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Distributed Large Independent Sets in One
Round On Bounded-independence Graphs?

Magnús M. Halldórsson and Christian Konrad

ICE-TCS, School of Computer Science, Reykjavik University, Reykjavik, Iceland
{christiank,mmh}@ru.is

Abstract. We present a randomized one-round, single-bit messages, dis-
tributed algorithm for the maximum independent set problem in poly-
nomially bounded-independence graphs with poly-logarithmic approxi-
mation factor. Bounded-independence graphs capture various models of
wireless networks such as the unit disc graphs model and the quasi unit
disc graphs model. For instance, on unit disc graphs, our achieved ap-
proximation ratio is O(( logn

log logn
)2).

A starting point of our work is an extension of Turán’s bound for inde-
pendent sets by Caro and Wei which states that every graph G = (V,E)
contains an independent set of size at least β(G) :=

∑
v∈V

1
degG(v)+1

,

where degG(v) denotes the degree of v in G. Alon and Spencer’s proof
of the Caro-Wei bound in [1] suggests a randomized distributed one-
round algorithm that outputs an independent set of expected size equal
to β(G), using messages of sizes O(logn), where n is the number of ver-
tices of the input graph. To achieve our main result, we show that β(G)
gives poly-logarithmic approximation ratios for polynomially bounded-
independence graphs. Then, for O(1)-claw free graphs (which include
graphs of bounded-independence), we show that using a different algo-
rithm, an independent set of expected size Θ(β(G)) can be computed in
one round using single bit messages, thus reducing the communication
cost to an absolute minimum.
Last, in general graphs, β(G) may only give an Ω(n)-approximation. We
show, however, that this is best possible for one-round algorithms: We
show that each such distributed algorithm (possibly randomized) has an
approximation ratio of Ω(n) on general graphs.

1 Introduction

Something For Almost Nothing. When designing approximation algorithms,
the usual goal is to find desirable trade-offs between approximation guarantee
and the resources required by the algorithm, such as computation time, memory
consumption, the number of queries to the input, or, in the area of distributed
computing, message size and the number of communication rounds. In past years,
in various algorithmic disciplines, research has been carried out in order to deter-
mine the minimum amount of resources required to achieve non-trivial solutions.
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Often, it is asked how much effort it takes to obtain at least something from the
given problem instance. Examples include property testing algorithms [18] that
query a given instance only a few times in order to reason about whether the
instance is close to having a certain property or it is far from having this prop-
erty. In distributed computing, this phenomenon can be observed for example
with regards to communication patterns and the total number of communica-
tion rounds. It has been shown that non-trivial computation is possible even
when the communication pattern of nodes is restricted to beeps [4]. Moreover,
research on so-called local algorithms [17, 12] that employ only a few commu-
nication rounds has been carried out and highly non-trivial results have been
obtained (e.g. even some NP-hard problems can be solved in only a constant
number of communication rounds [2]).

In this paper, we ask whether non-trivial computation is possible if we grant
a distributed algorithm only a single communication round. Specifically, we ask
whether reasonable approximations to the maximum independent set problem
can be computed in this harsh setting.

Computational Model. We consider a network of computational units of un-
bounded computational power V modelled by a graph G = (V,E). The graph
G constitutes the input graph of the problem. We assume that vertices have
unique IDs. Initially, besides its ID, every node v ∈ V also knows its degree
degG(v). Communication occurs in simultaneous communication rounds along
the edges E of G. Then the runtime of a distributed algorithm is the total num-
ber of communication rounds. In this work, we mainly focus on algorithms that
run in a single communication round. In the LOCAL model, algorithms may
exchange messages of unbounded sizes. In the CONGEST model, message sizes
are restricted to O(log n), where n denotes the number of vertices of the input
graph.

Independent Sets. An independent set I in a graph G = (V,E) is a subset
of non-adjacent vertices. An independent set I is maximal if it is inclusion-wise
maximal, i.e., I ∪ {v} is not an independent set for any v ∈ V \ I. A maximum
independent set is one of maximal size. The independence number of graph G is
the size of a maximum indendent set in G and is denoted by α(G). Computing
maximum independent sets is NP-hard on general graphs [10] and is even hard to
approximate within factor n1−ε for any ε > 0 [21]. The independent set problem
is one of the most studied problems in distributed computing, and we detail
related work further below.

