N

N

Brief Announcement: Faster Data Structures in
Transactional Memory using Three Paths

Trevor Brown

» To cite this version:

Trevor Brown. Brief Announcement: Faster Data Structures in Transactional Memory using Three
Paths. DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. hal-01207905

HAL Id: hal-01207905
https://hal.science/hal-01207905
Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01207905
https://hal.archives-ouvertes.fr

Brief Announcement: Faster Data Structures in
Transactional Memory using Three Paths

Trevor Brown *
University of Toronto, Toronto, ON M5S 3G4, Canada

With the introduction of Intel’s restricted hardware transactional memory (HTM) in
commodity hardware, the transactional memory abstraction has finally become practi-
cal to use. Transactional memory allows a programmer to easily implement safe con-
current code by specifying that certain blocks of code should be executed atomically.
However, Intel’s HTM implementation does not offer any progress guarantees. Even
in a single threaded system, a transaction can repeatedly fail for complex (and often
undocumented) reasons. Consequently, any code that uses HTM must also provide a
non-transactional fallback path to be executed if a transaction fails. Since the primary
goal of HTM is to simplify the task of writing concurrent code, a typical fallback path
simply acquires a global lock, and then runs the same code as the transaction. This is
essentially transactional lock elision (TLE). Changes made by a process on the fallback
path are not atomic, so transactions that run concurrently with a process on the fallback
path may see inconsistent state. Thus, at the beginning of each transaction, a process
reads the state of the global lock and aborts the transaction if it is held.

Despite its widespread use, there are many problems with this fallback path. If trans-
actions abort infrequently, then processes rarely execute on the fallback path. However,
once one process begins executing on the fallback path, all concurrent transactions will
abort, and processes on the fast path will cascade onto the fallback path. This has been
called the lemming effect [1], from the myth that lemmings will leap from cliffs in large
numbers (in our case, leaping down to the fallback path).

One simple way to mitigate the lemming effect is to retry aborted transactions a
few times, waiting between retries for the fallback path to become empty. For some
common workloads (e.g., range queries and updates on an ordered set implemented
with a binary search tree), some operation is nearly always on the fallback path, so
concurrency is very limited and performance is poor. Thus, waiting for the fallback
path to become empty is not always a good solution.

A more sophisticated solution is to design transactions so they can commit even if
processes are executing on the fallback path. One way to do this is to start with a hand-
crafted fallback path that uses fine-grained synchronization, and obtain a fast path by
wrapping each operation in a transaction (and then optimizing the resulting sequential
code). This technique was also explored in concurrent work by Spear et al. [2]. To
support concurrency between the two paths, the fast path must read and update the
meta-data used by the fallback path to synchronize processes. (For example, lock-free
algorithms often maintain a record associated with each update operation, so that one
process can help complete another process’ operation.) Unfortunately, the overhead of
manipulating meta-data on the fast path can eliminate much or all of the performance
benefit of HTM.

* This work was supported by the National Science and Engineering Research Council of
Canada. I extend my thanks to my advisor Faith Ellen for her helpful comments and guid-
ance in shaping this work. Some of the experiments were performed while at Oracle Labs.



To overcome this, we introduce a novel
approach for obtaining faster algorithms by
using three execution paths: an HTM-based
fast path, an HTM-based middle path and
a non-transactional fallback path. Our ap-
proach eliminates the lemming effect without
imposing any overhead on the fast path. Each
operation begins on the fast path, and moves
to the middle path after it retries F' times. An operation on the middle path moves to the
fallback path after retrying M times on the middle path. The fast path does not manipu-
late any synchronization meta-data used by the fallback path, so operations on the fast
path and fallback path cannot run concurrently. Thus, whenever an operation is on the
fallback path, all operations on the fast path move to the middle path. The middle path
manipulates the synchronization meta-data used by the fallback path, so operations on
the middle path and fallback path can run concurrently. Operations on the middle path
can also run concurrently with operations on the fast path. The lemming effect does not
occur, since an operation does not have to move to the fallback path simply because
another operation is on the fallback path. Since processes on the fast path do not run
concurrently with processes on the fallback path, the fallback path does not impose any

* Operation starts here
*Move to Middle if an operation is on Fallback
or the operation has retried F times

« Operations can run concurrently with Fast and Fallback
d * Move to fallback after retrying M times

* Terminal path for operations
 Guarantees progress

overhead on the fast path (regardless of how it operates).

Comprehensive experiments compared
the performance of several two- and three-
path algorithms, with lock-based and lock-
free fallback paths and many different retry
strategies, over a variety of randomized work-
loads. The graphs on the right show some re-
sults from a binary search tree microbench-
mark on a 36-core Intel system. In the work-
load with 2% range queries, TLE succumbs to
the lemming effect and performs very poorly.
These results suggest that three-path algo-
rithms can be used to obtain the full perfor-
mance benefit of HTM while robustly avoid-
ing the lemming effect.

References

1. Dave Dice, Yossi Lev, Mark Moir, Dan Nuss-
baum, and Marek Olszewski. Early experi-
ence with a commercial hardware transactional
memory implementation. 2009.

2. Yujie Liu, Tingzhe Zhou, and Michael Spear.
Transactional acceleration of concurrent data
structures. In Proceedings of the 27th ACM on
Symposium on Parallelism in Algorithms and
Architectures, SPAA 15, pages 244-253, New
York, NY, USA, 2015. ACM.

BST key range [0, 8192)

100% updates
7.0E+07

6.0E+07
5.0E+07
4.0E+07
3.0E+07
2.0E+07
1.0E+07

0.0E+00
1 3 6 9 121518 21 24 27 30 33 36

BST key range [0, 65536)
98% updates, 2% range queries

4.0E+07
3.5E+07
3.0E+07
2.5E+07
2.0E+07
1.5E+07
1.0E+07
5.0E+06
0.0E+00

1 3 6 9 121518 21 24 27 30 33 36

=4 3 path =>e TLE
Concurrent paths == Lock-free



