Leqi Zhu
email: lezhu@cs.toronto.edu

Brief Announcement: Tight Space Bounds for Memoryless Anonymous Consensus

Introduction. Tight Θ(n 2) bounds are known for the total step complexity of randomized algorithms for n-process consensus from registers [START_REF] Attiya | Tight bounds for asynchronous randomized consensus[END_REF]. However, there is a large gap between the best known space lower bound of Ω(√ n) registers [START_REF] Fich | On the space complexity of randomized synchronization[END_REF] and the Θ(n) space complexity of the best existing algorithms. We prove matching upper and lower bounds of n for the space complexity of nondeterministic solo-terminating consensus in a restricted computational model. Specifically, we consider an asynchronous system with n anonymous processes, which communicate through an m-component multi-writer snapshot. Each process alternately performs SCAN and UPDATE. The location and value of each UPDATE can depend only on the result of the preceding SCAN by the same process. The only exception is the first UPDATE by each process, which can also depend on its input. We call algorithms designed for this model memoryless.

Lower Bound. Let C be any configuration of an n-process memoryless anonymous consensus algorithm. A process is free in C if it has already taken at least one step and is poised to perform a SCAN in C. Since processes are anonymous and memoryless, an adversary can cause any two free processes in C to behave identically if they both see the same result on their next SCAN. We say C is solo v-deciding for free processes if there is a solo execution by a free process starting from C that decides v. We say C is (P, q)-bivalent if P is a set of processes covering distinct components and q / ∈ P is a process covering a component such that Cβ P is solo v-deciding for free processes and Cβ q is solo v-deciding for free processes, for some v ∈ {0, 1}, where β q is an UPDATE by q and β P consists of one UPDATE by each process in P .

Given a (Z ∪{p}, q)-bivalent configuration C, consider the longest prefix α of q's solo terminating execution α from C such that Cα β Z∪{p} is solo v-deciding for free processes. The next step δ by q in α after α must be an UPDATE to a component not covered by Z ∪ {p}. Running p from Cα β P until it is about to perform an UPDATE yields a ({p}, q)-bivalent configuration C . Since C is also ({q}, p)-bivalent, the same argument implies that there is an execution from C in which q takes at least two steps, such that the resulting configuration C is ({q}, p)-bivalent and every process in Z is free. Note that at least |Z|+2 different components were updated in the execution from C to C (via δ and β Z∪{p}).

I would like to thank my advisor, Dr. Faith Ellen, and David Solymosi. This work was supported by the Natural Sciences and Engineering Council of Canada.

We show that, if C is ({p}, q)-bivalent and Z is a set of free processes in C, there is an execution γ from C in which p and q take at least two steps, such that Cγ is (Z ∪{p}, q)-bivalent. The proof is by induction on |Z|. The base case, when Z = ∅, holds by the previous paragraph. Fix any Z ⊂ Z with |Z | = |Z| -1. By induction, there is an execution γ 1 in which p and q take at least two steps, such that Cγ 1 is (Z ∪ {p}, q)-bivalent. By the preceding paragraph, there is an execution γ 2 from Cγ 1 in which at least |Z | + 2 components have been updated and p and q have taken at least 2 steps, such that Cγ 1 γ 2 is ({p}, q)-bivalent and each process in Z is free in Cγ 1 γ 2 . By induction, there execution γ 3 such that Cγ 1 γ 2 γ 3 is (Z ∪ {p}, q)-bivalent. Among the components updated in γ 2 γ 3 , there is at least one component j which is not covered by Z ∪ {p} in Cγ 1 γ 2 γ 3 . Let z ∈ Z ∪ {p, q} be the last process to UPDATE component j prior to Cγ 1 γ 2 γ 3 , and let σ be the SCAN by z before this UPDATE. Note that every process in Z is free immediately before σ . Modifying the execution γ 1 γ 2 γ 3 to let the remaining free process in Z -Z perform its SCAN immediately after σ gives a (Z ∪ {p}, q)-bivalent configuration.

To obtain the lower bound, construct a ({p}, q)-bivalent configuration having a set Z of n-2 free processes. Apply the previous argument to get a (Z ∪{p}, q)bivalent configuration. Running q until it is about to UPDATE a component not covered by Z ∪ {p} gives a configuration with n components covered. This proof method, which uses induction on the number of free processes to build larger coverings, seems applicable in the general case. In fact, we recently used this method to give a different, much simpler proof of the Ω(√ n) lower bound in [START_REF] Fich | On the space complexity of randomized synchronization[END_REF].

Upper Bound. We describe an n-process memoryless anonymous obstructionfree consensus algorithm using an n-component multi-writer snapshot, matching the lower bound. The algorithm can also be made randomized wait-free by [START_REF] Giakkoupis | An O(√ n) space bound for obstruction-free leader election[END_REF]. Intuitively, 0 and 1 are competing to complete laps. If v gets a substantial lead on v, then v is decided. Initially, each component contains (0, 0). If a process with input x sees this initial state in a SCAN, it updates component 1 with (x, x). Otherwise, it determines the laps, 0 and 1 , of 0 and 1 by finding the largest values in the first and second entries of the components returned by its SCAN. If some component is not (0 , 1), then it updates the first such component with (0 , 1). So, suppose all components are the same. If value v is ahead of value v by at least 2 laps, for some v ∈ {0, 1}, then it decides v. If not, it increments the larger of 0 and 1 (breaking ties in favour of 0) and updates component 1 with (0 , 1). This is repeated until the process decides.