,x+ek) +
√
f(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω)

≤ 1

2
(D0

n)
x,x+ek(f)

+
1

8

∑

0≤i6=j≤3

∫
ηj(x)ηi(x+ ek)

(
Rx,x+ek

i,j (θ̂)
)2(

3f(ξx,x+ek , ωx,x+ek) +
3

2
f(ξ, ω)

)
dνN

θ̂,n
(ξ, ω)



16 K. KUOCH, M. MOURRAGUI, AND E. SAADA

and then
∫

Lx,x+ekf(ξ, ω)dνN
θ̂,n

(ξ, ω)

≤ 1

2
(D0

n)
x,x+ek(f)

+
3

8

∑

0≤i6=j≤3

∫
ηj(x+ ek)ηi(x)

(
Rx,x+ek

i,j (θ̂)
)2
(Rx+ek,x

j,i (θ̂) + 1)f(ξ, ω)dνN
θ̂,n

(ξ, ω)

+
3

16

∑

0≤i6=j≤3

∫
ηj(x)ηi(x+ ek)

(
Rx,x+ek

i,j (θ̂)
)2
f(ξ, ω)dνN

θ̂,n
(ξ, ω)

≤ 1

2
(D0

n)
x,x+ek(f) + CN−2‖

√
f‖2L2(νN

θ̂,n
)

for some positive constant C, where we have used the change of variables (4.23) for the first
equality and next to last inequality, (4.31) with A = N/2 for the first and second inequalities
(there we have first expanded the square), and (4.25) twice with (2.17) for the last inequality.

(ii) Because the restriction of θ̂ to Γ is equal to b̂ (see (2.18)), (4.26)–(4.28) yield that the measure
νN
θ̂

is reversible with respect to the operator Lb̂,N .

Step 2: Bound on Ω1. We decompose the generator LN,n+1 into a part associated to exchanges within
ΛN,n and a part associated to exchanges at the boundaries, that is, denoting

Λc
N,n = ΛN,n+1 \ ΛN,n, (4.32)

we have

Ω1 = N2
d∑

k=1

∑

(x,x+ek)∈ΛN,n×ΛN,n

∫
f t
n+1Lx,x+ek(log f t

n)dν
N
θ̂,n+1

+N2
d∑

k=2

∑

(x,x+ek)∈(ΛN,n×Λc
N,n)∪(Λc

N,n×ΛN,n)

∫
f t
n+1Lx,x+ek(log f t

n)dν
N
θ̂,n+1

= N2
d∑

k=1

∑

(x,x+ek)∈ΛN,n×ΛN,n

Ω
(1)
1 (x, x + ek) (4.33)

+N2
d∑

k=2

∑

(x,x+ek)∈(ΛN,n×Λc
N,n)∪(Λc

N,n×ΛN,n)

Ω
(2)
1 (x, x + ek) . (4.34)

Successively, for the term (4.33), writing y = x+ ek,

Ω
(1)
1 (x, y) =

∫
f t
n+1(ξ, ω)

(
log f t

n(ξ
x,y, ωx,y)− log f t

n(ξ, ω)
)
dνN

θ̂,n+1
(ξ, ω)

=

∫
〈f t

n+1(ξ, ω)〉n+1 log
f t
n(ξ

x,y, ωx,y)

f t
n(ξ, ω)

dνN
θ̂,n

(ξ, ω)

≤ −(D0
n)

x,y(µn(t)|νNθ̂,n) +
∫

Lx,yf t
n(ξ, ω)dν

N
θ̂,n

(ξ, ω)

≤ −1

2
(D0

n)
x,y(µn(t)|νNθ̂,n) +

C

N2
, (4.35)

where we used (4.18) and (4.29) for the first inequality and Consequences 4.3(i) combined with the
fact that f t

n is a probability density for the second one.
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For the part (4.34) associated to the boundaries, we shall write for each pair (x, y) = (x, x + ek) ∈
(ΛN,n × Λc

N,n) ∪ (Λc
N,n × ΛN,n),

Lx,y =
∑

0≤i6=j≤3

Lx,y
i↔j (4.36)

where Lx,y
i↔j stands for the exchange of values i and j between sites x and y.

Lx,y
i↔jf(ξ, ω) = ηi(x)ηj(y)

(
f(ξx,y, ωx,y)− f(ξ, ω)

)
+ ηj(x)ηi(y)

(
f(ξx,y, ωx,y)− f(ξ, ω)

)
. (4.37)

So that,

Ω
(2)
1 (x, y) =

∑

0≤i6=j≤3

∫
ηi(x)ηj(y)f

t
n+1(ξ, ω) log

f t
n(ξ

x,y, ωx,y)

f t
n(ξ, ω)

dνN
θ̂,n+1

(ξ, ω)

+
∑

0≤i6=j≤3

∫
ηj(x)ηi(y)f

t
n+1(ξ, ω) log

f t
n(ξ

x,y, ωx,y)

f t
n(ξ, ω)

dνN
θ̂,n+1

(ξ, ω) . (4.38)

Let us detail the computation for (x, y) ∈ ΛN,n × Λc
N,n and i = 1, j = 3, the other values would be

deduced in a similar way. By a change of variables (ξ′, ω′) = (ξx,y, ωx,y) in the integral corresponding
to i = 1, j = 3 in the second term of the r.h.s. (4.38), using (4.23),(4.24), and noticing that if
η1(x)η3(y) = 1 then ξx,y = ξ, and that since f t

n does not depend on y, f t
n(ξ, ω

x,y) = f t
n(ξ, σ

xω), we
have

∫
f t
n+1(ξ, ω)Lx,y

1↔3(log f
t
n(ξ, ω))dν

N
θ̂,n+1

(ξ, ω) =

∫
η1(x)η3(y)f

t
n+1(ξ, ω) log

f t
n(ξ

x,y, ωx,y)

f t
n(ξ, ω)

dνN
θ̂,n+1

(ξ, ω)

+

∫
η1(x)η3(y)(R

x,y
1,3 (θ̂) + 1)f t

n+1(ξ
x,y, ωx,y) log

f t
n(ξ, ω)

f t
n(ξ

x,y, ωx,y)
dνN

θ̂,n+1
(ξ, ω)

=

∫
η1(x)〈η3(y)f t

n+1(ξ, ω)〉n+1 log
f t
n(ξ, σ

xω)

f t
n(ξ, ω)

dνN
θ̂,n

(ξ, ω) +O(N−1)

+

∫
η1(x)〈η3(y)f t

n+1(ξ, ω
x,y)〉n+1 log

f t
n(ξ, ω)

f t
n(ξ, σ

xω)
dνN

θ̂,n
(ξ, ω)

=

∫
η1(x)

(
〈F (1)

1,3 (ξ, ω)〉n+1 − 〈F (2)
1,3 (ξ, ω)〉n+1

)
log

f t
n(ξ, σ

xω)

f t
n(ξ, ω)

dνN
θ̂,n

(ξ, ω) +O(N−1) , (4.39)

where we used (4.25) in the second equality, and where

F
(1)
i,j (ξ, ω) = ηj(y)f

t
n+1(ξ, ω) , F

(2)
i,j (ξ, ω) = ηj(y)f

t
n+1(ξ

x,y, ωx,y) . (4.40)

If we now define

E1(i, j) := {(ξ, ω) : 〈F (1)
i,j (ξ, ω)〉n+1 ≥ 〈F (2)

i,j (ξ, ω)〉n+1, f
t
n(ξ, σ

xω) ≥ f t
n(ξ, ω)} (4.41)

E2(i, j) := {(ξ, ω) : 〈F (1)
i,j (ξ, ω)〉n+1 ≤ 〈F (2)

i,j (ξ, ω)〉n+1, f
t
n(ξ, σ

xω) ≤ f t
n(ξ, ω)} (4.42)
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the integral in the r.h.s. of (4.39) is non-negative on E1(1, 3)∪E2(1, 3). Then, thanks to the inequalities
(4.30)–(4.31), the integral in the r.h.s. of (4.39) is bounded by
∫

E1(1,3)∪E2(1,3)

η1(x)
(
〈F (1)

1,3 (ξ, ω)〉n+1 − 〈F (2)
1,3 (ξ, ω)〉n+1

)
log

f t
n(ξ, σ

xω)

f t
n(ξ, ω)

dνN
θ̂,n

(ξ, ω)

≤ 2

∫

E1(1,3)∪E2(1,3)

η1(x)
(
〈F (1)

1,3 (ξ, ω)〉n+1 − 〈F (2)
1,3 (ξ, ω)〉n+1

)
×
(√f t

n(ξ, σ
xω)

f t
n(ξ, ω)

− 1
)
dνN

θ̂,n
(ξ, ω)

≤ N

A

∫

E1(1,3)∪E2(1,3)

