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Stable integrated hyper-parametric oscillator based on coupled optical microcavities

Andrea Armaroli,1, ∗ Patrice Feron,1 and Yannick Dumeige1

1FOTON (CNRS-UMR 6082), Université de Rennes 1, ENSSAT,
6 rue de Kerampont, CS 80518, 22305 Lannion CEDEX, France

(Dated: September 14, 2015)

We propose a flexible scheme based on three coupled optical microcavities which permits to
achieve stable oscillations in the microwave range, the frequency of which depends only on the
cavity coupling rates. We find the different dynamical regimes (soft and hard excitation) to af-
fect the oscillation intensity but not their period. This configuration may permit to implement
compact hyper-parametric sources on an integrated optical circuit, with interesting applications in
communications, sensing and metrology.

Nonlinear effects in optical microresonators provide
fundamental functionalities for high speed all-optical sig-
nal processing [1, 2]. Frequency conversion [3], switching
[4], signal regeneration in communications [5] and optical
generation of microwaves [6, 7] are examples of applica-
tions which have attracted a fair deal of attention in the
latest years.

The generation of oscillations at microwave frequency
ranging from 10GHz to 200 GHz based on the beating of
optical oscillations is an enabling technology not only for
high-speed communications (e.g. in aerospace industry),
but also metrology, optical clocks and sensing. One of the
most interesting proposals is to exploit a set of adjacent
resonances of an optical microresonator [6]. The ubiq-
uitous four-wave mixing (FWM) between nearly equi-
separated resonant modes manifests itself at high enough
power in the conversion from a quasi continuous excita-
tion to a frequency comb [8–11], and ultimately forms
train of pulses and solitary waves inside the cavity [12].
The threshold power to observe such phenomena depends
on the nonlinearity of the medium and on the cavity life-
time, or quality factor Q, which should be in the range
of Q ≈ 107. This poses strong technological constraints
and octave-spanning frequency combs are generally ob-
served in large diameter (≈ 200µm) glass or crystalline
microresonators. Thus, due to the low nonlinearity, the
required power levels causes generally thermal dissipation
concerns. Finally as the frequency spacing of resonant
modes, i.e. the free spectral range (FSR), corresponds to
the microwave oscillation frequency, this implies that, in
order to obtain oscillations at e.g. 10GHz, a microres-
onator of more than 1mm radius is needed. This clearly
poses a serious limit to integration. It would be ben-
eficial to scale this technology to an integrated optical
platform, based on semiconductors (Si or III-V alloys),
which exhibits much stronger nonlinearities. There are
two limits: usually it is much harder to obtain Q > 106,
due to the technological processes involved in fabrication
and, due to the small size, the FSR is in the THz range.

In order to obtain oscillations in the GHz range in
a single optical microcavity (microring, microsphere, or

∗ andrea.armaroli@enssat.fr

photonic crystal (PhC) cavity), the usual approach is to
couple to an additional degree of freedom, such as a time-
delayed nonlinear response [13–15]. Alternatively a sys-
tem of coupled cavities can be designed. This last solu-
tion is normally limited to two cavities and the system is
destabilized and starts to oscillate at a frequency which
is a sort of beating between the resonances of the overall
system [16–19]. The main disadvantage is that the pul-
sation period is of the same order of the cavity lifetime,
so that to obtain oscillations in the GHz range (i.e. a
period of 0.1ns) we are limited to a Q-factor of about
104 which in turn implies huge power levels. Finally in
both approaches (delayed response or a pair of coupled
cavities, or even both), the pulsations (limit cycles) are
subject to a period doubling cascade to chaos.

In our work we propose a system of three evanescently-
coupled optical micro-race-track resonators with instan-
taneous Kerr response. By supposing to be able to tune
the cavity coupling rate independently from the reso-
nance frequency and lifetime, we obtain that in the limit
of large coupling the system exhibits stable oscillations
in the GHz range, the frequency of which is largely inde-
pendent of power and not subject to a chaotic evolution.
Thus we can implement this configuration in a semicon-
ductor platform, with large Q ≈ 105 values and accessible
power levels. This promises to be a flexible integration
strategy for obtaining a microwave oscillator on an opti-
cal integrated cicuit.