Our Main Result. Our main result concerns graphs of polynomially bounded-
independence, a graph class that includes unit disc graphs and similar graph
classes that are used for modelling wireless networks (for a precise definition see
the next paragraph). We show that in the harsh setting of a single communication
round, a poly-logarithmic approximation ratio can be achieved in polynomially
bounded-independence graphs. Furthermore, we show that not only the number
of communication rounds but also message sizes can be reduced to an absolute
minimum, i.e., to single bit messages.
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Bounded-independence Graphs. Graphs of bounded-independence capture
many intersection graphs of geometrical objects which in turn are used for mod-
elling conflict graphs of wireless networks. Given a collection X = {X1, . . . , Xn}
of geometrical objects, the corresponding intersection graph is obtained by as-
signing X as the vertices of the graph, and an edge is introduced between two
vertices Xi, Xj iff the objects Xi and Xj intersect. In the literature, conflict
graphs of wireless networks are often modelled by unit disc graphs [7], the inter-
section graph of discs with equal radii, where the radius of the discs corresponds
to the transmission range of the wireless transmitters. Unit disc graphs have
many nice properties that allow for the design of efficient distributed algorithms,
but the assumption of identical transmission radii for all wireless transmitters
is often too restrictive. Consequently, the unit disc graphs model has been ex-
tended to more elaborate models such as quasi unit disc graphs [13] or general
disc graphs. In a general disc graph, no restriction on the radii of the discs are
imposed. Then, the parameter δ = rmax/rmin is introduced into the analysis of
algorithms, where rmax and rmin denote the maximal and the minimal radius
of a disc, respectively.

All graphs of the graph classes mentioned above are of bounded-independence,
a property that restricts the size of a maximum independent set within the set
of nodes at a given maximal distance from any node. The r-neighborhood of a
node v is the set of nodes at distance at most r from v (excluding v).

Definition 1. A graph G = (V,E) is of bounded-independence if there is a
bounding function f(r) so that for each node v ∈ V , the size of a maximum
independent set in the r-neighborhood of v is at most f(r),∀r ≥ 1. We say that
G is of polynomially bounded-independence if f(r) is a polynomial.

It is easily verified that unit disc graphs are of bounded-independence with re-
spect to a bounding function in O(r2), and (general) disc graphs are of bounded-
independence with respect to a bounding function in O((rδ)2). Many important
problems such as the maximal independent set problem, or the (∆+ 1)-coloring
problem can be solved on bounded independence graphs by a distributed algo-
rithm by Schneider and Wattenhofer that uses O(log∗ n) communication rounds
[19] which underlines the usefulness of this graph class for distributed computa-
tion.

Turán’s Bound and a One-round Algorithm. A starting point of our work
is an extension of a celebrated theorem by Paul Turán. Turán showed that every
graph G = (V,E) contains an independent set of size at least n/d, where d is
the average degree of G. This result has been extended by Caro [3] and Wei [20]
who showed that there is an independent set of size at least

β(G) :=
∑
v∈V

1

degG(v) + 1
,

where degG(v) denotes the degree of vertex v in G. An independent set of ex-
pected size β(G) can be found by a simple linear time randomized algorithm
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that follows from an analysis of the Caro-Wei bound by Alon and Spencer in
[1]. This algorithm works as follows: Every node v chooses a random real value
between 0 and 1 and adds itself to the independent set I if none of its neighbors
have chosen a larger real value than v. Then, the probability that a node v is
added to the independent set is 1

degG(v)+1 , and, hence, by linearity of expectation,

E|I| =
∑
v∈V

1
degG(v)+1 = β(G).

This algorithm can also be implemented distributively in a single commu-
nication round. Instead of choosing a random real value, every node chooses a
random value from a large enough ordered set (e.g. {1, 2, . . . , n3} suffices) so
that neighboring nodes choose different values with large enough probability. In
order to be able to determine such a number, nodes require knowledge of n,
i.e., the order of the input graph. Furthermore, communicating the chosen value
to neighboring nodes requires messages of size O(log n). This algorithm fulfills,
hence, the restrictions of the CONGEST model. In the following, we will refer
to this algorithm as Alon-Spencer-IS.