η1(x)
(√

〈F (1)
1,3 (ξ, ω)〉n+1 −

√
〈F (2)

1,3 (ξ, ω)〉n+1

)2
dνN

θ̂,n
(ξ, ω)

+
A

N

∫

E1(1,3)∪E2(1,3)

(√
〈F (1)

1,3 (ξ, ω)〉n+1 +

√
〈F (2)

1,3 (ξ, ω)〉n+1

)2
×
(√f t

n(ξ, σ
xω)

f t
n(ξ, ω)

− 1
)2
dνN

θ̂,n
(ξ, ω)

=: I1 + I2 . (4.43)

In order to get rid of N in I1, we use (4.18) to introduce a new sum in m, and to rewrite I1 as

I1 =
N

A

1

N

n+N∑

m=n+1

∫

E1(1,3)∪E2(1,3)

η1(x)
(√

〈η3(y)f t
m(ξx,y, ωx,y)〉ΛN,m\ΛN,n

−
√
〈η3(y)f t

m(ξ, ω)〉ΛN,m\ΛN,n

)2
dνN

θ̂,m
(ξ, ω)

(4.44)

We now apply Cauchy-Schwarz inequality to bound I1 by a piece of the specific Dirichlet form,

I1 ≤ 1

A

n+N∑

m=n+1

∫

E1(1,3)∪E2(1,3)

η1(x)
〈
η3(y)

(√
f t
m(ξx,y, ωx,y)−

√
f t
m(ξ, ω)

)2〉
ΛN,m\ΛN,n

dνN
θ̂,m

(ξ, ω)

=
1

A

n+N∑

m=n+1

∫

E1(1,3)∪E2(1,3)

η1(x)η3(y)
(√

f t
m(ξx,y, ωx,y)−

√
f t
m(ξ, ω)

)2
dνN

θ̂,m
(ξ, ω)

≤ 1

A

n+N∑

m=n+1

∫
η1(x)η3(y)

(√
f t
m(ξx,y, ωx,y)−

√
f t
m(ξ, ω)

)2
dνN

θ̂,m
(ξ, ω) . (4.45)

Now, to bound I2, we separate the integrations on E1(1, 3) and on E2(1, 3). We first look at the
integral on E1(1, 3), to get

A

N

∫

E1(1,3)

η1(x)
(√

〈F (1)
1,3 (ξ, ω)〉n+1 +

√
〈F (2)

1,3 (ξ, ω)〉n+1

)2(
√
f t
n(ξ, σ

xω)

f t
n(ξ, ω)

− 1
)2
dνN

θ̂,n
(ξ, ω)

≤ 4A

N

∫

E1(1,3)

η1(x)
〈F (1)

1,3 (ξ, ω)〉n+1

f t
n(ξ, ω)

(√
f t
n(ξ, σ

xω)−
√
f t
n(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω)

≤ 4A

N

∫

E1(1,3)

η1(x)
(
f t
n(ξ, σ

xω)− 2
√
f t
n(ξ, σ

xω)
√
f t
n(ξ, ω) + f t

n(ξ, ω)
)
dνN

θ̂,n
(ξ, ω)

≤ 4A

N

∫

E1(1,3)

η1(x)
(
f t
n(ξ, σ

xω)− f t
n(ξ, ω)

)
dνN

θ̂,n
(ξ, ω)

≤ 4A

N

∫
η1(x)f

t
n(ξ, σ

xω)dνN
θ̂,n

(ξ, ω) =
4A

N

∫
η3(x)e

(ϑ1(x/N)−ϑ3(x/N))f t
n(ξ, ω)dν

N
θ̂,n

(ξ, ω)

≤ AC1

N
(4.46)

for some positive constant C1. We have used the definition (4.41) of E1(1, 3) for the first and third

inequalities, the definition (4.40) of F
(1)
1,3 (ξ, ω) with the bound 〈F (1)

1,3 (ξ, ω)〉n+1 ≤ 〈f t
n+1(ξ, ω)〉n+1 =

f t
n(ξ, ω) for the second inequality, (4.28) for the equality, (4.22), (2.17) and that f t

n is a probability
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density to conclude.

We now look at the integral on E2(1, 3), to get

A

N

∫

E2(1,3)

η1(x)
(√

〈F (1)
1,3 (ξ, ω)〉n+1 +

√
〈F (2)

1,3 (ξ, ω)〉n+1

)2(
√
f t
n(ξ, σ

xω)

f t
n(ξ, ω)

− 1
)2
dνN

θ̂,n
(ξ, ω)

≤ 4A

N

∫

E2(1,3)

η1(x)
〈F (2)

1,3 (ξ, ω)〉n+1

f t
n(ξ, ω)

(√
f t
n(ξ, σ

xω)−
√
f t
n(ξ, ω)

)2
dνN

θ̂,n
(ξ, ω)

≤ 8A

N

∫

E2(1,3)

η1(x)
〈F (2)

1,3 (ξ, ω)〉n+1

f t
n(ξ, ω)

f t
n(ξ, ω)dν

N
θ̂,n

(ξ, ω)

≤ 8A

N

∫
η3(x)η1(y)(R

x,y
1,3 (θ̂) + 1)f t

n+1(ξ, ω)dν
N
θ̂,n+1

(ξ, ω)

≤ AC′
1

N
(4.47)

for some positive constant C′
1. We have used the definition (4.42) of E2(1, 3) for the first and second

inequalities, the definition (4.40) of F
(2)
1,3 (ξ, ω) with (4.23) for the third inequality, and (4.22), (2.17)

and finally that f t
n is a probability density.

To conclude to an upper bound of Ω1, combining (4.35) with (4.45), (4.46), (4.47), we get

Ω1 ≤ −N
2

2
D0

n(µn(t)|νNθ̂,n) + (Cn+ C′′
1AN)Nnd−2

+
N2

A

N∑

ℓ=1

d∑

k=2

∑

(x,x+ek)∈(ΛN,n×Λc
N,n)∪(Λc

N,n×ΛN,n)

(D0
n+ℓ)

x,x+ek(µn+ℓ(t)|νNθ̂,n+ℓ
) . (4.48)

Step 3: Bound on Ω2. We decompose the generator of the reaction part into a part involving only
sites within ΛN,n and a part involving sites in Λc

N,n. Recalling (3.2), (3.3), we have

Ω2 =

∫
f t
n+1LN,n+1(log f

t
n)dν

N
θ̂,n+1

=

∫
f t
n+1LN,n(log f

t
n)dν

N
θ̂,n+1

+Ω
(1)
2 .

Proceeding as for (4.35), we get
∫
f t
n+1LN,n log f

t
ndν

N
θ̂,n+1

≤ −Dn(µn(t)|νθ̂,n) +
∫

LN,nf
t
ndν

N
θ̂,n

. (4.49)

The second term on the r.h.s. is of order O(Nnd−1) since the rates βΛN,n(., .) are bounded. And,
denoting ∂ΛN,n = {x ∈ ΛN,n : ∃y ∈ Λc

N,n, ‖y − x‖ = 1},

Ω
(1)
2 =

∑

x∈∂ΛN,n

∫
f t
n+1(ξ, ω)

(
λ1

∑

y∈Λc
N,n

‖y−x‖=1

ξ(y)(1 − ω(y))

+λ2
∑

y∈Λc
N,n

‖y−x‖=1

ξ(y)ω(y)
)
(1− ξ(x)) log

f t
n(σ

xξ, ω)

f t
n(ξ, ω)

dνN
θ̂,n+1

(ξ, ω)

which is of order O(Nnd−2) in an analogous way to the computation done for Ω
(2)
1 , and using that the

rates βΛN,n(., .) are bounded, inequalities (4.30)–(4.31). Combined with (4.49), one has

Ω2 ≤ −Dn(µn(t)|νNθ̂,n) +K2Nn
d−1 . (4.50)

Step 4: Bound on Ω3. It is in this step that the reversibility of the measure νN
θ̂,n

with respect to the
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generator Lb̂,N,n plays a crucial role. It implies that, for any x ∈ ΛN,n ∩ ΓN ,
∫
Lx
b̂,N

f t
ndν

N
θ̂,n

= 0. (4.51)

Since Lb̂,N,n+1 =
∑

x∈ΛN,n+1∩ΓN

Lx
b̂,N

, using (4.18) and inequality (4.29) we have

Ω3 = N2
∑

x∈ΛN,n+1∩ΓN

∫
f t
n+1L

x
b̂,N

(log f t
n)dν

N
θ̂,n+1

= N2
∑

x∈ΛN,n∩ΓN

∫
〈f t

n+1(ξ, ω)〉n+1L
x
b̂,N

(log f t
n)dν

N
θ̂,n

≤ −N2Db̂
n(µn(t)|νNθ̂,n) +N2

∑

x∈ΛN,n∩ΓN

∫
Lx
b̂,N

f t
ndν

N
θ̂,n

= −N2Db̂
n(µn(t)|νNθ̂,n) , (4.52)

where we used that f t
n does not depend on Λc

N,n for the second equality. Thanks to (4.51), in the last
equality we got rid of a term with an order too large in N .

