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Rook-drawing for Plane Graphs?

David Auber, Nicolas Bonichon, Paul Dorbec, and Claire Pennarun

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
CNRS, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. Motivated by visualization of large graphs, we introduce a
new type of graph drawing called “rook-drawing”. A rook-drawing of a
graph G is obtained by placing the n nodes of G on the intersections
of a regular grid, such that each row and column of the grid supports
exactly one node. This paper focuses on rook-drawings of planar graphs.
We first give a linear algorithm to compute a planar straight-line rook-
drawing for outerplanar graphs. We then characterize the maximal planar
graphs admitting a planar straight-line rook-drawing, which are unique
for a given order. Finally, we give a linear time algorithm to compute a
polyline planar rook-drawing for plane graphs with at most n − 3 bent
edges.

1 Introduction

Nowadays, large and dynamic graphs are widely used in the context of Big Data,
and their visualization is a classical tool for their analysis. On the one hand,
when representing dynamic graphs, it is necessary to handle easily the addition
or deletion of nodes or edges. On the other hand, when using hierarchical views,
the ability to aggregate or de-aggregate sets of nodes is required [8,1]. When
doing such operations, it is important to preserve the mental map of the graph
[3], as well as to compute the changes in the representation efficiently, both in
order to guarantee a smooth use.

In the following, we define a particular type of graph drawing on a grid, that
we call rook-drawing. In a rook-drawing, we require that the nodes of the graph
lie on the intersections of a (n − 1) × (n − 1) regular grid, in such a way that
each row and column hosts exactly one node. Then, the addition or deletion
of a node impacts only the row and column it lies on, without interfering with
other nodes or other parts of the drawing. In particular, dealing with aggregated
data consists in stretching the grid to create enough room for the new appearing
nodes (see Fig. 1). These operations clearly preserve orthogonal ordering, which
is the first type of mental map defined in [12]. Observe that this technique of
having exactly one node per row and per column is also used by Kornaropoulos
et al. [10,11], who represented edges with overlapping orthogonal polylines.

? This work has been carried out as part of the “REQUEST” project (PIAO18062-
645401) supported by the French “Investissement d’Avenir” Program (Big Data -
Cloud Computing topic) and has been supported by ANR grant JCJC EGOS ANR-
12-JS02-002-01.
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Fig. 1: Expansion of an aggregated node in a rook-drawing of a non-planar graph.

We here explore the existence of rook-drawings for planar graphs. The first
question that comes to mind is: Does every planar graph admit a planar straight-
line rook-drawing, i.e. a rook-drawing in which each edge is represented by a
segment and no two edges cross? De Fraysseix et al. showed that every planar
graph admits a straight-line drawing on an (n− 2)× (2n− 4) grid [9]. Schnyder
improved this result by proving the existence of such a drawing on an (n− 2)×
(n− 2)-grid [14]. But in such drawings, some columns and rows contain several
nodes and some others may be empty. Upward-rightward drawings presented
by Di Giacomo et al. [7] are grid drawings in which all nodes have different
y-coordinates, but empty rows and several nodes in a same column are allowed.

Contrasting with these results, we show in Sect. 4 that almost every maxi-
mal planar graph admits no planar rook-drawing. Yet, every outerplanar graph
admits a planar straight-line rook-drawing computable in linear time, as shown
in Sect. 3. We then consider polyline planar rook-drawings, in which edges are
drawn as polylines with bends placed on grid intersections. We show in Sect. 5)
that every planar graph admits a polyline planar rook-drawing. Moreover, this
drawing can be computed in linear time, each edge is bent at most once and the
total number of bends is at most n− 3.

2 Definitions

A drawing of a graph G is a mapping of the nodes of G to points of the plane and
of the edges of G to curves between their endpoints. The drawing is straight-line
if the edges are mapped to line segments. It is polyline if the edges are series of
line segments. A grid drawing is a drawing in which the nodes are mapped to
intersections of a regular grid. In such a drawing, we use positive coordinates
(x(u), y(u)) for each node u. A k × l-grid is a grid of width k and height l.
Recall that a rook-drawing of a graph with n vertices is a (n − 1) × (n − 1)-
grid drawing, i.e. the functions x and y are bijections from the set of vertices
to {1, . . . , n}. For simplicity, throughout this paper, the term “rook-drawing”
denotes a straight-line rook-drawing unless otherwise precised.



