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Abstract

In this study, we propose an approach aiming at fine-mapping adiposity QTL in chicken, integrating whole genome re-
sequencing data. First, two QTL regions for adiposity were identified by performing a classical linkage analysis on 1362
offspring in 11 sire families obtained by crossing two meat-type chicken lines divergently selected for abdominal fat weight.
Those regions, located on chromosome 7 and 19, contained a total of 77 and 84 genes, respectively. Then, SNPs and indels
in these regions were identified by re-sequencing sires. Considering issues related to polymorphism annotations for
regulatory regions, we focused on the 120 and 104 polymorphisms having an impact on protein sequence, and located in
coding regions of 35 and 42 genes situated in the two QTL regions. Subsequently, a filter was applied on SNPs considering
their potential impact on the protein function based on conservation criteria. For the two regions, we identified 42 and 34
functional polymorphisms carried by 18 and 24 genes, and likely to deeply impact protein, including 3 coding indels and 4
nonsense SNPs. Finally, using gene functional annotation, a short list of 17 and 4 polymorphisms in 6 and 4 functional genes
has been defined. Even if we cannot exclude that the causal polymorphisms may be located in regulatory regions, this
strategy gives a complete overview of the candidate polymorphisms in coding regions and prioritize them on conservation-
and functional-based arguments.
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Introduction

Over the past decade, a lot of studies that aimed at dissecting

the genetics of complex traits have been carried out, focused on

identifying causal genes and polymorphisms for disease pheno-

types or traits of economic interest, on humans, animal models and

livestock species [1,2].

For such studies, genome-wide association study (GWAS),

using high densities of genetic markers, based on linkage

disequilibrium (LD) analyses, and permitting the identification

of short length QTL regions is now commonly used. However, as

technologies (high density SNP arrays) allowing LD approaches

were only recently available, most of the published studies on

complex traits in livestock species were based on linkage analysis

(LA) approaches (as described in QTLdb [1]), and therefore

described larger QTL regions.

Such large regions highlighted as impacting a complex trait

using LA contain dozens of genes. Therefore, in general, only

genes already known for having a link with the traits of interest

are studied, while most of the genes are not even considered, as

they have no functional characterization. Even doing so, for

many traits the number of potential candidate genes is high and

studying them one by one is time consuming. This probably

explains why, while thousands of QTL were detected, only very

few causal polymorphisms were identified [3–6]. For a few years,

with the advent of next-generation sequencing (NGS), and the

highly decreased whole-genome sequencing costs associated, it is

now possible to sequence the whole genome of a few individuals

and to access without a priori to all polymorphisms from key

individuals, which is critical to identify causal polymorphism

underlying QTL regions [7,8]. The aim of this study was to

combine QTL and NGS information to characterize regions

affecting adiposity in chicken. This led to the identification of

216 missense SNPs, 5 nonsense SNPs and 3 coding indels

occurring in 77 genes that underlay two QTLs. Using

conservation- and functionality-based filters aiming at prioritizing

polymorphisms, this number was reduced to 76 functional

polymorphisms in 41 genes including 21 functional polymor-

phisms in 10 genes related to energetic metabolism.
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Methods

Experimental design
A F2 design of 561 offspring in 5 F1 sire families [9] was created

by inter-crossing two experimental meat-type chicken lines, the

lean line and the fat line, that were divergently selected on

abdominal fatness [10]. 801 backcross animals in 6 sire families

derived from the F2 design were also used.

Broilers were fed ad libitum using conventional starter diet

from 0 to 3 week and grower diet from 4 to 9 week. At nine

weeks of age, blood was collected from all animals of the F2 and

BC designs before slaughter. Body weight and abdominal fat

weight were measured for each F2 and BC animal. The

experimental unit where birds were kept is registered by the

French Ministry of Agriculture with the license number B-37-

175-1 for animal experimentation. Except blood collection, no

manipulation was performed before slaughtering. Slaughtering

and blood collection were performed in accordance with

guideline of ethics committee in Animal Experimentation of

Val de Loire that approved this study.