It is easy to see that in general graphs, an independent set of size β(G) may
be a factor Θ(n) smaller than the independence number α(G)1. This raises the
following questions:

1. Are there interesting graph classes for which β(G) is a non-trivial approxi-
mation to the independence number α(G)?

2. What are the minimum communication requirements for achieving the β(G)
bound?

3. Is there a one-round independent set algorithm with approximation factor
o(n) on general graphs?

Our Results in Detail. Concerning Question 1, we identify that in graphs of
polynomially bounded-independence, an independent set of size β(G) is a poly-
logarithmic approximation to a maximum independent set. For instance on unit
disc graphs, an independent set of size β(G) is an O(( logn

log logn )2)-approximation
to a maximum independent set. Furthermore, we prove that our analysis is tight
up to a constant factor on d-dimensional unit sphere graphs, for any constant
integer d. We also show that on the more general class of k-claw free graphs2,
for k ≥ 3, a similar result cannot be obtained. In the full version of this paper,
we provide k-claw free graphs for which the Caro-Wei bound is not a poly-
logarithmic approximation to the independence number of the graph.

With regards to Question 2, we show that for the more general class of
O(1)-claw free graphs, the communication requirements can be reduced to an
absolute minimum at the price of losing a constant factor. We present a differ-
ent and even simpler one-round algorithm that computes an independent set of

1 Consider, for instance, the graph G = (C ∪ I, E1 ∪ E2) with |C| = |I| = n/2. The
edges E1 turn C into a clique. Furthermore, for every u ∈ C and v ∈ I, the edge
(u, v) is included in E2. Then, the size of a maximum independent set is n/2 while
β(G) ≤ 3

2
.

2 A graph is k-claw free, if it does not contain the complete bipartite K1,k as an
induced subgraph.
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expected size Θ(β(G)) using single bit messages, thus decreasing the message
sizes from O(log n) to 1. This algorithm has the additional advantage that it
does not require the knowledge of n in advance. The latter property and the low
communication requirements allow this algorithm to be implemented in wireless
and radio networks. Note that our main result, a poly-logarithmic approxima-
tion one-round single bits messages algorithm for the maximum independent set
problem in polynomially bounded-independence graphs, follows from the previ-
ous two results.

Last, we answer Question 3 in the negative. We provide a lower bound that
shows that any possibly randomized one-round algorithm with error probability
at most 1/n has approximation ratio Ω(n).

Further Related Work. As already mentioned, independent sets are among
the most studied problems in distributed computing. However, most works con-
sider the maximal independent set problem while we consider the maximum
independent set problem in this paper. It is known that computing a maximal in-
dependent set requires Ω(

√
log n) communication rounds [12] in general graphs,

and even on a ring, Ω(log∗ n) rounds are necessary [15, 14]. Concerning approxi-
mations to the maximum independent set problem, a (1 + ε)-approximation can
be computed in O(log∗ n) rounds in planar graphs [5]. As in graphs of bounded-
independence, a maximal independent set is a constant factor approximation to
a maximum independent set, the previously mentioned O(log∗ n) rounds algo-
rithm of Schneider and Wattenhofer [19] gives a constant-factor approximation.
Last, we note that the Caro-Wei bound and Turán bound have been previously
used as quality guarantees for independent set approximation (e.g., [6]).

Notations. Throughout the paper, we use the following notations. Let G =
(V,E) be a graph. For a node v ∈ V , let ΓG(v) denotes the neighborhood of v
and degG(v) = |ΓG(v)| its degree. The d-neighborhood of v, denoted Γ dG(v), is
the set of nodes of distance at most d from v excluding v, while the set of nodes

at distance exactly d from v is denoted by Γ
(d)
G (v). Let Γ dG[v] := Γ dG(v) ∪ {v}

(and ΓG[v] = ΓG(v)∪{v}). For a subset of vertices U ⊆ V , the graph G|U is the
subgraph of G induced by the vertices U .