A planar graph is a graph admitting a planar drawing, i.e. a drawing on the
plane in which no pair of edges crosses. Such a drawing can be characterized
by the collection of circular permutations of incident edges around each node,
called embedding. A connected planar graph together with an embedding is called
a plane graph.

In a plane graph, the edges partition the plane into regions called faces. A
rooted plane graph is a plane graph in which one face (called outer face) and
one node (called root) lying on this face are distinguished. The nodes lying on
the outer face are called outer nodes, all other nodes are inner nodes. Similarly,
outer edges are edges belonging to the outer face, the other edges are called inner
edges. An outerplane graph is a rooted plane graph in which every node is on
the outer face. A maximal plane graph is a plane graph with maximal number
of edges, implying that every face is a triangle if there are at least three nodes.

A tree is a rooted plane graph without cycles. In a tree, a node u is a descen-
dant of a node v (or v is an ancestor of u) if v is on the path from the root to u.
Moreover, if v is connected to u, we say that v is the parent of u (and u is a child
of v). Two nodes are said unrelated if one is neither ancestor nor descendant of
the other. A leaf of a tree is a node of the tree without descendants. The depth
of a tree is the length of the longest path from a leaf to the root in the tree. For
a tree T a node u, the subtree of u, denoted T (u), is the tree induced on u and
all of its descendants.

The clockwise preorder of a tree T is a list of the nodes of T in the order
of a clockwise depth-first search algorithm on T . The clockwise postorder of a
tree T is a list of the nodes of T in the order of their last visit in a clockwise
depth-first search algorithm of T . Counterclockwise preorder and postorder are
defined similarly.

3 Planar rook-drawing for outerplane graphs

In this section, we prove the following theorem:

Theorem 1. Every outerplane graph admits a planar rook-drawing. This dra-
wing can be computed in linear time.

To prove Theorem 1, we use a partition of the edges of outerplane graphs
introduced by Bonichon et al. [4]:

Theorem 2 ([4]). Let G be an outerplane graph rooted in r. There exists a
unique partition of the edges of G into two sets T and S such that:

– T is a tree rooted in r

– edges of S join a node u to the first node after u in the counterclockwise
postorder of T .

Such a partition can be computed in linear time.



Denote by y(v) the index of v in a counterclockwise postorder of T . We
consider an orientation of the edges of T and S such that all edges of T are
oriented towards the root r and the edges (uv) of S are oriented from u to v if
y(u) > y(v). If G is maximal, then S is a tree rooted in w with y(w) = 0 that
does not contain the root r of G.

The tree T can be computed by Algorithm 1 due to Bonichon et al. [4]. A
call Traversal(G,∅, r) returns the tree T of G rooted in r, the second parameter
stands for the current set of edges of the tree during the execution.

Algorithm 1: Traversal(G,T, u)

begin
C ← {(u, v) ∈ G | v /∈ T}
T ← T ∪ C
for all edges (u, v) ∈ C taken in the clockwise order around u do

T ← Traversal(H,T, v)
return T
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Fig. 2: (a) The decomposition of an outerplane graph G rooted in r into T (solid
edges) and S (dotted edges). (b) A rook-drawing of G showing the induction
process of the proof for Lemma 1.

For each node v of the outerplane graph G, we denote x(v) its index in
counterclockwise preorder of T . Recall that y(v) is its index in counterclockwise
postorder of T .

Lemma 1. Placing each node v of G at coordinates (x(v), y(v)) produces a pla-
nar rook-drawing of G.



Proof. By construction, the drawingD(G) obtained is a rook-drawing. It remains
to show that this drawing is planar.

For v a node of G, let Tv be the subtree of T rooted in v. Let G(v) be the
subgraph of G induced by the nodes of Tv. Let D(G(v)) be the drawing induced
by the edges and nodes of G(v). The left branch of v in Tv denotes the path
between v and the first leaf found in a counterclockwise postorder of Tv.

Let u and v be two nodes of G. The following observations are direct conse-
quences of the definition of the x- and y-coordinates:

(i) If u is before v in counterclockwise preorder of T (i.e. x(u) < x(v)) and
they are unrelated, then y(u) < y(v) and for each descendant w of u in T ,
x(w) < x(v) and y(w) < y(v).

(ii) If u is parent of v in T , then x(u) < x(v) and y(u) > y(v).
(iii) Let (uv) be an edge of S with y(u) > y(v). Then v is before u in counter-

clockwise preorder of T (i.e. x(v) < x(u)) and as they are unrelated, v is
also before u in counterclockwise postorder of T (i.e. y(v) < y(u)). Thus the
edges of S are going down and to the left.