Gathering (4.48), (4.50) and (4.52) gives

∂tsn(µn(t)|νNθ̂,n) ≤ −N
2

2
D0

n(µn(t)|νNθ̂(·),n)

+
N2

A

N∑

ℓ=1

d∑

k=2

∑

(x,x+ek)∈(ΛN,n×Λc
N,n)∪(Λc

N,n×ΛN,n)

(D0
n+ℓ)

x,x+ek(µn+ℓ(t)|νNθ̂,n+ℓ
)

−Dn(µn(t)|νNθ̂,n)−N2Db̂
n(µn(t)|νNθ̂,n) +

(
(C +K2)n+ C′′

1AN
)
Nnd−2 . (4.53)

Note that for any M >> N large enough,

M∑

n=1

1

N
e−n/N

N∑

ℓ=1

d∑

k=2

∑

(x,y)∈ΛN,n×Λc
N,n

y∈{x+ek,x−ek}

(D0
n+ℓ)

x,y(µn+ℓ(t)|νNθ̂,n+ℓ
)

≤ K ′
1

M+N∑

n=1

1

N
e−n/ND0

n(µn(t)|νNθ̂,n) ≤ K ′
1D(µ(t)|νN

θ̂
)

(4.54)

for some positive constant K ′
1.

To conclude the proof of the Lemma it remains to multiply (4.53) by N−1 exp(−n/N) and sum over
n ∈ N. Using (4.54) and choosing (for instance) A = 4K ′

1 on one hand, and dealing with the last term
on the r.h.s. of (4.53) as in (4.16) on the other hand, we get (4.17). �

4.3. Replacement lemma in the bulk (proof of Lemma 3.2). Fix G ∈ C∞
c ([0, T ] × Λ,R), let

K > 0, δ > 0 be such that the (compact) support of G is contained in the box Λ(1 − δ,K) :=

[−1 + δ, 1− δ]× [−K,K]d−1. Let 0 < a < δ/2, and let θ̂a = (θa,1, θa,2, θa,3) : Λ → (0, 1)3 be a smooth

function, equal in Λ(1− a,K) to some constant, say α̂, and to b̂ at the boundaries. Therefore

E
N,̂b
µN

( 1

Nd

∑

x∈ΛN

∫ T

0

|Gs(x/N)|τxVǫN (ξs, ωs)ds
)
≤ ‖G‖∞E

N,̂b
µN

(
1

Nd

∑

x∈Λ⌊N(1−δ)⌋,NK

∫ T

0

τxVǫN (ξs, ωs)ds

)
.

Denote by f̄T = T−1

∫ T

0

f s
N(K+2)ds, where f

t
N(K+2) stands for the density of µN (t) with respect to

νN
θ̂a,N(K+2)

. By Theorem 4.1, there exists some positive constant C1 such that the expectation on the
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above r.h.s. is bounded by

T

Nd

∫ ∑

x∈Λ⌊N(1−δ)⌋,NK

τxVǫN (ξ, ω)f̄T (ξ, ω)dνN
θ̂a,N(K+2)

(ξ, ω)− γTN2−dDN(K+2)(f̄
T ) + γC1,

for all positive γ. To prove the Lemma, it thus remains to show that for all positive γ, a,

lim
ǫ→0

lim
N→∞

sup
f

(
1

Nd

∫ ∑

x∈Λ⌊N(1−δ)⌋,NK

τxVǫN (ξ, ω)f(ξ, ω)dνNα̂,N(K+2)(ξ, ω)−γN2−dDN(K+2)(f)

)
= 0,

where the supremum is carried over all densities f with respect to νNα̂,N(K+2) such that DN(K+2)(f) ≤
CNd−2. This is a consequence of the one and two blocks estimates stated below (see [12, 14] for
the now standard proofs). The one block estimate ensures the average of local functions in some
large microscopic boxes can be replaced by its mean with respect to the grand-canonical measure
parametrized by the particles density in these boxes. While the two blocks estimate ensures the
particles density over large microscopic boxes is close to the one over small macroscopic boxes:

Lemma 4.4 (One block estimate). Fix a constant profile ρ̂ = (ρ1, ρ2, ρ3) ∈ (0, 1)3,

lim
k→∞

lim
N→∞

sup
f :D0

N(K+2)
(f)≤CNd−2

∫
1

Nd

∑

x∈ΛN,NK

τxVk(ξ, ω)f(ξ, ω)dν
N
ρ̂,N(K+2)(ξ, ω) = 0 ,

where for k ∈ N, Vk(ξ, ω) was defined in (3.8).

Lemma 4.5 (Two blocks estimate). Given a constant profile ρ̂ = (ρ1, ρ2, ρ3) ∈ (0, 1)3, for i ∈ {1, 2, 3},

lim
k→∞

lim
ǫ→0

lim
N→∞

sup
f :D0

N(K+2)
(f)≤CNd−2

sup
|h|≤ǫN

1

Nd

∫ ∑

x∈ΛN,NK

∣∣ηki (x + h)− ηǫNi (x)
∣∣f(ξ, ω)dνNρ̂,N(K+2)(ξ, ω) = 0.

5. Hydrodynamic limit in large finite volume: Proof of Proposition 3.3

In this section, we prove the last result to derive the hydrodynamic limit in large finite volume (that

is of size MN = N1+ 1
d ), Proposition 3.3. As mentioned in Remark 3.1, Proposition 3.3 is the only

difference in our proof of hydrodynamics with the case of infinite volume dynamics.

5.1. Estimates for finite volume. Next estimates will be useful to prove Proposition 3.3.

Lemma 5.1. For a smooth profile θ̂ : Λ → (0, 1)3 satisfying (2.17) and (2.18), there exist positive

constants A0, A
′
0 and A1 depending only on θ̂ such that for any c > 0, for any cylinder function

f ∈ L2(νN
θ̂,MN

),

〈Lb̂,N,MN

√
f,
√
f〉 = −Db̂

MN
(f), (5.1)

〈LN,MN

√
f,
√
f〉 ≤ −A0D0

MN
(f) +A′

0|ΛN,MN |N−2‖
√
f‖2L2(νN

θ̂,MN
), (5.2)

〈LN,MN

√
f,
√
f〉 ≤ A1|ΛN,MN |‖

√
f‖2L2(νN

θ̂,MN
), (5.3)

where |ΛN,MN | = (2N + 1)(2MN + 1)d−1 stands for the cardinality of the set ΛN,MN .

Proof. The reversibility of νN
θ̂,MN

with respect to the generator Lb̂,N,MN
yields (5.1).
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To prove (5.2), remark that for all A,B > 0, A(B −A) = −1

2
(B −A)2 +

1

2
(B2 −A2), so that

〈LN,MN

√
f,
√
f〉 =

d∑

k=1

∑

x,x+ek∈ΛN,MN

∫ √
f(ξ, ω)

(√
f(ξx,x+ek , ωx,x+ek)−

√
f(ξ, ω)

)
dνN

θ̂,MN
(ξ, ω)

= −1

2
D0

MN
(f) +

1

2

d∑

k=1

∑

x,x+ek∈ΛN,MN

∫
Lx,x+ekf(ξ, ω)dνN

θ̂,MN
(ξ, ω) . (5.4)

By Consequences 4.3(i), we have

1

2

∫
LN,MN f(ξ, ω)dν

N
θ̂,MN

(ξ, ω) ≤ 1

4
D0

MN
(f) + C|ΛN,MN |N−2‖

√
f‖2L2(νN

θ̂,MN
) (5.5)

for some positive constant C. Putting together (5.4) and (5.5) we obtain (5.2).
To prove (5.3), we have

〈LN,MN

√
f,
√
f〉 = I1 + I2

:=
∑

x∈ΛN,MN

∫ (
βΛN,MN

(x, ξ, ω)(1 − ξ(x)) + ξ(x)
)√

f(ξ, ω)
(√

f(σxξ, ω)−
√
f(ξ, ω)

)
dνN

θ̂,MN
(ξ, ω)

+
∑

x∈ΛN,MN

∫ (
r(1 − ω(x)) + ω(x)

)√
f(ξ, ω)

(√
f(ξ, σxω)−

√
f(ξ, ω)

)
dνN

θ̂,MN
(ξ, ω) .