Outline. First, in Section 2, we prove our main result that the Caro-Wei bound
is a poly-logarithmic approximation to the independence number in polynomially
bounded-independence graphs. An algorithm with single-bit messages achieving
the Caro-Wei bound up to a constant factor for O(1)-claw free graphs is discussed
in Section 3. Then, in Section 4, we show that on general graphs, any possibly
randomized distributed one-round algorithm computes an independent set of
size at most O(1), while the graph has an independence number of Ω(n). Last,
in Section 5 we show that our analysis of Section 2 is tight for d-dimensional
unit sphere graphs.

Full Version. In the full version of this paper, we provide additional results.
We show that in O(1)-claw-free graphs, β(G) generally is not a poly-logarithmic
approximation to α(G). Furthermore,we argue that running our algorithm from
Section 3 iteratively multiple times does not substantially improve the approxi-
mation ratio of the algorithm.

5



2 Poly-logarithmic Approximation On Bounded-
independence Graphs

We show that in graphs of polynomially bounded-independence, an independent
set of size β(G) is a poly-logarithmic approximation of a maximum independent
set.

We first show that in any graph G = (V,E), for any node v ∈ V and
a large enough constant C, the sum of the inverted degrees in the C logn

log logn -

neighborhood of v is Ω(1) (Lemma 1). The size of an independent set in such a
C logn

log logn -neighborhood in a bounded-independence graph is at most f(C logn
log logn ),

by definition. Hence, within the C logn
log logn -neighborhood of any node v ∈ V , the

ratio between the size of a maximum independent set and the Caro-Wei bound
is O(f( logn

log logn )). Then, by decomposing the input graph G into components of

diameters at most 2C logn
log logn , we extend this result to hold for the entire graph

(Theorem 1).

Lemma 1. Let G = (V,E) be an arbitrary graph with maximal degree ∆. Let
m = min{∆,C logn

log logn}, for a large enough constant C. Then:

∑
u∈ΓmG [v]

1

degG(u)
= Ω(1).

Proof. Let v ∈ V be any node, and let d0 = degG(v). For abbreviation, let sj =

|Γ (j)
G (v)| for j ≥ 1. We set s0 = 1 and we clearly have s1 = d0. Furthermore, let

di = 1
si

∑
u∈Γ (i)

G (v)
degG(u) be the average degree of the nodes in Γ

(i)
G (v). Then,

the inverted degree sum of the nodes in the m-neighborhood can be bounded as
follows:∑

u∈ΓmG [v]

1

degG(u)
=

1

d0
+

m∑
j=1

∑
u∈Γ (j)

G (v)

1

degG(u)
≥ 1

d0
+

m∑
j=1

∑
u∈Γ (j)

G (v)

1

dj

=
1

s1
+
s1
d1

+

m∑
j=2

sj
dj
, (1)

where the first inequality follows from the relationship between the harmonic

mean and the arithmetic mean. For i ≥ 2, consider a node u ∈ Γ
(i)
G (v) of

degree at least di. Then, ΓG(u) ⊆ Γ (i−1)
G (v)∪ (Γ

(i)
G (v) \ {u})∪Γ (i+1)

G (v). Hence,
degG(u) ≤ si−1 + si − 1 + si+1, and since di ≤ degG(u), we also have di ≤
si−1 + si + si+1. Similarly, for d1 we obtain the inequality d1 ≤ s1 + s2. Using
this in Inequality 1, we obtain:

∑
u∈ΓmG [v]

1

degG(u)
≥ 1

s1
+
s1
d1

+

m∑
j=2

sj
dj
≥ 1

s1
+

s1
s1 + s2

+

m∑
j=2

sj
sj−1 + sj + sj+1

. (2)
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Suppose that the sequence (si)1≤i≤m is not strictly increasing. Let j be the
smallest index so that sj ≤ sj−1. If j = 2, then the term s1

s1+s2
of Inequality 2 can

be bounded by s1
s1+s2

≥ s1
s1+s1

= 1/2, and thus,
∑
u∈ΓmG [v]

1
degG(u) >

1
2 = Ω(1).