(iv) The coordinates of the nodes of the left branch of v are x-increasing and
y-decreasing.

We now want to prove by induction the following proposition : D(G(u)) is
planar and drawn in the subgrid [x(u), x(u) + |Tu| − 1]× [y(u)− |Tu|+ 1, y(u)].

When Tu is reduced to a single node, the proposition clearly holds.
Now assume the proposition holds for nodes having a subtree of depth at

most k. Let u be a node with a subtree Tu of depth k + 1. Denote by u1, ..., um
the children of u in clockwise order. Their subtrees in T are denoted Tu1

, ..., Tum
.

By induction hypothesis, the subtrees Tu1
, ..., Tum

are placed in disjoint areas
(see Fig. 2). Then D(G(ui)) and D(G(uj)) with i 6= j do not intersect. Thus Tu
is planarly drawn in the sub-grid [x(u), x(u) + |Tu| − 1]× [y(u)− |Tu|+ 1, y(u)].

We now prove that the edges of S joining nodes belonging to different subtrees
do not create any crossing in D(G(u)). Let v and w be nodes from different
subtrees linked by an edge of S, and such that x(w) < x(v). Recall that by
definition of S, w is the first node unrelated to v with y(w) < y(v). So v and w
are in consecutive trees, say Tui and Tui+1 and w = ui+1. Thus all edges of S
joining Ti to Ti+1 have ui+1 as an end: edges of S join nodes of the left branch
of ui to ui+1. Then by remarks (iii) and (iv), the edges of S can not cross each
other or edges of the tree T .

Thus D(G(u)) is planar. This concludes the proof. ut

Remark that as Andrews [2] showed that a strictly convex drawing of a cycle
of n nodes with integer coordinates requires area Ω(n3), whereas a rook-drawing
requires area Ω(n2), our algorithm can not produce strictly convex drawings for
outerplane graphs for large n.

Also note that the existence of n nodes both in rook position and in general
position (i.e. such that no three nodes are colinear [13]) would imply an algo-
rithm for generating a rook drawing of outerplane graphs (from [6]). We do not
know how to prove whether such a configuration exists. Remark though that the



algorithm in [6] is of complexity n log3(n), while the algorithm presented here is
linear.

4 Existence of a planar rook-drawing

We define the tower plane graph Tn of order n ≥ 3 as the plane join graph
K2 + Pn−2 (i.e. a complete graph K2 and a path on n− 2 nodes Pn−2 together
with all the edges joining nodes from K2 to nodes of Pn−2) drawn in such a way
that the nodes of K2 are on the outer face (see Fig. 3 for a drawing of T6).
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Fig. 3: The tower plane graph T6.

Theorem 3. There exists a unique maximal plane graph on n ≥ 3 nodes ad-
mitting a planar rook-drawing, namely the tower plane graph Tn.

Proof. Suppose we have a planar rook-drawing of a maximal plane graph G. We
prove that G is the tower plane graph Tn.

Let a, b, c be the three outer nodes of G. To maintain planarity, the inner
nodes are placed at coordinates inside the area defined by the edges (ab), (bc)
and (ca). Thus the outer nodes must occupy altogether the four borders of the
grid, and one of them has to be placed in a corner. Without loss of generality,
assume that a occupies the bottom-left corner.

Consider the positions of the two other outer nodes of G. Suppose one of
them is in the top-right corner (without loss of generality, say b). If the third
node c is placed below the edge (ab) (see Fig. 4a), then the second column on the
left can not contain a node: the coordinates (k, 2) are outside the area delimited
by the edges (ab), (bc) and (ca) for all k > 2. The point (2, 2) is covered by (ab)
and the point (2, 1) can not contain a node because a is already on the first row.
If c is above (ab), then for similar reasons the column left to b can not contain
a node. Thus b is not in a corner. Without loss of generality, assume b is on the
top row and c on the rightmost column of the grid.

Now consider the positions of the inner nodes of G. Let α be the angle
between the column containing b and the edge (bc) and β be the angle between
the row containing c and the edge (bc) (see Fig.4b). Consider the row just below
b: the angle between the edge (ab) and the column containing b is less or equal
to 45◦ thus no nodes can be placed at the left of b on the row below it. No node



can be placed on the same column as b either. No node can be placed at the
right of the intersection between the edge (bc) and the row below b. Thus for the
row under b to contain a node we must have α ≥ 45◦. With similar arguments,
for the column on the left of c to contain a node, we must have β ≥ 45◦. We
have thus α = β = 45◦. Thus c is the node placed on the row below b and b is
placed on the column left to c and x(b) = y(c) = n− 1. Finally, the inner nodes
must be placed on coordinates (i, i) for 2 ≤ i ≤ n − 2, i.e. along a diagonal of
the grid (see Fig. 4c).

