
HAL Id: hal-01207881
https://hal.science/hal-01207881v1

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brief Announcement: Left-Right - A Concurrency
Control Technique with Wait-Free Population Oblivious

Reads
Pedro Ramalhete, Andreia Correia

To cite this version:
Pedro Ramalhete, Andreia Correia. Brief Announcement: Left-Right - A Concurrency Control Tech-
nique with Wait-Free Population Oblivious Reads. DISC 2015, Toshimitsu Masuzawa; Koichi Wada,
Oct 2015, Tokyo, Japan. �hal-01207881�

https://hal.science/hal-01207881v1
https://hal.archives-ouvertes.fr

Brief Announcement: Left-Right - A
Concurrency Control Technique with Wait-Free

Population Oblivious Reads

Pedro Ramalhete1 and Andreia Correia2

1 Cisco Systems, pramalhe@gmail.com
2 ConcurrencyFreaks andreiacraveiroramalhete@gmail.com

We present a new concurrency control algorithm with Blocking Starvation-
Free write operations and Wait-Free Population Oblivious read operations, which
we named the Left-Right technique. This technique requires using two instances
of a given resource, and can be used on any data structure, allowing concurrent
access to it, similar to a Reader-Writer lock, but in a non-blocking manner for
reads, and it does not need an automatic Garbage Collector (GC).

To allow concurrent read and write access to a data structure or object
written for single threaded execution, a common approach is to use a Reader-
Writer lock. Another alternative is Copy-On-Write (COW), which consists of
replacing the instance by a copy of that instance with the applied modification.
Peterson [3] has presented several solutions to the Concurrent Reading While
Writing problem. One of them guarantees wait-free progress for both reads and
writes, allowing Readers and Writer to access simultaneously buff1 and buff2
instances, which compromises memory reclamation.

The Left-Right is a concurrency control technique with two identical ob-
jects or data structures, that allows an unlimited number of threads (Readers)
to access one instance in read-only mode, while a single thread (Writer) modi-
fies the other instance. The Writer starts by working on the right-side instance
(rightInst) while the Readers read the left-side instance (leftInst), and once
the Writer completes the modification, the two instances are switched and new
Readers will read from the rightInst. The Writer will wait for all the Readers
still running on the leftInst instance to finish, and then repeat the modifica-
tion on the leftInst, leaving both instances up-to-date. It us up to the Writer
to ensure that Readers are always running on the data structure that is currently
not being modified. The synchronization between Writers is achieved with an
exclusive lock that is used to protect write-access (writersMutex).

The components ensuring a Writer performs in exclusivity are the following: a
leftRight variable which is toggled by the Writer between LEFT and RIGHT, that
indicates which instance the Readers should go into; a versionIndex variable,
which is modified by the Writer, functioning like a timestamp; and a Reader’s
indicator [1], readIndic, for each Reader to publish the versionIndex it read.
The readIndic is a data structure that allows Readers to publish their state
through arrive() and depart(), and for the Writer to determine the presence
of ongoing Readers with isEmpty(). A simple implementation of the readIndic

is to use two single atomic synchronized counters, one per versionIndex.

const int a r r i v e (void) {
int v i = ve r s i on Index . load () ;
r e ad Ind i c [v i]−>a r r i v e () ;

return v i ;
}

void depart (const int v i) {
r e ad Ind i c [v i]−>depart () ;

}

void toggleVersionAndWait (void)
{

int v i = ve r s i on Index . load () ;
int p = vi & 0x1 ;
int n = (v i+1) & 0x1 ;
while (! r e ad Ind i c [n]−>isEmpty ())
{

t h i s t h r e ad : : y i e l d () ;
}
ve r s i on Index . s t o r e (n) ;

while (! r e ad Ind i c [p]−>isEmpty ())
{

t h i s t h r e ad : : y i e l d () ;
}

}

template<typename R, typename A>
R applyRead (A& arg1 ,

funct ion<R(T∗ ,A)>& f) {
const int v i = a r r i v e () ;
T∗ i n s t = l e f tR i g h t . load () == LEFT

? l e f t I n s t : r i g h t I n s t ;
R r e t = f (in s t , arg1) ;
depart (v i) ;
return r e t ;

}

template<typename R, typename A>
R applyMut (A& arg1 ,

funct ion<R(T∗ ,A)>& f) {
lock guard<mutex> m(writersMutex) ;
i f (l e f tR i g h t . load () == LEFT) {

f (r i g h t I n s t , arg1) ;
l e f tR i g h t . s t o r e (RIGHT) ;

toggleVersionAndWait () ;
return f (l e f t I n s t , arg1) ;

} else {
f (l e f t I n s t , arg1) ;
l e f tR i g h t . s t o r e (LEFT) ;

toggleVersionAndWait () ;
return f (r i g h t I n s t , arg1) ;

}
}

As shown on the C++ code above, the Writer calling applyMut() will ac-
quire the lock on writersMutex to guarantee mutual exclusivity between Writ-
ers, and proceed to modify the instance opposite to the one currently referenced
by leftRight. Then, it toggles the leftRight, making the modification visible
to new Readers. The final step is to modify the other instance, but first, it is
necessary to guarantee that no Reader is accessing the intance, and this guaran-
tee is provided by toggleVersionAndWait(). The method applyRead() shown
above has no loops, and always executes in a constant number of steps, thus
ensuring that read operations are wait-free population oblivious.

In summary, read operations can run concurrently with all operations, and
will never have to wait for a Writer or for other Readers. Moreover, new Readers
have no impact on the Writer’s progress, making its progress starvation free
relative to Readers. In addition, Writers will be starvation free if a starvation free
writersMutex lock is used. We believe that due to its performance, low latency,
and flexibility of usage, in practice, this technique can be used to wrap any data
structure or object, as an alternative to other synchronization techniques, such
as Reader-Writer locks, or COW with RCU [2] memory reclamation.

References

1. Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-writer locks. In Pro-
ceedings of the twenty-first annual symposium on Parallelism in algorithms and
architectures, pages 101–110. ACM, 2009.

2. P. E. McKenney and J. Walpole. What is rcu, fundamentally? 2007.
3. G. L. Peterson. Concurrent reading while writing. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 5(1):46–55, 1983.