We consider a system composed by evanescently cou-
pled optical microcavities (single mode or with a large
FSR), the time evolution of which reads, in dimensional
units, as [17, 19–22]

dAj

dT
=

[
i(δ̃j + χ̃j |Aj |2)− 1

τ̃j

]
Aj

+i
∑
k 6=j

γ̃jkAk +

√
2

τ̃wg
sinδj1

(1)

where j, k = 1 − 3, δ̃j = ω̃j − ω̃L is the detuning of the
laser excitation from the j-th cavity resonance frequency,
τ̃j is the cavity lifetime, τ̃wg quantifies the coupling from
the input waveguide to the first cavity. We assume that
the decay into the waveguide is negligible with respect
to the intrinsic cavity contribution, i.e. τ̃1 � τ̃wg, Aj are
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FIG. 1. (Color Online) Configuration of the oscillator based
on three coupled micro-resonators, evanescently excited by an
external under-coupled waveguide.

normalized such that the square amplitude is the energy
stored in the cavity, |sin|2 is the power in the external
waveguide coupled into the first cavity, γ̃jk = γ̃kj are
the coupling rate of cavity j and k and are assumed to
be real. The independent variable T represents the time
expressed in seconds. We pose the effective nonlinear

coefficient χ̃j =
ω̃jcn2

n2
effV

, where n2 is the Kerr coefficient,

neff is the modal effective index and V is the modal
effective volume.

In the three cavity configuration shown in Fig. 1, in
which the coupling coefficients, lifetimes and modal prop-
erties are assumed to be the same for each cavity τ̃j = τ̃ ,
ω̃j = ω̃, χ̃j = χ̃ > 0, γ̃jk = γ̃ for |j − k| = 1 and
γ̃jk = 0 otherwise, after introducing the normalization
a = A/

√
I0, t = T/τ̃ , with I0 = (τ̃ χ̃)−1, we derive the

following adimensional model

da1
dt

=
[
i(δ + χ |a1|2)− 1

]
a1 + iγa2 +

√
P

da2
dt

=
[
i(δ + χ |a1|2)− 1

]
a2 + iγa1 + iγa3

da3
dt

=
[
i(δ + χ |a1|2)− 1

]
a3 + iγa2

(2)

moreover γ = γ̃τ̃j , δ = δ̃τ̃ and P = 2τ̃2|sin|2/(I0τ̃wg) =
2τ̃3|χ̃||sin|2/τ̃wg is the actual power coupled in the first
cavity.

In the linear limit (χ = 0) and free evolution (P = 0),
we can easily obtain the linear modes of the structures;
the cavity modes split into a central resonance δ0 = −i
with eigenmode u0 = ( 1√

2
, 0,− 1√

2
)T and a pair of sym-

metric sidebands δ±1 = ±
√

2|γ| − i with eigenmodes

u±1 =
(

1
2 ,±

√
2
2 ,

1
2

)T
, each with the same lifetime.

In the nonlinear case (χ = 1), if γ ≈ 1 is considered,

like in [16, 17, 19], we obtain a complicated bifurcation
diagram and different regimes of self-pulsing, which may
be subject to period-doubling bifurcation. This is due
to fact that the resonances of the coupled system are
too close, they are thus all significantly excited by the
external source and this causes an intrinsic instability of
the beating among them.

In the limit of γ � 1, the three resonances are widely
split and each mode can be selectively excited: if the cen-
tral mode is chosen, the Kerr effect leads to the conver-
sion of photons into the lateral modes and a stable limit
cycle of period T = 2π/δ±1 =

√
2/(πγ) is expected to ap-

pear. In this limit we can approximate the steady state of
(2) (daj/dt = 0) as aE1 = −aE3 and aE2 = 0, which is justi-
fied also by the strong coupling which inhibits the energy
storage in the middle cavity and we can express implic-
itly the solution for the intensity I1 = |aE1 |2 = I3 = |aE3 |2
as

4I3(1 + (δ + χI3)2) = P (3)

which has the same form of the bistability curve for the
single nonlinear optical cavity, except for the factor 4,
which reflects the partition of energy between cavities 1
and 3. As in the conventional bistable cavity, the system
is thus monostable if δ ≥ −

√
3 and exhibits multiple

solutions if δ < −
√

3. It is well-known that a pair of
saddle-node (SN) bifurcations (annihilation of one stable
and one unstable equilibrium) appear for

I±3 =
−2δ ±

√
−3 + δ2

3χ
. (4)

The interaction of modes manifests itself as Hopf (H)
bifurcations, where a limit cycle coexist locally with an
equilibrium. An elementary but tedious analysis permits
to estimate the eigenvalues of the Jacobian matrix asso-
ciated to (2) and locate the two H bifurcations (where a
pair of conjugate imaginary eigenvalues appears):

IH±3 = − 4δ

3χ
±
√

4γ2(δ2 − 3)− 6

3γχ
. (5)

We also notice that those points exist only in the multi-
stable case and we can have two different scenarios: (i)

IH−1 > I+1 , if −3
√

3
5 < δ < −

√
3, and (ii) I−1 < IH−1 <

I+1 , if δ < −3
√

3
5 . This estimates provide important in-

dications on the most interesting regions in the space of
parameters.