Suppose that j > 2. Then, since j is the smallest index, we have sj−2 < sj−1.
Therefore, the addend with index j−1 of the sum in the right side in Inequality 2
can be bounded as follows:

sj−1
sj−2 + sj−1 + sj

>
sj−1

3 · sj−1
= 1/3,

which implies
∑
u∈ΓmG [v]

1
degG(u) >

1
3 = Ω(1). Assume now that the sequence

(si)i is strictly increasing. We bound the right side of Inequality 2 as follows:

∑
u∈ΓmG [v]

1

degG(u)
≥ 1

s1
+

s1
s1 + s2

+

m∑
j=2

sj
sj−1 + sj + sj+1

≥ 1

s1
+

s1
s1 + s2

+

m∑
j=2

sj
2 · sj + sj+1

. (3)

Let J ⊆ {2, . . . ,m} be the subset of indices so that for each j ∈ J :
sj

2·sj+sj+1
≤

log logn
logn . This implies that we have sj+1 ≥ sj

(
logn

log logn − 2
)

, for j ∈ J . Since the

sequence (si)i is strictly increasing, we can bound the size of the set J as follows:(
log n

log log n
− 2

)|J|
≤ n,

and therefore |J | = O( logn
log logn ). We now set m = C logn

log logn for a large enough

constant C so that there are Θ( logn
log logn ) indices i with i /∈ J and si

2·si+si+1
≥

log logn
logn . Then, the addends in the right side of Inequality 3 that correspond to

those indices i /∈ J sum up to a constant which proves part 1 of the result.
We derive now a bound on m that depends on the maximal degree ∆. To

this end, we depart from Inequality 3. Notice that the bound on ∆ implies
sj ≤ sj−1∆. Therefore, for any j, the addend in Inequality 3 that corresponds
to j is bounded as follows:

sj
2sjsj−1

≥ sj
2sj+∆sj

= 1
2+∆ . Setting m = Θ(∆) implies

that the right side of Inequality 3 sums up to a constant. ut

Theorem 1. Let G = (V,E) be of polynomially bounded-independence with
maximal degree ∆ and with bounding function f . Then:

α(G) = O

(
β(G) · f(min{∆, log n

log log n
})
)
.

Proof. Let m = min{∆,C logn
log logn} where C is the constant as in Lemma 1. Let S

be a maximal 2m-independent set in G, i.e., a maximal set of vertices of mutual
distance at least 2m. Let I∗ denote a maximum independent set in G. Since S
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is maximal, every vertex in I∗ is at a distance at most 2m from a vertex in S,
and thus |I∗| ≤ |S| · f(2m). Since S is 2m-independent, the m-neighborhoods
around nodes in S are disjoint. Thus, using Lemma 1, we have

β(G) =
∑
v∈V

1

degG(v)
≥
∑
s∈S

∑
v∈ΓmG (s)

1

degG(v)
= Ω(|S|).

Thus,

α(G) ≤ |S| · f(2m) = O(β(G) · f(2m)) = O(β(G)f(m)),

since f is a polynomial function. ut

3 Distributed Algorithm With Single Bit Messages

In the previous section, we showed that an independent set of size β(G) is a poly-
logarithmic approximation on graphs of polynomially bounded-independence.
The Alon-Spencer-IS algorithm computes an independent set of expected
size β(G), and thus we obtain a one-round poly-logarithmic approximation al-
gorithm for the maximum independent set problem on graphs of polynomially
bounded-independence with message sizes O(log n). In this section, we improve
on the message complexity of the previous algorithm. We propose an alternative
algorithm that computes an independent set of expected size Θ(β(G)) on O(1)-
claw free graphs using single bit messages. As bounded-independence graphs are
(f(1) + 1)-claw free and f(1) is a constant, this algorithm also constitutes an
improvement for bounded-independence graphs.

We will consider the one-round algorithm, Algorithm 1, which can be seen
as a simplified version of the well-known distributed maximal independent set
algorithm by Luby [16]. In each round of Luby’s algorithm, nodes of a general
graph G = (V,E) are added to an initially empty independent set. One round
consists of two phases: First, every node v ∈ V pre-selects itself with probability
Θ( 1

degG(v) ) as a candidate to join the independent set. Then, in the second phase,

ties are broken among the pre-selected nodes so that nodes with larger degree
are preferred. Finally, selected nodes and their neighbors are removed from G,
and the round is completed. The algorithm terminates when G is empty. In our
version of the algorithm, a simplified method for breaking ties is used. Instead
of preferring nodes with larger degree, we only add a pre-selected node to the
independent set if none of its neighbors have been pre-selected. This method of
breaking ties has been previously used, e.g., in [8, 11, 9].