For I1, using first that all the rates are bounded, then (4.31) with A = 2N , we have

I1 ≤ C(λ1, λ2, r)
∑

x∈ΛN,MN

∫ (√
f(ξ, ω)

√
f(σxξ, ω) + f(ξ, ω)

)
dνN

θ̂,MN
(ξ, ω)

≤ C(λ1, λ2, r)
∑

x∈ΛN,MN

∫ (
f(ξ, ω) +

1

4
f(σxξ, ω) + f(ξ, ω)

)
dνN

θ̂,MN
(ξ, ω)

for some constant C(λ1, λ2, r). We conclude using the change of variables (4.27) and (2.17). We
proceed similarly for I2, using the change of variables (4.28). �

5.2. Boundary conditions in large finite volume. Recall that µN stands for the initial measure

and µN,MN for the marginal of µN on Σ̂N,MN (cf. (4.1)). Recall from Section 3 that we denoted by

P̃MN ,̂b
µN

the law of the finite volume process (ζt, χt)t∈[0,T ], by ẼMN ,̂b
µN

the corresponding expectation and
by (η̃1, η̃2, η̃3) then η̃0 the associated conserved quantities for the exchange dynamics as in (2.6)–(2.7).

Proof of Proposition 3.3. Let θ̂ = (θ1, θ2, θ3) : Λ → (0, 1)3 be a smooth profile satisfying (2.17) and

(2.18). Denote by νN
θ̂,ΛN\ΛN,MN

the marginal of νN
θ̂

on
(
{0, 1} × {0, 1}

)ΛN\ΛN,MN , and by µ̃N,MN

θ̂
the

measure on Σ̂N given by

µ̃N,MN

θ̂
= µN,MN ⊗ νN

θ̂,ΛN\ΛN,MN

. (5.6)

LetH : [0, T ]×Γ→ R be a bounded function with compact support contained in {−1, 1}×[−K,K]⊂ Γ
for some K > 0; let δ > 0, and i ∈ {1, 2, 3}. To shorten the notation, we denote

BHt

i (ζt, χt) =
1

Nd−1

∑

x∈ΛN,MN
∩ΓN

Ht(x/N)
(
η̃i,t(x)− bi(x/N)

)

=
1

Nd−1

∑

x∈ΛN,NK∩ΓN

Ht(x/N)
(
η̃i,t(x)− bi(x/N)

)
.
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Because H has compact support in Γ, we have (cf. (5.6)),

P̃
MN ,̂b
µN

(∣∣∣
∫ T

0

BHt

i (ζt, χt)dt
∣∣∣ > δ

)
= P̃

MN ,̂b

µ̃
N,MN

θ̂

(∣∣∣
∫ T

0

BHt

i (ζt, χt)dt
∣∣∣ > δ

)
.

To prove the proposition it is enough to show that

lim
N→∞

1

|ΛN,MN |
log P̃MN ,̂b

µ̃
N,MN

θ̂

(∣∣∣
∫ T

0

BHt

i (ζt, χt)dt
∣∣∣ > δ

)
= −∞ .

Since the Radon-Nikodym derivative
dµN,MN

dνN

θ̂,MN

is bounded by exp(NMd−1
N K1) for some positive constant

K1, by (5.6) it is enough to show that

lim
N→∞

1

|ΛN,MN |
log P̃MN ,̂b

νN

θ̂

(∣∣∣
∫ T

0

BHt

i (ζt, χt)dt
∣∣∣ > δ

)
= −∞ .

By exponential Chebyshev’s inequality, the expression in the last limit is bounded above by

−aδ + 1

|ΛN,MN |
log ẼMN ,̂b

νN

θ̂

exp
(
a|ΛN,MN |

∣∣∣
∫ T

0

BHt

i (ζt, χt)dt
∣∣∣
)

for any a > 0. Using that e|α| ≤ eα + e−α and

lim
L
L−1 log

(
aL + bL

)
≤ max

(
lim
L
L−1 log aL, lim

L
L−1bL

)
,

one can pull off the absolute value even if it means replacing H by −H . Therefore, to prove the
proposition, we have to show that, for any bounded function H , there exists a positive constant C > 0,
such that for any a > 0,

lim
N→+∞

1

|ΛN,MN |
log ẼMN ,̂b

νN

θ̂

exp
(
a|ΛN,MN |

∫ T

0

BHt

i (ζt, χt)dt
)
≤ C

and then to let a ↑ +∞.
By Feynman-Kac formula,

1

|ΛN,MN |
log ẼMN ,̂b

νN

θ̂

exp
(
a|ΛN,MN |

∫ T

0

BHt

i (ζt, χt)dt
)

≤
∫ T

0

sup
f

{∫
aBHt

i (ζ, χ)f(ζ, χ)dνN
θ̂,MN

(ζ, χ) + |ΛN ;MN |−1〈LN,MN

√
f,
√
f〉
}
dt ,

(5.7)

where the supremum is carried over all densities f with respect to νN
θ̂,MN

. By Lemma 5.1,

〈LN,MN

√
f,
√
f〉 ≤ −N2DMN (f) +A0|ΛN,MN | ≤ −N2Db̂

MN
(f) +A0|ΛN,MN | (5.8)

for some positive constant A0, where DMN and Db̂
MN

are defined in (4.5)–(4.10).

To evaluate
∫
aBHt

i (ζ, χ)f(ζ, χ)dνN
θ̂,MN

(ζ, χ), observe first that for all x ∈ ΛN,MN , 1 ≤ i ≤ 3,

η̃i(x) − bi(x/N) = η̃i(x)(1 − bi(x/N))− bi(x/N)(1 − η̃i(x))

=
∑

0≤j 6=i≤3

(
η̃i(x)bj(x/N)− bi(x/N)η̃j(x/N)

)
. (5.9)
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We detail for instance the case i = 1, others follow the same way. Thanks to (5.9), changes of variables
given by (4.26)–(4.28) with (2.18), we have

∫
aBHt

1 (ζ, χ)f(ζ, χ)dνN
θ̂,MN

(ζ, χ) =
a

Nd−1

∑

x∈ΛN,NK∩ΓN

∫
Ht(x/N)

((
η̃1(x)b0(x/N)− b1(x/N)η̃0(x)

)

+
(
η̃1(x)b3(x/N)− b1(x/N)η̃3(x)

)
+
(
η̃1(x)b2(x/N)− b1(x/N)η̃2(x)

))
f(ζ, χ)dνN

θ̂,MN
(ζ, χ)

=
a

Nd−1

∑

x∈ΛN,NK∩ΓN

∫
Ht(x/N)

(
b1(x/N)η̃0(x)

(
f(σxζ, χ)− f(ζ, χ)

)

+ b1(x/N)η̃3(x)
(
f(ζ, σxχ)− f(ζ, χ)

)
+ b1(x/N)η̃2(x)

(
f(σxζ, σxχ)− f(ζ, χ)

))
dνN

θ̂,MN
(ζ, χ).

(5.10)

Next, we use (4.31) with A = |ΛN,MN |aN−d, and that f is a probability density to get, by a compu-
tation similar to the one done for Consequences 4.3(i),

∫
aBHt

1 (ζ, χ)f(ζ, χ)dνN
θ̂,MN

(ζ, χ)

≤ N2

2|ΛN,MN |
∑

x∈ΛN,NK∩ΓN

∫
b1(x/N)

(
η̃0(x)

(√
f(σxζ, χ)−

√
f(ζ, χ)

)2

+ η̃3(x)
(√

f(ζ, σxχ)−
√
f(ζ, χ)

)2
+ η̃2(x)

(√
f(σxζ, σxχ)−

√
f(ζ, χ)

)2
)
dνN

θ̂,MN
(ζ, χ)

+
C′

1a
2

2

|ΛN,MN |
Nd+1

||H2||∞ , (5.11)

where C′
1 is some positive constant. Note that the above sum is a part of the Dirichlet form for the

boundaries Db̂
MN

(f) (see (4.7), (4.9)).
Recollecting all previous estimates, that is (5.7), (5.8), (5.11) and the similar ones forBi, i ∈ {0, 2, 3},

we proved that

1

|ΛN,MN |
log ẼMN ,̂b

µN
exp

(
a|ΛN,MN |

∣∣∣
∫ T

0

BHt

i (ζt, χt)dt
∣∣∣
)
≤ T

C′
1a

2

2

|ΛN,MN |
Nd+1

||H2||∞ + TA0 . (5.12)

Because MN = N1+ 1
d , the r.h.s. of (5.12) goes to TA0 when N ↑ +∞, which concludes the proof. �

6. Hydrodynamic limit in infinite volume

6.1. The coupled process. We couple (ζt, χt)t∈[0,T ] to our original dynamics in infinite volume

(ξt, ωt)t∈[0,T ]. The generator LN of the coupled process is given by

LN = N2LN + LN +N2Lb̂,N .

For this coupling, we shall come back to the initial equivalent formulation of configurations: η ∈
{0, 1, 2, 3}ΛN corresponds to (ξ, ω), and η̃ ∈ {0, 1, 2, 3}ΛN to (ζ, χ). For x ∈ ΛN , k ∈ {1, ..., d}, define
ηx,x+ek to be the configuration obtained from η by exchanging the values of η at x and x+ ek. Notice
that via (2.6), ηx,x+ek is equivalent to (ξx,x+ek , ωx,x+ek).