Now the positions of the nodes are determined and there is only one way to
complete the drawing into a maximal plane graph, forming the graph Tn. ut
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Fig. 4: (a) and (b) Illustrations of the proof of Theorem 3. (c) A planar rook-
drawing of T6.

5 Polyline rook-drawing for planar graphs

As we proved that some plane graphs do not admit a planar rook-drawing with
straight lines, we now relax the straight-line constraint and look at planar poly-
line rook-drawings. We first recall the definition of Schnyder woods.

5.1 Properties of Schnyder woods

Definition 1 (Schnyder [14]). A Schnyder wood of a maximal plane graph G
is a partition of the inner edges of G into three directed trees T0, T1, T2 with the
following properties:

– each tree Ti is rooted on a distinct outer node vi;
– the edges of each tree are directed toward the root;
– each inner node u of G has one parent in each Ti, denoted Pi(u);
– in counterclockwise order around each inner node, the outgoing edges are in
T0 then T1 then T2;



– each ingoing edge belonging to the tree Ti is placed after the outgoing edge
in Ti+1 mod 3 and before the outgoing edge in Ti−1 mod 3 in counterclockwise
order around an inner node.

The orientation of edges around an inner node is shown in Fig. 5, where T0
is drawn solid, T1 is dotted and T2 is dotted-dashed. Throughout the paper, we
call a 0-edge (respectively 1-edge, 2-edge) an edge belonging to the tree T0 (resp.
T1, T2).

P2(u)

P0(u)

P1(u)u
2

0

1

0

21

Fig. 5: Orientation around an inner node u in a Schnyder wood.

Two properties of Schnyder woods follow.

Proposition 1 (Bonichon et al. [5]). If u is a descendant of v in Ti, then u
is unrelated to v in Tj, j 6= i.

Proposition 2. If u is the parent of v in Ti, then u is before v in counterclock-
wise preorder of Ti−1 and after v in counterclockwise preorder of Ti+1.

Proof. Without loss of generality, assume i = 2. In this proof, an i-path denotes
a directed path in the tree Ti. Recall that vi denotes the root of the tree Ti. Let
u be the parent of v in T2 (see Fig. 6).

Suppose that u is after v in the counterclockwise preorder of T1. By orien-
tation around the node v, the 1-path from v to v1 has to cross the 2-path from
u to v2. Let t be the intersection of these two paths. Then t is an ancestor of v
in T2 (it is an ancestor of u and thus of v). But t is also an ancestor of v in T1
because it is on the 1-path from v1 to v. Though this contradicts Proposition 1.
So u is before v in the counterclockwise preorder of T1, as claimed.

A similar argument proves that u is after v in the counterclockwise preorder
of T0. ut

5.2 Polyline rook-drawing algorithm

We here describe an algorithm to produce a planar polyline rook-drawing of a
maximal plane graph of order n. The algorithm is inspired by an algorithm for
polyline drawings proposed by Bonichon et al. [5]. The original algorithm was
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Fig. 6: Illustration of the proof of Proposition 2

designed to minimize the grid size and thus many rows and columns support
several nodes. This new algorithm shares with the former the edge bending
strategy, but the node placement is different.

Theorem 4. Every maximal plane graph G with n nodes admits a polyline pla-
nar rook-drawing D(G), which can be computed with Algorithm 2 in linear time.
This drawing has n− 3 bends.

Algorithm 2: Planar polyline rook-drawing for a maximal plane graph G

(T0, T1, T2)← Schnyder wood of G
add the oriented edge (v1v0) to T0

add the oriented edge (v2v0) to T0

add the oriented edge (v2v1) to T1

column order C ← clockwise preorder of T0

row order R ← clockwise postorder of T1

for u node of G do
(x(u), y(u)) = (C(u), R(u))

draw all T2 edges with straight lines
for e = (u, P0(u)) edge of T0 do

if x(u) = x(P0(u)) + 1 then draw e with a straight line
else Bend e at (x(u), y(P0(u)) + 1)

for e = (u, P1(u)) edge of T1 do
v ← ll0(u).
bend e at (x(v), y(u))

In Algorithm 2 and later, ll0(u) denotes the last leaf found in a clockwise
preorder of u in T0. An example of the result of Algorithm 2 on a maximal plane
graph is presented in Fig. 7b.