We first derive a bound on the inverted degree sum of the neighborhood of
an arbitrary node v ∈ V in a k-claw free graph G = (V,E).

Lemma 2. Let G = (V,E) be a k-claw free graph. Then for every v ∈ V ,∑
u∈ΓG(v)

1

degG(u)
≤ k − 1 .
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Algorithm 1 One-round independent set algorithm

Require: G = (V,E) {Input graph}
1: I ← ∅ {the independent set to be computed}
2: pi ← 1

2 deg(v)

3: Tv ←coin(pi) {Pre-selection step: If Tv = true then v is a candidate to join I}
4: for all v ∈ V with Tv = true do
5: if

∨
u∈ΓG(v) Tu = false then {Check whether a neighbor of v has been pre-

selected}
6: I ← I ∪ {v} {v is selected into the IS}
7: end if
8: end for

Proof. Let v be a node and let Hv = G|ΓG(v) be the subgraph induced by v’s
neighbors. Observe that for u ∈ V (H), degG(u) ≥ degH(u)+1. Since G is k-claw
free, α(H) ≤ k − 1. Thus, using the Caro-Wei bound, we get that∑

u∈ΓG(v)

1

degG(u)
≤

∑
u∈V (H)

1

degH(u) + 1
≤ α(H) ≤ k − 1 .

ut

Theorem 2. Algorithm 1 is a randomized distributed one-round algorithm us-
ing single bit messages that finds independent sets with expected Θ(β(G)) size on
graphs G with constant claw size. In particular, when G is polynomially bounded-
independence, it achieves an expected approximation ratio O(f(min{∆, logn

log logn})).

Proof. Let v be any node in G. Algorithm 1 adds v to the independent set if
two independent events happen: v is pre-selected in Line 3 of Algorithm 1 while
none of its neighbors are pre-selected. Then, by the linearity of expectation,

E |I| =
∑
v∈V

P [v ∈ I] =
∑
v∈V

P [v pre-selected ] · P [v ∈ I | v pre-selected ]

=
∑
v∈V

1

degG(v)
·
∏

u∈ΓG(v)

(1− 1

degG(u)
) =

=
∑
v∈V

1

degG(v)
·Θ
(
e
−

∑
u∈ΓG(v)

1
degG(u)

)
= Θ(1) · β(G) ,

applying Lemma 2 in the last equality. If G is of bounded-independence with
bounding function f , it is (f(1) + 1)-claw free, which is a constant. Applying
Theorem 1 we obtain the approximation result. ut

Implementing Algorithm 1 in Beep Models and Wireless Networks. Algo-
rithm 1 places minimal demands on the underlying model in which it is imple-
mented. Initially, nodes only require the knowledge of their own degree (or of
an estimate thereof), and, in particular, information about the network size is
not needed. In many wireless networks, the degree of local congestion provides
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a good estimate for a node’s degree, and congestion can often be inferred using
carrier sensing techniques.

The communication structure of the algorithm naturally fits beep-like models
and wireless networks. Pre-selected nodes send a signal to all their neighbors.
Hence, models that only support radio broadcast rather than the transmission
of individual messages to neighboring nodes are sufficient for implementing this
step. With regards to the reception of signals from neighboring nodes, in Line 5
of the algorithm, nodes only have to be able to learn whether no neighboring
node emitted a signal or whether at least one neighboring node emitted a signal.
This type of information matches precisely what can be learned by a node in
one round in the discrete beeping model as introduced in [4]. Also, in wireless
networks, carrier sensing can yield information that is possibly weaker (a node
that is within a short range did transmit) but sufficient for the operation of our
algorithm.

4 Lower Bound for One-round Algorithms on General
Graphs

In this section, we prove that no distributed one-round algorithm can compute an
independent set whose size exceeds the Caro-Wei bound by more than a constant.
In particular, every possibly randomized distributed one-round algorithm on
general graphs has an approximation factor of Ω(n), where n is the number of
vertices of the input graph.