Define the coupled generator for the exchange part by

LN = L3

N + L4

N , (6.1)
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where, for a cylinder function f on ({0, 1, 2, 3}ΛN )2,

L3

Nf(η̃, η) =

d∑

k=1

∑

x,x+ek∈ΛN,MN

L3,(x,x+ek)
f(η̃, η) with

L3,(x,x+ek)
f(η̃, η) =

[
f(η̃x,x+ek , ηx,x+ek)− f(η̃, η)

]
, (6.2)

L4

Nf(η̃, η) =
d∑

k=2

∑

x∈A(k)

L4,(x,x+ek)
f(η̃, η) with

L4,(x,x+ek)
f(η̃, η) =

[
f(η̃, ηx,x+ek)− f(η̃, η)

]
, (6.3)

where A(k) = {x ∈ ΛN : (x, x + ek) /∈ ΛN,MN × ΛN,MN}. This means that either (x, x + ek) ∈
(ΛN,MN ×Λc

N,MN
) ∪ (Λc

N,MN
×ΛN,MN ), or (x /∈ ΛN,MN and x+ ek /∈ ΛN,MN ) (recall that Λ

c
N,MN

was

defined in (4.32)).

For 1 ≤ j ≤ 3 and x ∈ ΛN , denote by ηjx the configuration obtained from η by flipping the state
of x to j. A (basic) coupling for the reaction part is given by LN (see [18, Proposition 4.2]):

LN = L
1,a

N + L
1,b

N + L
2

N , (6.4)

where L
1,a

N stands for the generator with coupled flips, L
1,b

N for uncoupled flips within ΛN,MN and L
2

N
for uncoupled flips occurring at the boundary of ΛN,MN or outside ΛN,MN , that is,

L
1,a
N f(η̃, η) =

∑

x∈ΛN,MN

L
1,a,x
N f(η̃, η) with

L
1,a,x
N f(η̃, η) =

{(
η̃0(x)η0(x)βMN

(x, η̃, η) + η3(x)η̃3(x)
)}[

f(η̃1
x, η

1
x)− f(η̃, η)

]

+
{
η̃1(x)η1(x) + η̃2(x)η2(x)

}[
f(η̃0

x, η
0
x)− f(η̃, η)

]
+

{
rη̃0(x)η0(x) + η̃3(x)η3(x)

}[
f(η̃2

x, η
2
x)− f(η̃, η)

]

+
{
η̃2(x)η2(x)βMN

(x, η̃, η) + rη̃1(x)η1(x)
}[

f(η̃3
x, η

3
x)− f(η̃, η)

]

+
{
η̃2(x)η0(x)βMN

(x, η̃, η)
}[

f(η̃3
x, η

1
x)− f(η̃, η)

]
+

{
η̃0(x)η2(x)βMN

(x, η̃, η)
}[

f(η̃1
x, η

3
x)− f(η̃, η)

]

+
{
η̃2(x)η3(x)

}[
f(η̃0

x, η
1
x)− f(η̃, η)

]
+

{
η̃3(x)η2(x)

}[
f(η̃1

x, η
0
x)− f(η̃, η)

]

+
{
η̃3(x)η1(x)

}[
f(η̃2

x, η
0
x)− f(η̃, η)

]
+

{
η̃1(x)η3(x)

}[
f(η̃0

x, η
2
x)− f(η̃, η)

]

+
{
η̃1(x)η0(x)r

}[
f(η̃3

x, η
2
x)− f(η̃, η)

]
+

{
η̃0(x)η1(x)r

}[
f(η̃2

x, η
3
x)− f(η̃, η)

]
, (6.5)

Let βMN (·, ·) be the growth rate on ΛN,MN defined via (2.6) and (2.15) by

βMN (x, η) = βΛN,MN
(x, η) =

∑

y∈ΛN,MN
‖y−x‖=1

{
λ1η1(y) + λ2η3(y)

}
,

and

βMN
(x, η̃, η) = βMN (x, η̃) ∧ βMN (x, η),

β
(1)

MN
(x, η̃, η) = βMN (x, η̃)− βMN

(x, η̃, η), β
(2)

MN
(x, η̃, η) = βMN (x, η) − βMN

(x, η̃, η).
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Then

L
1,b
N f(η̃, η) =

∑

x∈ΛN,MN

L
1,b,x
N f(η̃, η) with

L
1,b,x
N f(η̃, η) =

{
η̃0(x)

(
η0(x)β

(1)

MN
(x, η̃, η) +

(
η1(x) + η3(x) + η2(x)

)
βMN (x, η̃)

)

+ η̃3(x)
(
η0(x) + η1(x)

)}[
f(η̃1

x, η)− f(η̃, η)
]

+
{
η0(x)

((
η̃0(x) + η̃2(x)

)
β
(2)

MN
(x, η̃, η) +

(
η̃1(x) + η̃3(x)

)
βMN (x, η)

)
+ η̃0(x)η3(x)

}

×

[
f(η̃, η1

x)− f(η̃, η)
]

+
{
η̃2(x)

((
η2(x) + η0(x)

)
β
(1)

MN
(x, η̃, η) +

(
η1(x) + η3(x)

)
βMN (x, η̃)

)
+ η̃1(x)

(
η2(x) + η3(x)

)
r
}

×

[
f(η̃3

x, η)− f(η̃, η)
]

+
{
η2(x)

((
η̃0(x) + η̃2(x)

)
β
(2)

MN
(x, η̃, η) +

(
η̃1(x) + η̃3(x)

)
βMN (x, η)

)
+

(
η̃2(x) + η̃3(x)

)
η1(x)r

}

×

[
f(η̃, η3

x)− f(η̃, η)
]

+
{
η̃2(x)

(
η0(x) + η1(x)

)
+ η̃1(x)

(
η0(x) + η2(x)

)}[
f(η̃0

x, η)− f(η̃, η)
]

+
{(

η̃2(x) + η̃3(x)
)
η0(x)r +

(
η̃0(x) + η̃2(x)

)
η3(x)

}[
f(η̃, η2

x)− f(η̃, η)
]

+
{(

η̃0(x) + η̃2(x)
)
η1(x) +

(
η̃0(x) + η̃1(x)

)
η2(x)

}[
f(η̃, η0

x)− f(η̃, η)
]

+
{(

η̃0(x)
(
η3(x) + η2(x)

)
r + η̃3(x)

(
η0(x) + η2(x)

)}[
f(η̃2

x, η)− f(η̃, η)
]
, (6.6)

Finally

L
2

Nf(η̃, η) =
∑

x∈ΛN,MN

L
2,a,x

N f(η̃, η) +
∑

x/∈ΛN,MN

L
2,b,x

N f(η̃, η), with (6.7)

L
2,a,x

N f(η̃, η) = η0(x)β
out
N,MN

(x, η)
[
f(η̃, η1x)− f(η̃, η)

]
+ η0(x)β

out
N,MN

(x, η)
[
f(η̃, η3x)− f(η̃, η)

]

where, for x ∈ ΛN,MN , β
out
N,MN

(x, η) =
∑

y∈Λc
N,MN

‖y−x‖=1

{
λ1η1(y) + λ2η3(y)

}
; and, for x /∈ ΛN,MN , the transi-

tions produce changes only on the second configuration η, in a similar way as in L
1,a

N + L
1,b

N , but with

βMN replaced by βΛN . Since we shall not use this second part of the generator L
2

N in our computations,
we do not detail it.

Note that the generatorLb̂,N (see (2.20)) can be rewritten as, for a cylinder function g on {0, 1, 2, 3}ΛN

Lb̂,Ng(η) =
∑

x∈ΓN

3∑

j=0

bj(x/N)
(
1− ηj(x)

)(
g(ηjx)− g(η)

)

=
∑

x∈ΓN

3∑

j=0

bj(x/N)
(
g(ηjx)− g(η)

)
. (6.8)

We construct now a coupled dynamics in which, on each site x, the state in both η and η̃ changes to
the same state j at rate bj(x/N) when possible, that is within ΛN,MN :

Lb̂,N = L
1

b̂,N + L
2

b̂,N where (6.9)

L
1

b̂,N =
∑

x∈ΓN∩ΛN,MN

L
1,x

b̂,N with L
1,x

b̂,Nf(η̃, η) =

3∑

i=0

bi(x/N)
(
f(η̃ix, η

i
x)− f(η̃, η)

)
(6.10)

L
2

b̂,N =
∑

x:x∈ΓN,

x/∈ΛN,MN

L
2,x

b̂,N with L
2,x

b̂,Nf(η̃, η) =

3∑

i=0

bi(x/N)
(
f(η̃, ηix)− f(η̃, η)

)
. (6.11)
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We now have all the material to investigate the specific entropy and Dirichlet form for the coupled

process. Recall from Section 4 that νN
θ̂

:= νN
θ̂(·)

is a product probability measure on Σ̂N , where

θ̂ = (θ1, θ2, θ3) : Λ → (0, 1)3 is a smooth function such that θ̂(·)
∣∣
Γ
= b̂(·). Let µ be a probability

measure on Σ̂N and denote by µ = µ ⊗ µ, νN
θ̂

= νN
θ̂

⊗ νN
θ̂

the product measures on Σ̂N × Σ̂N . As in

(4.3) and (4.4), for a positine integer n > 1, we define the entropy of µ with respect to νN
θ̂

by

sn(µn|νNθ̂,n) =
∫

log
(
fn(η̃, η)

)
dµn(η̃, η), (6.12)

where fn is the probability density of µn with respect to νN
θ̂,n

, and µn (resp. νN
θ̂,n

) stands for the

marginal of µ (resp. νN
θ̂
) on Σ̂N,n × Σ̂N,n (see (4.1)).

