
HAL Id: hal-01207862
https://hal.science/hal-01207862v1

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brief Announcement: Self-stabilizing Virtual Synchrony
Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, Elad M. Schiller

To cite this version:
Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, Elad M. Schiller. Brief Announcement: Self-
stabilizing Virtual Synchrony. DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo,
Japan. �hal-01207862�

https://hal.science/hal-01207862v1
https://hal.archives-ouvertes.fr


Brief Announcement: Self-stabilizing Virtual
Synchrony

Shlomi Dolev1, Chryssis Georgiou2, Ioannis Marcoullis2, and Elad M. Schiller3

1 Ben-Gurion University of the Negev, Israel.
2 University of Cyprus, Cyprus.

3 Chalmers University of Technology, Sweden.

Introduction. Systems satisfying the Virtual Synchrony (VS) [2] property pro-
vide message multicast and group membership services in which all system
events, group membership changes, and incoming messages, are delivered in
the same order. VS is an important abstraction, proven to be extremely use-
ful when implemented over asynchronous, typically large-scale, message-passing
distributed systems, as it simplifies the design of distributed applications, e.g.,
State Machine Replication (SMR). The VS property ensures that two or more
processors that participate in two consecutive communicating groups should have
delivered the same messages. Self-stabilizing systems [1,3] can tolerate transient
faults that drive the system to an unpredicted arbitrary configuration. Such sys-
tems automatically regain consistency from any such configuration, and then
produce the desired system behavior ensuring it for a practically infinite num-
ber of successive steps, e.g., 264 steps. We present the first, to our knowledge,
self-stabilizing virtual synchrony algorithm.

An Overview of Our Results. We consider an asynchronous message pass-
ing system consisting of n uniquely identified processors of which a minority
may become inactive (crash). Any message that is sent infinitely often from one
active processor to another active processor is eventually received. The com-
munication links have known bounded capacity, and can emulate reliable FIFO
communication channel protocols using existing self-stabilizing algorithms.

Bounded labeling scheme for multiple writers. We extend the labeling
scheme of [1] to support counter incrementing by multiple label creators (writers)
rather than by a single writer. The labels are related to an integer counter
allowing the system to stabilize. A 64-bit counter, for example, is considered to be
practically infinite. There are two main challenges to achieve the result. Multiple
writers can concurrently create labels. To overcome this issue, we include the
writer identity to break symmetry and decide which label is the most recent
one. In this way, the scheme ensures that every active processor pi eventually
“cleans up” the system from obsolete labels of which pi appears to be the creator,
but may be the result of the system’s initial arbitrary state.

The second challenge is to overcome problems emerging from labels at-
tributed to inactive processors that cannot clean-up their own labels. Note that
there is no knowledge of these processors’ inactivity. Consider an initial system
state including a cycle of labels `1 ≺ `2 ≺ `3 ≺ `1, all of the same creator, say px,
where ≺ is the label order relation. If px is active, it will eventually learn about
these labels and introduce a label greater than them all. But if px is inactive,
the system’s asynchronous nature may present the three labels to some active



processor pi in their order of precedence and force their adoption, indefinitely.
We settle this issue by keeping a label history of proven sufficient label size. The
algorithm is proved to be self-stabilizing and to provide a global maximal label.

Practically infinite counter for multiple writers. We extend the labeling
scheme to handle counters, where a counter consists of a label, as used in the
labeling scheme; an integer sequence number, ranging from 0 to 2b, say b = 64;
and a processor id. The counter increment algorithm uses the same structures
and procedures as the labeling algorithm, but now with counters instead of
labels. The challenge for the counter algorithm is to make sure that when a
label has an exhausted counter (i.e., one that has reached its maximum) the
label is changed and a new label is chosen. The counter algorithm is proved to
guarantee eventually monotonic counter increment by multiple writers given a
minority of inactive processors. The counter increment algorithm can be used to
obtain a self-stabilizing MWMR shared memory emulation.

Self-stabilizing virtual synchrony. Systems guaranteeing the VS property
provide two main services: a membership service and a reliable multicast ser-
vice. We provide these services in a coordinator-based solution, considering a
single majority group in the system, the primary partition [2]. The membership
service provides the current group view of the recently live and connected group
members. A view is composed of the view identifier obtained from the counter
increment algorithm, and the group membership is provided by a failure detec-
tor (FD) as the one described in [3]. The output of the coordinator’s FD defines
the set of view members; this helps to maintain a consistent membership among
the group members, despite inaccuracies between the various FDs. The coordi-
nator is also responsible for the consistency of the multicast mechanism within
the group. To this end, it requests, collects and combines input from the group
members, and then multicasts the updated information before initiating a new
multicast round. Each participant keeps the last delivered message and the view
identifier that delivered this message. This, together with the intersection prop-
erty of majorities, and after taking care of some subtle issues, provides the VS
property. As part of our VS solution, we also implement a virtually synchronous
SMR algorithm. Every processor maintains a replica of the state machine and
the last processed (composite) message. Starting from an arbitrary configura-
tion, our algorithm eventually implements replicated automaton emulation that
preserves VS. Full details can be found in [4].

References
1. N. Alon, H. Attiya, S. Dolev, S. Dubois, M. Potop-Butucaru, and S. Tixeuil. Prac-

tically stabilizing SWMR atomic memory in message-passing systems. J. of Comp.
and Sys. Sci., 81(4): 692–701, 2015.

2. K. Birman. A history of the virtual synchrony replication model. In Replication:
Theory and Practice, pages 91–120, 2010.

3. P. Blanchard, S. Dolev, J. Beauquier, and S. Delaët. Practically self-stabilizing
Paxos replicated state-machine. In Proc. of NETYS’14, pages 99–121, 2014.

4. S. Dolev, Ch. Georgiou, I. Marcoullis, and E.M. Schiller. Self-stabilizing virtual
synchrony. In Proc. of SSS’15, pages 248–264, 2015. (Also in arXiv:1502.05183.)


	Brief Announcement: Self-stabilizing Virtual Synchrony-1em