To confirm the validity of our estimates, we now set
γ = 40 and resort to detailed numerical calculations; we
set the power P and use δ as the bifurcation parameter.
First we classify the different dynamical regimes in the
(δ, I3) plane. It proves straightforward, see [18, 19], to fix
I3 and solve numerically the nonlinear system for equi-
libria (daj/dt = 0) backwards to obtain I1,2 and finally
P ; for each point we compute numerically the eigenval-
ues of the Jacobian. The results are reported in Fig. 2.
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FIG. 2. (Color Online) Stability and self pulsation in the
(δ, I3) plane; the different shaded regions represent stable (S),
unstable (U), self-pulsing (SP) and (mSP) multistable SP nu-
merically computed equilibria; the black dashed line corre-
spond to the analytical estimate SN bifurcations of (4), the
blue dash-dotted lines to the H bifurcations, (5). The mSP re-
gion is located between the lower blue dashed-dotted and the
upper black dashed line; the green level curves represent the
power level corresponding to each point in the plane, i.e. the
nonlinear frequency response obtained by solving (3) for a
fixed value of P .

For low power P < 8, analogously to a single Kerr cavity,
the system is mono- or bistable. Then, in a small inter-
val 8 < P < 8.81, a pair of H bifurcations exist, which
occur in the upper bistable branch: they are both super-
critical and we define this as the slow regime. Finally,
for larger power level, the first H bifurcation is found be-
tween the two SN points, while the second is still on the
upper branch. The low energy one is subcritical, while
the high-energy one is still supercritical. The limit cy-
cles are now stronger attractors than in the slow regime
above and we define it as the fast regime. We include in
Fig. 2 also our analytical estimates which are in excellent
agreement to the numerically obtained values.

Then we study in detail the bifurcation of equilibria
and limit cycles as a function of δ for P = 8.5 (Fig. 3)
and P = 30 (Fig. 4) by means of the Matcont toolbox,
[23]. In the first case, Fig. 3, the two saddle node bifur-
cation occur before the two H bifurcations. These latter
are both supercritical and a branch of stable limit cycles
connects them. At this low power level, the equilibrium
is only slightly unstable and self-pulsation requires many
cavity lifetimes to be achieved, see Fig. 5(a).

The second situation is much richer, Fig. 4: the first H
bifurcation occurs in the unstable branch of the bistable
curve, it is subcritical (i.e. it gives rise to an unstable
limit cycle). Then the (now stable) equilibrium under-
goes the second SN bifurcation and recovers its stability
at the second (supercritical) H point. The limit cycles
are still on a curve connecting the two H bifurcations,
but in this case they exhibit themselves bistability (or
saddle-node bifurcations of limit cycles, SNC). It is in-

FIG. 3. (Color Online) Bifurcation diagram of the intensity
I1 varying the laser detuning δ, for γ = 40 and P = 8.5. The
blue line represents the bifurcation of equilibria and the red
line represents the bifurcation of limit cycles (maxima and
minima of each cycle); a solid line is a stable solution stable,
while a dashed line an unstable one: bifurcation points are
labeled as SN (saddle-node) and H (Hopf). The solution of (3)
and its intersections with (4) and (5) correspond perfectly to
the numerical solutions.The top right inset shows the relative
distance of the period of limit cycles from T (the beating
period between lateral sidebands) as a function of δ, the left
one a zoom on the details of the bifrucation diagram.

teresting to notice that the first (mostly detuned) stable
branch of pulsating solutions have large amplitudes and
coexist closely to the low energy stable equilibrium. The
second stable branch exhibits decreasing oscillation am-
plitude which vanishes at the second H point. There is
a crucial difference between the two branches: while the
second one is achieved starting from a noise in the cavity
system (soft excitation, see Fig. 5(b)) the first branch de-
mands a finite energy inside the cavity (hard excitation,
see Fig. 5(c)) and thus can be observed only by progres-
sively decreasing the detuning, as plotted in Fig. 5(d)
where the different dynamical regimes are shown to be
accessible by sweeping δ.