We first make the following observations on the placement of nodes after
applying Algorithm 2:
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Fig. 7: (a) Schnyder wood of a maximal plane graph G. (b) Result of our polyline
algorithm on G.

– Since the nodes are placed according to their position in a preorder and a
postorder, each row and column contains exactly one node. Thus D(G) is a
rook-drawing.

– When u is a leaf of T0, then ll0(u) = u and this is the only case when the
edge from u to P1(u) is drawn straight.

Number of bends. Let k be the number of leaves in T0. By construction,
T0 contains n − 1 edges, T1 contains n − 2 edges and T2 contains n − 3 edges.
The edges of T0 are all bent, except one for each non-leaf node in T0. Thus
n − 1 − (n − k) 0-edges are bent. The edges of T1 are all bent, except k. Thus
n− 2− k 1-edges are bent. Finally, the edges of T2 are never bent. Thus, there
are exactly n− 3 bends in the drawing of G.

Planarity. Most of the proofs for the planarity of the drawing are placed in the
appendix. We describe in the following some structural properties of the drawing
with Lemmas 2, 3 and 4.

Lemma 2. In D(G), for each inner node u:

– x(P0(u)) < x(u) and y(P0(u)) < y(u): P0(u) is left and below u.
– x(P1(u)) > x(u) and y(P1(u)) > y(u): P1(u) is right and above u.
– x(P2(u)) < x(u) and y(P2(u)) > y(u): P2(u) is left and above u.

From Lemma 2 and the coordinates of bends chosen for the edges in Al-
gorithm 2, we observe that the configuration around an inner node follow the
scheme illustrated in Fig. 8.

This drawing gives a good intuition of why the edges within T0 do not cross.
The detailed proof is not given here, but is based on the following lemmas.

Lemma 3. For every inner node u, every node v such that x(P0(u)) < x(v) <
x(u) is a descendant of P0(u) in T0.
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Fig. 8: Edges orientation around an inner node v. Svi denotes the area in which
the subtree of vi in T0 is drawn.

Proof. This is a direct consequence of the fact that the x-coordinates are given
by the clockwise preorder of T0. ut

Lemma 4. For every inner node u, every node v such that x(u) < x(v) <
x(P1(u)) (resp. x(P2(u)) < x(v) < x(u)) is either a descendant of u (resp.
P2(u)) in T0 or y(v) < y(u) (resp. y(v) < y(P2(u))) in D(G).

The final step is to explicitly state that the edges drawn do not cross. The
proofs are not given due to space limitation. The idea is the following: we first
show that edges inside each tree T0, T1 and T2 do not cross. Then we prove that
edges from different trees do not cross.

6 Conclusion

In this paper, we observed that all maximal planar graphs but the tower graphs
admit no planar straight-line rook-drawing. On the other hand we showed that
every outerplane graph admits a planar straight-line rook-drawing. A natural
question is: are there usual classes of plane graphs that all admit a planar
straight-line rook-drawing? A plane graph that has a triangular outer face and
admits a planar straight-line rook-drawing is necessarily a subgraph of the tower
plane graph we described earlier. However, if we consider plane graphs with an
outer face with at least 4 vertices, it seems that many of them should admit
such a drawing. Then, plane graphs that do not contain non-facial triangles,
as, for instance, quadrangulations or 4-connected triangulations with outer face
of degree at least 4, are possibly good candidates for admitting a planar rook
drawing.

We also showed that every plane graph admits a planar polyline rook-drawing
with at most n− 3 bent edges. Even if this number of bends is reasonable, one
could ask if a linear number of bends is needed for allowing a planar rook-drawing
of any planar graph.

Another interesting question would be to consider relaxed rook-drawing in
which each row and column contains at most one node (and no longer exactly



one node). Clearly every plane graph admits a planar relaxed rook-drawing: it
suffices to consider a straight-line planar drawing of the plane graph and add
a tiny perturbation to nodes sharing some coordinates. This naive approach
produces drawings with a huge number of empty columns and rows, which is
not suitable in practice. Hence the good question would be: does every plane
graph admits a planar relaxed rook-drawing with a small (i.e. linear or sub-
linear) number of empty rows and columns? There are no evidence yet that even
a constant number of empty rows and columns would not suffice.
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