Let LN,n denote the restriction of the generator LN to the box ΛN,n:

LN,n = N2LN,n + LN,n + N2Lb̂,N,n with (6.13)

LN,n =

d∑

k=1

∑

x,x+ek∈ΛN,n

{
1{x,x+ek∈ΛN,MN

}L
3,(x,x+ek)

+ 1{x∈A(k)}L
4,(x,x+ek)}

(6.14)

LN,n =
∑

x∈ΛN,n

{
1{x∈ΛN,MN

}(L
1,a,x

N + L
1,b,x

N + L
2,a,x

N ) + 1{x/∈ΛN,MN
}L

2,b,x

N

}
(6.15)

Lb̂,N,n =
∑

x∈ΛN,n∩ΓN

{
1{x∈ΓN∩ΛN,MN

}L
1,x

b̂,N + 1{x∈ΓN ,x/∈ΛN,MN
}L

2,x

b̂,N

}
, (6.16)

Define the Dirichlet forms

Dn(µn|νNθ̂,n) = D0

n(µn|νNθ̂,n) + D
b̂

n(µn|νNθ̂,n) , (6.17)

with each one defined similarly to (4.6)–(4.11), but relatively to (6.14)–(6.16).
Define the specific entropy S(µ|νN

θ̂
) and the Dirichlet form D(µ|νN

θ̂
) of a measure µ with respect to

νN
θ̂

as

S(µ|νN
θ̂
) = N−1

∑

n≥1

sn(µn|νNθ̂,n)e
−n/N , (6.18)

D(µ|νN
θ̂
) = N−1

∑

n≥1

Dn(µn|νNθ̂,n)e
−n/N . (6.19)

Since the product measure νN
θ̂

is reversible for the boundary generator Lb̂,N , next lemma has a proof

similar to the one of Theorem 4.1 (which is therefore omitted).

Lemma 6.1. For any time t ≥ 0, there exists a positive finite constant C1 ≡ C(t, θ̂, λ1, λ2, r), so that
∫ t

0

D(µ(s)|νN
θ̂
) ds ≤ C1N

d−2 .

6.2. Proof of Proposition 3.4. For i ∈ {0, 1, 2, 3}, let hMN ,i be the function on Σ̂N × Σ̂N given by

hMN ,i(η̃, η) = N−d−1
MN−1∑

n=1

e−n/NHi,n(η̃, η), with Hi,n(η̃, η) =
∑

x∈ΛN,n

∣∣η̃i(x) − ηi(x)
∣∣ . (6.20)

LetK be such that the (compact) support of Ĝ is a subset of [−1, 1]×[−K,K]d−1. For any configuration

(η̃, η) ∈ Σ̂N × Σ̂N , i ∈ {0, 1, 2, 3} and t ≥ 0, we have

1

Nd

∑

x∈ΛN

∣∣Gi,t(x/N)
∣∣∣∣η̃i,t(x) − ηi,t(x)

∣∣ ≤ A0
1

Nd

N∑

n=1

e−(n+KN)/N 1

N

∑

x∈ΛN,n+KN

∣∣η̃i,t(x) − ηi,t(x)
∣∣

≤ A0hMN ,i(η̃t, ηt) ,
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for some positive constant A0 = A0(Ĝ,K). Therefore, in order to prove the proposition it is enough
to show that,

lim
N→+∞

E
MN ,̂b

µN

[
3∑

i=0

hMN ,i(η̃t, ηt)

]
= 0 .

We start by splitting the quantity hMN ,i(η̃, η) into two parts: The sum over all sites n, such that
MN −N ≤ n ≤MN − 1 and the sum over sites n < MN −N . By Hille-Yosida Theorem

∂tE
MN ,̂b

µN

[
3∑

i=0

hMN ,i(η̃t, ηt)

]
= N−1−d

MN−1∑

n=MN−N

e−n/N
E
MN ,̂b

µN

[
3∑

i=0

LNHi,n(η̃t, ηt)

]

+ N−1−d
MN−N−1∑

n=1

e−n/N
E
MN ,̂b

µN

[
3∑

i=0

LNHi,n(η̃t, ηt)

]
.

(6.21)

The first part is bounded by a quantity vanishing when N ↑ ∞. Indeed, since for each x ∈ ΛN ,
LN |η̃i,t(x)− ηi,t(x)| ≤ CN2 for some positive constant C, we have

N−1−d
MN−1∑

n=MN−N

e−n/N
E
MN ,̂b

µN

[
3∑

i=0

LNHi,n(η̃t, ηt)

]
≤ K1N

3−d(MN )d−1e−N1/d

, (6.22)

for some positive constant K1.
We now split the second term of the r.h.s. of (6.21) according to the decomposition of the generator

in (6.13). Recalling (6.1)-(6.3), for any configuration (η̃, η) we have

E
MN ,̂b

µN

[
LNHi,n(η̃t, ηt)

]

=

d∑

k=2

∑

(x,y)∈ΛN,n×Λc
N,n

y∈{x+ek,x−ek}

∫ [
|η̃i(y)− ηi(y)| − |η̃i(x)− ηi(x)|

]
f
t

n+1dν
N
θ̂

=
1

N

N∑

ℓ=1

d∑

k=2

∑

(x,y)∈ΛN,n×Λc
N,n

y∈{x+ek,x−ek}

∫ [
|η̃i(y)− ηi(y)| − |η̃i(x) − ηi(x)|

]
f
t

n+ℓdν
N
θ̂
,

where we introduced a new sum in the spirit of (4.44). Using the equality, for j ∈ {1, 2, 3} and y ∈ ΛN ,

ηj(y)(1− η̃j(y)) + (1− ηj(y))η̃j(y) = |ηj(y)− η̃j(y)| , (6.23)

as well as the change of variables (4.23) for f
t

n+ℓ, and analogous computations as for Consequences
4.3(i), using (4.31) with A = N/a for some a > 0 to be chosen later, (4.23) and (4.25) (we do not give
details as this is similar to what was done in the proof of Lemma 4.2), we obtain, for n ≤MN −N − 1,

E
MN ,̂b

µN

[
LN

3∑

i=0

Hi,n(η̃t, ηt)

]
≤ a

N

N∑

ℓ=1

d∑

k=2

∑

(x,y)∈ΛN,n×Λc
N,n

y∈{x+ek,x−ek}

(D0

n+ℓ)
x,y(µn+ℓ(t)|νNθ̂,n+ℓ

)

+
1

a
C2n

d−2 , (6.24)

for some positive constant C2.
Now, gathering (6.22) with (6.24), multiplying byN−d−1 exp(−n/N), summing over 1 ≤ n ≤MN−1

and using (4.54), we get (as in the transition from (4.53) to (4.17)),

E
MN ,̂b

µN

[
N2LN

3∑

i=0

hMN ,i(η̃t, ηt)

]
≤ K1N

3−d(MN)d−1e−N1/d

+ aN1−d
D(µ(t)|νN

θ̂
) +

C′
2

a
. (6.25)
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for some positive constant C′
2. Then, recalling (6.4)–(6.7), we have

LN |ηi(x) − η̃i(x)| ≤ −2C′′
2 |ηi(x) − η̃i(x)|+ 34C′′

2

3∑

j=0

(1− ηj(x))η̃j(x)

≤ −2C′′
2 |ηi(x) − η̃i(x)|+ 34C′′

2

3∑

j=0

|ηj(x)− η̃j(x)| (6.26)

with C′′
2 = max

(
r, 2dλ1

)
, where we used (6.23) for the second inequality.