Consider an arbitrary d-regular bipartite graph H = (A,B,E) with |A| +
|B| = n′. Let G = (V,E) be the graph consisting of a (d+1)-clique and a copy of
H which is disjoint from the (d+1)-clique. Let n = |V |, and hence n′ = n−d−1.
G is clearly d-regular. Furthermore, since H contains an independent set of size
n′/2, the independence number of G is α(G) = n−d−1

2 . We assume that each
node has a unique label chosen from U = {1, . . . ,m}, where m ≥ n. Let L denote
the set of all possible labellings.

In order to prove our lower bound, we exploit the fact that all nodes in V
have the same local views, i.e., in one round, all nodes can only learn the d labels
of their adjacent nodes. As all nodes run the same algorithm, clearly in average
over all possible labellings L, the probabilities for all nodes to end up in I is
equal. This fact is used in the following theorem:

Theorem 3. Every possibly randomized one-round distributed algorithm for max-

imum independent set has an expected approximation factor of at least (n−∆−1)(∆+1)
2n ,

where ∆ is the maximal degree of the input graph.

Proof. Consider the d-regular graph G = (V,E) as defined above. Then ∆ = d.
Consider a possibly randomized one-round algorithm for maximum independent
set. Then, as previously argued, for all u, v ∈ V , we have:

P [u ∈ I] = P [v ∈ I] , and (4)

E|I| =
∑
u∈V

P [u ∈ I] , (5)
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where the probabilities are taken over all possible labellings L and the random
coin flips of the algorithm. Let p be the probability that a node ends up in I.
Let C denote the (d + 1)-clique of G. Then, p · |C| = E|I ∩ C| ≤ 1, and hence,
p ≤ 1

|C| = 1
d+1 . Therefore, E|I| ≤ np = n

d+1 . Next, since α(G) = n−d−1
2 , the

expected approximation ratio is at least (n−d−1)(d+1)
2n . ut

Remark. The graph G of the previous construction is disconnected. This can be
circumvented by removing arbitrary edges u1v1, u2v2, where u1v1 is contained
in the (d+ 1)-clique and u2v2 is outside the (d+ 1)-clique, and reinserting edges
u1u2 and v1v2. The resulting graph is connected and equally suits for proving
the same lower bound.

5 Lower Bound for d-dimensional Unit Sphere Graphs

In this section, we show that the statement of Theorem 1, i.e., for any graph
G = (V,E) of polynomially bounded-independence with bounding function f

we have α(G) = O
(
β(G)f(min{∆, logn

log logn})
)

, is tight for d-dimensional unit

sphere graphs. As a consequence, the analysis of Algorithm 1 is also tight.
In the full version of this paper, we investigate on the performance of run-

ning multiple rounds of Algorithm 1. We show that a super-constant number of
iterations is necessary in order to improve on the one-round bound performance
by more than a constant factor.

A d-dimensional unit sphere graph G = (S,E) is the intersection graph of
d-dimensional unit spheres S = {s1, . . . , sn} (all spheres have the same radius):
Each sphere si constitutes a vertex in G and two spheres are adjacent iff they
intersect. For d = 1, a unit sphere graph is a unit interval graph, and for d = 2,
a unit sphere graph is a unit disc graph.

Let d > 0 be some fixed dimension. We will denote our hard instance graph
with Hk = (VH , EH) where k is a parameter which we define later. We start our
construction of Hk with a grid graph Gk = (VG, EG) that is parametrized by an
integer k ≥ 1. The vertex set of Gk is defined as VG = {vx |x ∈ {0, 1, . . . , k−1}d}.
Let vx, vy with x, y ∈ {0, . . . , k − 1}d be two vertices of VG. Then vx and vy are
adjacent iff |x− y| = 1, where |x| =

∑
1≤i≤d |xi|.

The hard instance graph Hk is obtained from Gk as follows: For every vertex
vx ∈ VG, a clique Cx of size s(|x|) is introduced in Hk, where s(i) = dikdi logi n.
Suppose that vx and vy are adjacent nodes in Gk. Then all nodes of Cx are
connected to all nodes of Cy in Hk, or, in other words, Cx ∪ Cy also forms a
clique in Hk.

