
Brief Announcement: A Concurrency-Optimal
List-Based Set

Vincent Gramoli1,2, Petr Kuznetsov3 ?, Srivatsan Ravi4, and Di Shang2

1 NICTA
2 University of Sydney

vincent.gramoli@sydney.edu.au,dsha5693@uni.sydney.edu.au
3 Télécom ParisTech

petr.kuznetsov@telecom-paristech.fr
4 TU Berlin

srivatsan.ravi@tu-berlin.de

Measuring concurrency. Multicore applications require highly concurrent data
structures. Yet, the very notion of concurrency is vaguely defined, to say the least.
What is meant by a “highly concurrent” data structure implementing a given
high-level object type? Generally speaking, one could compare the concurrency
of algorithms by running a game where an adversary decides on the schedules
of shared memory accesses from different processes. At the end of the game,
the more schedules the algorithm would accept without hampering high-level
correctness, the more concurrent it would be. The algorithm that accepts all
correct schedules would then be considered concurrency-optimal.

The lack of concurrency. To illustrate the difficulty of optimizing concurrency,
let us consider a highly concurrency-friendly data structures: the sorted linked
list. Since updates on a list-based set affect only a small number of contiguous
list nodes, most of them could, in principle, run concurrently without conflicts.

The Lazy Linked List [1] achieves high

Fig. 1: The concurrency limitation of
the Lazy Linked List based set leads to
poor scalability as operations poten-
tially contend on meta-data even when
they do not modify the structure

concurrency by holding locks on only two
consecutive nodes when updating but suf-
fers from an overly conservative post-
locking validation scheme. More precisely,
both insert(v) and remove(v) traverse the
structure until they find a node whose
value is larger or equal to v, at which
point they acquire locks on two consec-
utive nodes. Only then the existence of
the value v is checked: if v is found (resp.
not found), then the insertion (resp., re-
moval) releases the locks and returns with-
out modifying the structure. To illustrate
that this concurrency limitation may lead
to poor scalability, consider Figure 1 that
depicts the performance of a 100-element Lazy Linked List under a workload of

? The author is supported by the Agence Nationale de la Recherche, ANR-14-CE35-
0010-01, project DISCMAT



2

10% updates (insertions/removals) and 90% of contains on a 64-core machine.
The list is comparatively small, hence all updates (even the failed insertions and
removals) are likely to contend. We can see that when we increase the number of
threads beyond 40, the performance drops significantly. This observation raises
an interesting question: Does there exist a concurrency-optimal list-based set
algorithm?

Our contribution. We answer this question in the affirmative. We propose the
Versioned List, the first concurrency-optimal list-based set algorithm to date [2].
Its key feature is a versioned try-lock, a novel synchronization step inspired by
transactional memory (TM). It allows us to implement a pre-locking validation:
an update operation uses a CAS to set a versioned try-lock immediately after
the validation of the node succeeds. In short, a lock is taken and schedules are
rejected only if the data structure has to be modified under the effect of either a
successful insertion or a successful removal. The versioned try-lock can be imple-
mented using a StampedLock since Java 8 and a uint in C/C++. The Versioned
List algorithm combines this new version try-lock with existing efficient mecha-
nisms: the logical deletion technique of the Harris-Michael algorithm [3, 4] and
the wait-free traversal of the Lazy Linked List [1]. If acquiring the try-lock fails
because of a version change, then the operation re-reads some nodes.

We show that the Versioned List algorithm implements a linearizable set and
rejects a concurrent schedule only if otherwise the linearizability of the set type
is violated. Our algorithm is thus provably concurrency-optimal: no other correct
list-based set algorithm can accept more schedules. This observation unveils an
interesting desirable data structure property by which concurrent operations
conflict on metadata only when they “conflict” on data, for which we need to
exploit the semantics of the high-level data type. Note that this property extends
the formal definitions of DAP [5–7] that are all trivially ensured by classic linked
list implementations simply because all their operations “access” the head node
and, thus, are allowed to conflict on the metadata.

References

1. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy
concurrent list-based set algorithm. In: OPODIS. (2006) 3–16

2. Gramoli, V., Kuznetsov, P., Ravi, S., Shang, D.: A concurrency-optimal list-based
set. Technical Report 1502.01633, arXiv (2015)

3. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: DISC.
(2001) 300–314

4. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: SPAA. (2002) 73–82

5. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel
implementations of transactional memory. In: SPAA. (2009) 69–78

6. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers (2010)

7. Ellen, F., Fatourou, P., Kosmas, E., Milani, A., Travers, C.: Universal constructions
that ensure disjoint-access parallelism and wait-freedom. In: PODC. (2012) 115–124


	Brief Announcement: A Concurrency-Optimal List-Based Set

