
HAL Id: hal-01207876
https://hal.science/hal-01207876v1

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brief Announcement: HTM-Assisted Combining
Alex Kogan, Yossi Lev

To cite this version:
Alex Kogan, Yossi Lev. Brief Announcement: HTM-Assisted Combining. DISC 2015, Toshimitsu
Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �hal-01207876�

https://hal.science/hal-01207876v1
https://hal.archives-ouvertes.fr

Brief Announcement: HTM-Assisted Combining

Alex Kogan Yossi Lev

Oracle Labs

Abstract. We present HCF, an algorithm that uses hardware transactional memory to combine oper-
ations that are conflicting with each other, while allowing other operations to run concurrently.

1 Introduction

Transactional lock elision (TLE) [2] and flat combining (FC) [1] were in the focus of recent work on improving
concurrency in lock based programs. TLE uses hardware transactional memory (HTM) to execute a critical
section speculatively using a hardware transaction while confirming that the lock associated with the critical
section is not held. Thus, as long as no thread acquires the lock due to consistent failures of speculative
attempts, multiple threads can run the critical section concurrently. FC, on the other hand, is effective when
many threads are trying to acquire the lock ; the thread holding the lock (denoted as combiner) helps threads
that are waiting for it by executing operations on their behalf. This approach improves performance not
only because of better cache locality, but also because many data structures allow optimizing a sequence
of operations either by packing them together into a more compact operation, or via elimination of one
operation with another. Therefore, while TLE can significantly improve performance for data structures
whose operations rarely conflict with each other (e.g., a binary tree), FC is more beneficial for data structures
whose operations are inherently conflicting (e.g., a stack or a queue).

In our work we explore how to combine these two techniques and provide a “best of both words” solution.
A trivial solution can use the original FC algorithm if and when threads that use TLE fail to the lock;
unfortunately, as we demonstrate, this approach is rarely helpful because it still prevents other threads,
that are not waiting for the lock, to execute the critical section. We therefore introduce the HTM-assisted
Combining Framework (HCF), that enables multiple (combiner and non-combiner) threads to access the data
structure concurrently using HTM. Our algorithm allows multiple threads to act concurrently as combiners
for different kinds of operations, and hence is well suited for data structures with operations of different
nature. For example, with a double ended queue (deque), we expect operations on one end of the queue to
conflict with each other, while operations on opposite ends of the queue are unlikely to conflict. Another
example is a priority queue, where we expect all RemoveMin operations to conflict with each other, while
Insert operations can still run in parallel with all other operations. With HCF, we can associate the operations
on each end of the deque with a different combiner, and with the priority queue, use TLE for Insert operations
while concurrently combining RemoveMin operations. Importantly, due to the use of HTM, this is achieved
using a simple sequential implementation of the data structure protected by a global lock, without the need
to reason about fine-grained synchronization. In particular, the choice of how many combiners to use and
which operations to combine can only affect performance, not correctness.

2 Overview of the HCF Algorithm

With HCF, each operation Op is associated with a publication array, PA(Op), that has at most one thread
executing as a combiner for the operations held in PA(Op). Using multiple publication arrays allows concur-
rent execution of operations that are unlikely to conflict with each other, even if some of them are executed
by combiner threads. A thread T executes Op in one of four phases that it attempts one after another until
Op is completed. The first OwnerPreAnnounce phase simply tries to execute Op using a hardware transaction
(TX). If failed (perhaps multiple times), the second OwnerPostAnnounce phase keeps trying to execute Op

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

1 2 3 4 6 8

th
ro

ug
hp

ut
 (

op
s/

m
s)

threads

Lock
FC
TLE
TLE+FC
HCF<0,0,10>

(a) RemoveMin only

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 6 8

th
ro

ug
hp

ut
 (

op
s/

m
s)

threads

Lock
FC
TLE
TLE+FC
HCF<5,0,5>
HCF<2,3,5>

(b) Insert only

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

1 2 3 4 6 8

th
ro

ug
hp

ut
 (

op
s/

m
s)

threads

Lock
FC
TLE
TLE+FC
RM:HCF<0,0,10>,Ins:TLE
RM:HCF<0,0,10>,Ins:HCF<5,0,5>
RM:HCF<0,0,10>,Ins:HCF<2,3,5>

(c) 50%-50% mix

Fig. 1: Skip-lists-based priority queue throughput results. Experiments were done on an Intel Haswell (Core
i7-4770) 4-core hyper-threaded machine running at 3.40GHz and powered by Oracle Linux 7.

using a TX, but only after announcing it in PA(Op), and only as long as the operation is not being helped
by a combiner thread. If T does not complete Op in the OwnerPostAnnounce phase, it continues to the
CombinerHTM phase, where it becomes a combiner, and tries to execute a subset of operations in PA(Op)
(including Op) using one or more TXs. Finally, if all three phases fail to execute Op, T acquires the data-
structure lock at the CombinerLock phase, and applies the subset of operations left while holding the lock.
The last two phases allow any data-structure specific combining and elimination techniques that can reduce
the contention on the main data structure, and help executing operations faster. Critically, like with TLE,
any TX run by HCF respects the data structure’s lock, testing that it is not held and aborting otherwise.

3 Performance Overview

We denote by HCF<X,Y,Z> a variant of the HCF framework that executes up to X,Y and Z HTM tri-
als in the OwnerPreAnnounce, OwnerPostAnnounce and CombinerHTM phases, respectively. We note that
HCF<0,0,0> that helps all operations in the publication array is equivalent to the original FC algorithm [1],
and HCF<X,0,0> that helps only the combiner’s own operation is equivalent to the TLE algorithm [2].

We evaluated a priority queue data structure, implemented as a skip-list, so we can efficiently combine
N RemoveMin operations by chopping off the first N elements in the list. Using the HCF framework, we let
RemoveMin and Insert operations to use separate publication arrays. For RemoveMin operations, we used a
HCF<0,0,10> variant, as we expect them all to conflict with each other, and they can be efficiently combined.
For Insert, we experimented with either TLE (HCF<10,0,0>), HCF<5,0,5>, or HCF<2,3,5> variants.

Throughput results are presented in Figure 1. As expected, when running only RemoveMin operations,
our HCF algorithm achieves results that are competitive with those of FC. TLE, on the other hand, performs
poorly as all the operations conflict with each other. Even the simple TLE+FC solution, that uses the FC
algorithm when TLE fails to the lock, does not provide any benefit. On the other hand, when running only
Insert operations, FC performs poorly while TLE is doing pretty well, but is still outperformed by our HCF

variants. This is because with HCF, conflicting operations serialize among themselves at the CombinerHTM

phase, but can run concurrently with other non-conflicting operations. The biggest advantage of HCF, however,
is evident in the 50%-50% operation mix experiment, where the variants that use two different configurations
of HCF for Insert and RemoveMin outperforms all other mechanisms (including the simple TLE+FC variant)
by a large margin. This demonstrates one of the most important benefits of our algorithm: the ability to easily
apply different combining policies in parallel for different operations executed on the same data structure.

References

1. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-parallelism tradeoff. In:
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). pp. 355–364 (2010)

2. Rajwar, R., Goodman, J.R.: Speculative lock elision: Enabling highly concurrent multithreaded execution. In:
Proceedings of the 34th Annual ACM/IEEE International Symposium on Microarchitecture. pp. 294–305 (2001)

2

	Brief Announcement: HTM-Assisted Combining