First, notice that the graph Hk is in fact a d-dimensional unit sphere graph.
Each vertex v ∈ Cx ⊆ VH with x ∈ {0, . . . , k − 1}d corresponds to a sphere
centered at position x with radius 1/2 (for convenience, in this construction
we suppose that all spheres have the radius 1/2 instead of 1). An example is
provided in Figure 1.

We state now that Hk is of bounded-independence with respect to the bound-
ing function f(r) = (2r + 1)d.
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Fig. 1. Illustration of the two dimensional case: On the left, the grid graph G4 is
illustrated. On the right, the hard instance unit disc graph H4 is shown. H4 is obtained
from G4 by replacing each node at position (i, j) with a clique of size s(i+ j).

Lemma 3. The d-dimensional unit sphere graph Hk is of bounded independence
with respect to the bounding function f(r) = (2r + 1)d.

Proof. The size of an independent set in the k-neighborhood of a node v ∈ Cx ⊆
VH for some x ∈ {0, . . . , k− 1}d is the same as the size of an independent set of
the node vx ∈ VG in the corresponding grid graph. Therefore, the r-neighborhood
of an arbitrary node vx ∈ VG with x ∈ {0, . . . , k − 1}d is a subset of the nodes
with indices j ∈ {x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}. Therefore,
|{x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}| = (2r+ 1)d is an upper bound
on the size of an independent set in the r-neighborhood of v. ut

Next, we identify the correct value for k so that graph Hk has O(n) vertices,
and we show that β(Hk) = O(1).

Lemma 4. Consider graph Hk = (VH , EH), and let k = O( logn
d2 log logn ). Then:

|VH | = O(n) and β(Hk) = O(1).

Proof. Denote by ni the number of cliques at distance i from the clique with
index (0, . . . , 0). Furthermore, denote by Vi := {v ∈ Cx : |x| = i} the set of
nodes at distance i from the clique with index (0, . . . , 0).

First, note that by construction of Hk we have ni ≤ ni+1d. This allows us to
establish a relation between |Vi| and |Vi+1|:

|Vi| = ni · s(i) ≤ ni+1d · (dikdi logi n) ≤ ni+1(di+1kdi logi n) =
|Vi+1|
kd log n

.

Then, as |VH | =
∑
i∈{0,...,d(k−1)} |Vi| and by the previous inequality, we obtain:

|VH | = O(|Vd(k−1)|). Then, setting k = Θ( logn
d2 log logn ) proves the first part of the

lemma:

|VH | = O
(
|Vd(k−1)|

)
= O

(
dkdkd

2k logkd n
)

= O(n).
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Next, in order to prove that β(Hk) = O(1), notice that |Vi| ≤ nis(i). More-
over, the nodes of Vi have a degree of at least s(i + 1), the size of a clique at
distance i + 1. Each node of the clique C(k−1,...,k−1) clearly has a degree of at
least s(d(k − 1)). Thus, we have:

∑
v∈VH

1

degHk(v)
=

 ∑
i∈{0,...,d(k−1)−1}

ni ·
s(i)

s(i+ 1)

+
nd(k−1)sd(k−1)

sd(k−1)
≤

 ∑
i∈{0,...,d(k−1)−1}

kd · 1

dkd log n

+ 1 =
k − 1

log n
+ 1 = O(1),

where we used the rough estimate ni ≤ kd. ut

Finally, we obtain the main theorem of this section on the performance of
Algorithm 1.

Theorem 4. Consider graph Hk = (VH , EH), and let k = O( logn
d2 log logn ). Then,

Algorithm 1 computes an Ω(( logn
d2 log logn )d) approximation to the maximum inde-

pendent set problem on Hk.

Proof. Lemma 4 yields that the graph H has O(n) vertices, and the inverted
degree sum of H is O(1). As in Algorithm 1 the probability that a node ends up
in the independent set is bounded from above by its inverted degree, Algorithm 1
computes an independent set of expected size O(1). Since the graph H contains
an independent set of size Ω(( logn

d2 log logn )d), the theorem follows. ut
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