Finally, recalling (6.10)–(6.11) we have,

L
1

b̂,N |η̃i(x)− ηi(x)| = −
( 3∑

j=0

bj(x/N)
)
|η̃i(x)− ηi(x)| ≤ 0 (6.27)

Recollecting all the above estimates, we obtain, for some positive constant A1,

∂tE
MN ,̂b

µN

[
3∑

i=0

hMN ,i(η̃t, ηt)

]
≤ A1E

MN ,̂b

µN

[
3∑

i=0

hMN ,i(η̃t, ηt)

]

+K1N
3−d(MN )d−1e−N1/d

+ aN1−d
D(µ(t)|νN

θ̂
) +

C′
2

a
.

Integrating in time this inequality and using Lemma 6.1 gives, for some positive constant A2,

E
MN ,̂b

µN

[
3∑

i=0

hMN ,i(η̃t, ηt)

]
≤ A1

∫ t

0

E
MN ,̂b

µN

[
3∑

i=0

hMN ,i(η̃s, ηs)

]
ds+A2

[
N3−d(MN )d−1e−N1/d

+
a

N
+

1

a

]
.

Applying now Gronwall lemma, and choosing a =
√
N ,we obtain,

E
MN ,̂b

µN

[
3∑

i=0

hMN ,i(η̃t, ηt)

]
≤ A2

[
N3−d(MN )d−1e−N1/d

+
2√
N

]
eCt t .

To conclude the proof of the proposition, we just have to recall that we chose the sequenceMN so that

N3−d(MN )d−1e−N1/d

decreases to 0 as N ↑ ∞.

7. Uniqueness of weak solutions

This section is devoted to the proof of the uniqueness of weak solutions of the equation (2.23) in
infinite volume with stochastic reservoirs.

We need to introduce the following notation and tools. Denote by L2((−1, 1)) the Hilbert space on
the one-dimensional bounded interval (−1, 1) equipped with the inner product,

〈ϕ, ψ〉2 =

∫ 1

−1

ϕ(u1)ψ(u1) du1 ,

where, for z ∈ C, z̄ is the complex conjugate of z and |z|2 = zz̄. The norm in L2((−1, 1)) is denoted
by ‖ · ‖2.

Let H1((−1, 1)) be the Sobolev space of functions ϕ with generalised derivatives ∂u1ϕ in L2((−1, 1)).
Endowed with the scalar product 〈·, ·〉1,2, defined by

〈ϕ, ψ〉1,2 = 〈ϕ, ψ〉2 + 〈∂u1ϕ , ∂u1ψ〉2 ,
H1((−1, 1)) is a Hilbert space. The corresponding norm is denoted by ‖ · ‖1,2.

Consider the following classical boundary-eigenvalue problem for the Laplacian:{
−∆ϕ = αϕ ,
ϕ ∈ H1

0 ((−1, 1)) .
(7.1)

From the Sturm–Liouville theorem (cf. [24]), one can construct for the problem (7.1) a countable
system {ϕn, αn : n ≥ 1} of eigensolutions which contains all possible eigenvalues. The set {ϕn : n ≥ 1}
of eigenfunctions forms a complete orthonormal system in the Hilbert space L2((−1, 1)). Moreover
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each ϕn belongs to H1
0 ((−1, 1)) and the set {ϕn/α

1/2
n : n ≥ 1} is a complete orthonormal system in

the Hilbert space H1
0 ((−1, 1)). Hence, a function ψ belongs to L2((−1, 1)) if and only if

ψ = lim
n→∞

n∑

k=1

〈ψ, ϕk〉2 ϕk in L2((−1, 1)).

In this case, for all ψ1, ψ2 ∈ L2((−1, 1))

〈ψ1, ψ2〉2 =

∞∑

k=1

〈ψ1, ϕk〉2 〈ψ2, ϕk〉2 .

Furthermore, a function ψ belongs to H1
0 ((−1, 1)) if and only if

ψ = lim
n→∞

n∑

k=1

〈ψ, ϕk〉2 ϕk in H1
0 ((−1, 1)), and

〈ψ1, ψ2〉1,2 =

∞∑

k=1

αk〈ψ1, ϕk〉2 〈ψ2, ϕk〉2 for all ψ1, ψ2 ∈ H1
0 ((−1, 1)). (7.2)

One can check that since we work with (−1, 1), αn = n2π2 and ϕn(u1) = sin(nπu1), n ∈ N.

Proposition 7.1. For any T > 0, the system of equations (2.23) has a unique weak solution in the

class
(
L∞
(
[0, T ]× Λ

))3
.

Proof of Proposition 7.1. We follow the arguments in [21] adapted to the our case.
Fix T > 0, define the heat kernel on the time interval (0, T ] by the following expression

p1(t, u1, v1) =
∑

n≥1

e−αntϕn(u1)ϕn(v1) , t ∈ [0, T ] , u1, v1 ∈ [−1, 1] .

Let g ∈ C0
c ((−1, 1);R) and denote by δ· the Dirac function. The heat kernel p1 is such that p1(0, u1, v1) =

δu1−v1 , p1 ∈ C∞((0, T ]× (−1, 1)× (−1, 1);R) and the function defined via the convolution operator:

ϕ1(t, u1) := (p1 ⋆ g)(t, u1) =

∫ 1

−1

p1(t, u1, v1)g(v1)dv1

solves the following boundary value problem



∂tϕ = ∂2u1
ϕ ,

ϕ(0, ·) = g(·) ,
ϕ(t, ·) ∈ H1

0 ((−1, 1)) for 0 < t ≤ T .
(7.3)

Let p̌ be the heat kernel for (t, ǔ, v̌) ∈ (0, T )× Rd−1 × Rd−1

p̌(t, ǔ, v̌) =
(
4πt
)−(d−1)/2

exp

{
− 1

4t

d∑

k=2

(uk − vk)
2

}
.

For each function f̌ ∈ Cc(Rd−1;R), it is known that

ȟf̌t (t, ǔ) := (p̌ ⋆ f̌)(t, ǔ) =

∫

Rd−1

p̌(t, ǔ, v̌)f̌(v̌)dv̌ .

solves the equation ∂tρ̌ = ∆ρ̌, ρ̌0 = f , on (0, t]× R
d−1. Moreover ȟft ∈ C∞((0, T ]× R

d−1;R).

For t ∈ (0, T ], f̂ = (f1, f2, f3) ∈ Cc(Λ;R3) and ε > 0 small enough, let Hf̂
t,ε : [0, t] × Λ −→ R be

defined by

Hf̂
t,ε(s, u) :=

3∑

i=1

Hfi
t,ε(s, u) :=

3∑

i=1

(
p ∗ fi

)
(t+ ǫ− s, u),

where p is the heat kernel on (0, T ]× Λ × Λ given by

p(t, u, v) = p1(t, u1, v1)p̌(t, ǔ, v̌).
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Then Hf
t,ε solves the equation ∂tρ = ∆ρ on (0, t]× Rd, ρ0 = f .

Consider ρ̂(1) = (ρ
(1)
1 , ρ

(1)
2 , ρ

(1)
3 ) and ρ̂(2) = (ρ

(2)
1 , ρ

(2)
2 , ρ

(2)
3 ) two weak solutions of (2.23) associated

to an initial profile γ̂ = (γ1, γ2, γ3) : Λ → [0, 1]3. Set mi = ρ
(1)
i − ρ

(2)
i , 1 ≤ i ≤ 3. We shall prove below

that for any function m(·, ·) ∈ L∞([0, T ]× Λ) and each i ≤ i ≤ d,
∫ t

0

ds

∣∣∣∣
∫

Λ

m(s, u)Hfi
t,ε(s, v)dv

∣∣∣∣ ds ≤ C1t ‖m‖∞‖fi‖1, (7.4)

for some positive constant C1, where for a trajectory m : [0, t] × Λ → R, ‖m‖∞ = ‖m‖L∞([0,t]×Λ)

stands for the infinite norm in L∞([0, t]× Λ).

On the other hand, from the fact that ρ
(1)
i , ρ

(2)
i , 1 ≤ i ≤ 3 are in L∞([0, T ] × Λ), it follows that

there exists a positive constant C2 such that, for almost every (s, u) ∈ [0, t]× Λ, for every 1 ≤ i ≤ 3,

∣∣Fi(ρ
(1)
i (s, u))− Fi(ρ

(2)
i (s, u))

∣∣ ≤ C2

3∑

i=1

‖ρ(1)i − ρ
(2)
i ‖∞ .

Since ρ̂(1) and ρ̂(2) are two weak solutions of (2.23), we obtain by (7.4) that for all 0 ≤ τ ≤ t,
1 ≤ i, k ≤ 3

∣∣∣
〈
mi(τ, .),Hfk

τ,ε(τ, .)
〉∣∣∣ =

3∑

i=1

∣∣∣
∫ τ

0

〈
Fi(ρ̂

(1))− Fi(ρ̂
(2)),Hfk

τ,ε(τ, .)
〉∣∣∣

≤ C′
1t
( 3∑

i=1

‖ρ(1)i − ρ
(2)
i ‖∞

)
‖fk‖1 ,

for C′
1 = C1C2.