At each point, we obtain also the period of oscilla-
tion (its relative deviation from T as a function of δ is
shown in the insets of Figs. 3–4): it comes up that in
any of the above cases, the period is virtually locked at
T =

√
2π/γ, which correspond exactly to the oscillations

between the linear resonances obtained above; the devi-
ations from this value are of the order of 1/γ2. Thus we
proved the existence of different self-pulsation regimes,
the frequency of which is the same irrespective of the
power and detuning level. They are also stable, in the
sense that in the whole SP region of Fig. 2 the cycles
never undergo a period-doubling cascade, as it occurs in
[14, 16].

We finally comment on the physical accessibility of this
approach. We assume to operate at λ = 1.55µm and take
τ̃j = τ̃ = 1ns, so that the cavity have a Q ≈ 6 × 105.
Consider a racetrack cavity with minimum curvature ra-
dius R = 10µm and mode area Aeff = 1 µm2 (upper
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FIG. 4. (Color Online) Same as Fig. 3 for P = 30. Notice that
the limit cycles also exhibit multistability, stable and unstable
branches annihilate in SNC (saddle-node of limit cycles) bi-
furcations. A branch of stable limit cycles coexist with a low
intensity stable equilibrium, and requires hard excitation, a
second branch of stable limit cycles appears at larger detuning
and exhibits soft excitability.

FIG. 5. (Color Online) Time evolution of I3 from the numer-
ical solutions of (2), for γ = 40. (a) δ = −2, P = 8.5; (b)
δ = −3, P = 30; (c) δ = −4.5, P = 30: the blue line cor-
responds to soft excitation (noise initial conditions), the red
one to hard excitation (a1(0) = −a3(0) = 2); (d) P = 30, δ
varies from -1 to -11.

bound): the modal volume is V ≈ 6.28 × 10−17m3. and
the effective index of the mode is neff = 2. Notice that
the resulting round-trip time in the cavity is still much

shorter than the lifetime, thus Ikeda instabilities would
require power and detuning values incompatible with the
present analysis. The medium is a semiconductor of re-
fractive index Kerr index n2 = 2× 10−17 m2/W [24], we
get χ̃ = 2.9 × 1022 [Js]−1. The scaling intensity results
I0 = 34.4fJ. We also assume weak waveguide coupling
τ̃wg = 10τ̃ , so that the first cavity in undercoupled to the
waveguide and the quality factor does not vary consider-
ably from a cavity to the other. With this values, P = 8.5
correspond to a power in the waveguide |sin|2 = 1.7mW
and P = 30 to |sin|2 = 5.2mW. As far as the coupling is
concerned, a basic modal calculation, [20, 25], permits to
estimate that two waveguides of cross section 400×300nm
with a gap of 200nm require only about a coupling length
Lcpl = 4µm to achieve the normalized value of γ = 40.
This value was chosen in order to obtain an oscillation fre-
quency of about 10GHz (precisely 9 GHz). Moreover we
numerically investigate if the exact match of the resonant
frequencies and coupling coefficients is crucial to observe
these oscillations. We verified numerically that quite a
strong mismatch (in the order of 1%, in each parameter)
reflects in the case of Fig. 4 in less than 0.5% change in
the period, not affecting significantly the structure of the
bifurcation diagram. This proves that our approach per-
mits to generate microwave hyper-parametric oscillations
and can be implemented on a standard integrated optical
platform.

In summary, we proposed a design, based on a triad
of evanescently coupled racetrack microcavities, which
permits to achieve hyper-parametric oscillations at a fre-
quency depending only on the coupling rate among the
cavities. The oscillations are stable and exist in a wide
region of the parameter space. We found different exci-
tation regimes (slow and fast, hard and soft) and prove
the robustness of the design. This system can be eas-
ily implemented in an up-to-date semiconductor plat-
form for optical integrated circuits [7, 26–28], but also in
more advanced settings such as photonic crystal nanocav-
ities,which are virtually monomodal and can exhibit very
high Q-factors [29]. This may permit to achieve compact
microwave sources on an optical chip, operating in a fre-
quency range inaccessible before, with important appli-
cations in telecommunications, sensing and metrology.

Funding. Y. D. acknowledges the support of the In-
stitut Universitaire de France (IUF).
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