By observing that p(ε, ·, ·) is an approximation of the identity in ε, we obtain by letting ε ↓ 0,

∣∣∣
〈
mi(τ, .), fk

〉∣∣∣ ≤ C′
1t
( 3∑

i=1

‖ρ(1)i − ρ
(2)
i ‖∞

)
‖fk‖1 . (7.5)

We claim that mi ∈ L∞([0, t]× Λ) and

‖mi‖∞ ≤ C′
1 t
( 3∑

i=1

‖ρ(1)i − ρ
(2)
i ‖∞

)
. (7.6)

Indeed (cf. [22], [21]), denote by R(t) =
∑3

i=1 ‖ρ
(1)
i − ρ

(2)
i ‖∞ , by (7.5), for any open set U of Λ with

finite Lebesgue measure λ(U), we have for all 0 ≤ τ ≤ t,
∫

U

mi(τ, u)du ≤ C′
1 t R(t)λ(U). (7.7)

Fix 0 < δ < 1. For any open set U of Λ with finite Lebesgue measure and for 0 ≤ τ ≤ t let

BU
δ,τ =

{
u ∈ U : mi(τ, u) > C′

1 t R(t)(1 + δ)
}
.

Suppose that λ(BU
δ,τ ) > 0, there exists an open set V , such that, BU

δ,τ ⊂ V and λ
(
V \ BU

δ,τ

)
≤ λ(V ) δ2

and we have

λ(V )
(
C′

1 t R(t)
)
< λ(V )

(
C′

1 t R(t)
)
(1 + δ)(1 − δ/2) =

(
C′

1 t R(t)
)
(1 + δ)

(
λ(V )− λ(V )δ/2

)

≤
(
C′

1t R(t)
)
(1 + δ)

(
λ(V )− λ

(
V \BU

δ,τ

))
=
(
C′

1

√
tR(t)

)
(1 + δ)λ

(
BU

δ,τ

)

<

∫

BU
δ,τ

mi(τ, x)dx .

Thus, from (7.7) and since BU
δ,τ ⊂ V , we get

λ(V )
(
C′

1 t R(t)
)
<

∫

V

mi(τ, x)dx ≤
(
C′

1 t R(t)
)
λ(V ) ,
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which leads to a contradiction.
By the arbitrariness of 0 < δ < 1 we obtain that if U is any open set of Λ with λ(U) <∞,

λ
({
u ∈ U : mi(τ, u) > C′

1 t R(t)
})

= 0.

This implies

mi(τ, x) ≤ C′
1 t R(t) a.e. in Λ

and concludes the proof of (7.6) by the arbitrariness of τ ∈ [0, t].
We now turn to the proof of the uniqueness, from (7.6),

‖mi‖∞ ≤ C′
1 t
( 3∑

j=1

‖mj‖∞
)
,

and then

R(t) ≤ 3C′
1 t R(t) .

Choosing t = t0 such that 3C′
1 t0 < 1, this gives uniqueness in [0, t0] × Λ. To conclude the proof we

just have to repeat the same arguments in [t0, 2t0], and in each interval [kt0, (k + 1)t0], k ∈ N, k > 1.
it remains to prove inequality (7.4). From Fubini’s Theorem, we have

∫ t

0

∣∣∣∣
∫

Λ

m(s, u)Hfi
t,ε(s, u)du

∣∣∣∣ ds

≤
∫ t

0

ds

∫

Rd−1

dv̌

∫

Rd−1

dǔ

∣∣∣∣∣
∑

n≥1

e−n2π2(t+ε−s)

∫ 1

−1

dv1

{
sin(nπv1)fi(v1, v̌)

}

×
∫ 1

−1

du1

{
sin(nπu1)p̌(t+ ε− s, ǔ, v̌)m(s, u1, ǔ)

}∣∣∣∣∣

≤
∫ t

0

ds

∫

Rd−1

dv̌

∫

Rd−1

dǔ p̌(t+ ε− s, ǔ, v̌)

∣∣∣∣∣
∑

n≥1

〈
ϕn,m(s, (·, ǔ))

〉
×
〈
ϕn, fi(·, v̌)

〉∣∣∣∣∣

≤
∫ t

0

ds

∫

Λ

du

∫

Λ

dv
{
|m(s, u)| |fi(v)| p̌(t+ ε− s, ǔ, v̌)

}

≤ 4 t ‖m‖∞‖fi‖1 ,

where we used the fact that p̌(s, ·, ·) is a probability kernel in Rd−1 for all s > 0. �

8. Empirical currents

In this section, we derive the law of large numbers for the empirical currents stated in Proposition

2.4. Recall that for x ∈ ΛN , 1 ≤ i ≤ 3, and j = 1, . . . , d, W
x,x+ej
t (ηi) stands for the conservative

current of particles of type i across the edge {x, x+ ej}, and Qx
t (ηi) for the total number of particles

of type i created minus the total number of particles of type i annihilated at site x before time t. We
have the following families of jump martingales: For all 1 ≤ j ≤ d, x ∈ ΛN ,

W̃
x,x+ej
t (ηi) = W

x,x+ej
t (ηi) −N2

∫ t

0

(
ηi,s(x)(1 − ηi,s(x + ej)) − (1 − ηi,s(x))ηi,s(x + ej)

)
ds (8.1)

with quadratic variation (because J
x,x+ej
t (ηi) and J

x+ej ,x
t (ηi) have no common jump)

〈W̃ x,x+ej (ηi)〉t = 〈J̃x,x+ej (ηi)〉t + 〈J̃x+ej ,x(ηi)〉t (8.2)

= N2

∫ t

0

(
ηi,s(x)(1 − ηi,s(x + ej)) + (1 − ηi,s(x))ηi,s(x+ ej)

)
ds
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and, for f̂ = (f1, f2, f3) : Σ̂N → R3 defined in (3.6),

Q̃x
t (ηi) = Qx

t (ηi)−
∫ t

0

τxfi(ξs, ωs)ds (8.3)

with quadratic variations




〈Q̃x(η1)〉t =

∫ t

0

τx

(
βN (0, ξs, ωs)η0,s(0) + η3,s(0) + (r + 1)η1,s(0)

)
ds,

〈Q̃x(η2)〉t =

∫ t

0

τx

(
rη0,s(0) + η3,s(0) + βN (0, ξs, ωs)η2,s(0) + η2,s(0)

)
ds,

〈Q̃x(η3)〉t =

∫ t

0

τx

(
βN (0, ξs, ωs)η2,s(0) + rη1,s(0) + 2η3,s(0)

)
ds.

(8.4)

Proof of Proposition 2.4. Given a smooth continuous vector field G = (G1, ..., Gd) ∈ C∞
c (Λ,Rd), after

definition (2.32), sum the martingale (8.1) over {x, x+ ej ∈ ΛN} to get the martingale M̃G
t , given by

M̃G
t (ηi) =

d∑

j=1

(
〈WN

j,t(ηi), Gj〉 −
N2

Nd+1

∑

x,x+ej∈ΛN

∫ t

0

Gj(x/N)
(
ηi,s(x)− ηi,s(x + ej)

)
ds

)

= 〈WN
t (ηi),G〉 − 1

Nd

d∑

j=1

∑

x∈ΛN

∫ t

0

∂xjGj(x/N)ηi,s(x)ds+O(N−1)

= 〈WN
t (ηi),G〉 −

d∑

j=1

〈πN,i
s , ∂xjGj〉+O(N−1),

where we did a Taylor expansion. Relying on (8.2), the expectation of 〈M̃G(ηi)〉t vanishes when
N → ∞, so that by Doob’s martingale inequality, for any δ > 0,

lim
N→∞

P
N,̂b
µN

[
sup

0≤t≤T

∣∣
3∑

i=1

M̃G
t (ηi)

∣∣ > δ
]

= 0.

Using that the empirical density π̂ converges towards the solution of (2.23), this concludes the law of
large numbers (2.33) for the current WN

T .

Fix a smooth vector field Ĥ = (H1, H2, H3) ∈ C∞
c (Λ,R3). Sum (8.3) over x ∈ ΛN to get the martingale

ÑH
t (ηi) = 〈QN

t (ηi), Hi〉 −
1

Nd

∑

x∈ΛN

∫ t

0

Hi(x/N)τxfi(ξs, ωs)ds

Relying on (8.4), the expectation of its quadratic variation vanishes as N → ∞ as well. Use the

replacement lemma 3.2 to express ÑH
t (ηi) with functionals of the density fields and conclude to (2.34)

by Doob’s martingale inequality: For any δ > 0,

lim
N→∞

P
N,̂b
µN

[
sup

0≤t≤T

∣∣
3∑

i=1

ÑH
t (ηi)

∣∣ > δ
]

= 0.

�
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