Genetic markers
The F1 sires were genotyped for a set of 9126 SNPs covering the

available genome (assembly 2.1 WASHUC2). A subset of 1536

SNPs was selected using MarkerSet [11], based on marker location

and heterozigosity in the F1 population to maximize both genome

coverage and marker informativity. The average density was one

SNP each 0.66 cM, i.e. one SNP for 3 Mb. The 1362 offspring

were then genotyped for those 1536 SNPs, at the National

Genotyping Center (CNG, Evry, France) using Illumina Gold-

enGate technology (Illumina, San Diego, CA, USA). MendelSoft

[12] was used to correct data for Mendelian inconsistencies. Out of

the 1536 markers, 191 were eliminated due to technical or

inconsistence issues (call rate lower than 85% and/or Mendelian

errors higher than 5%). The chicken linkage consensus map build

by Groenen et al. [13] was used to determine the genetic location

of markers. Location of markers unavailable in the consensus map

was extrapolated based on flanking markers.

QTL mapping
QTL interval mapping was performed using QTLMap software

[14]. A mixture of half and full-sib families was considered as

pedigree structure, and only sire meioses were studied. For

abdominal fat (AF) QTL interval mapping, sex (2 levels) and hatch

group (5 levels) were used as fixed effects, while body weight at

nine weeks (BW9) was used as co-variable to adjust data. A

likelihood ratio test (LRT) was performed at each cM to compare

the fit of two models (i.e. the model with a QTL at the location

considered vs. the model without fitting any QTL effect).

Chromosome-wide significance thresholds were evaluated through

empirical calculations obtained by simulations under the null

hypothesis. A total of 10,000 simulations was performed for each

trait 6 chromosome combination and maximum LRT quantiles

were calculated according to Harrel and Davis method [15].

Confidence intervals on QTL positions were estimated by the

drop-off method [16]. Similarly to the reduction of one logarithm

of odds (LOD) when using LOD scores, the maximum LRT value

was reduced by 3.84 (a x2 distribution with one degree of freedom

for p,0.05) to determine a threshold. Region boundaries were

then defined by the LRT locations crossing this threshold

upstream and downstream of the LRT peak. The substitution

effect of QTL was estimated in each sire family at the position of

the LRT maximum and the significance was evaluated using a

Student t-test.

Whole genome re-sequencing
DNA-seq libraries from 8 sire samples were prepared using the

TruSeq DNA Sample Preparation Kit (Illumina, San Diego, CA)

according to the manufacturer’s instructions. Briefly, paired-end

libraries with a 250-bp insert size were generated using the

Illumina TruSeq DNA Sample Prep Kit. The libraries were

quantified using QPCR Library Quantification Kit (Agilent),

controlled on a High Sensitivity DNA Chip (Agilent) and

sequenced in paired-end 26100 bp on Illumina HiSeq 2000 with

TruSeq v3 Kit. Sequencing produced an average of 92% of

uniquely mapped reads, i.e. 20.4 Gb, which stands fort a

sequencing depth of 19.7 X.

DNA-seq data preprocessing, variant and genotype
callings
The read sets obtained by sequencing whole genome were

aligned against the Gallus gallus WASHUC2.1 reference genome

from Ensembl 58 using BWA v0.7.0 [17]. All alignment bam files

have been indexed and filtered. PCR duplicates were removed

using SAMtools rmdup. Only reads with a unique mapping hit

and a phred mapping quality score greater than 30 were kept. All

these steps were performed using SAMtools v0.1.19 [18]. Genome

Analysis ToolKit v2.4.9 (GATK) [19] was then used for base

quality score re-calibration, indel re-alignment, and variant calling

with UnifiedGenotyper by using default parameters, as suggested

in GATK Best Practices recommendations [19,20]. Standard hard

filtering parameters were finally used on SNPs and indels sets,

according to GATK Best Practices recommendations [19,20].

Briefly, we filtered out SNPs characterized by: QD,2.0 (quality

by depth for non reference samples), MQ,40 (mapping quality

across all samples), FS.60.0 (phred-scaled p-value of Fisher’s

exact test for strand bias), MQRankSum ,212.5 (mapping

quality rank sum test) and ReadPosRankSum ,28 (read position

rank sum test for the distance from the end of the read for reads

with alternate allele); and we filtered out indels characterized by:

QD,2.0, ReadPosRankSum ,220.0, InbreedingCoeff ,20.8

and FS,200.0. Finally, we removed genotypes for which the

global depth DP (depth) was under 3 or higher than 60 (mean

depth + 6s), using VCFtools [21].

Polymorphism and gene annotations
To identify positional candidate genes in highlighted QTL

regions, AnnotQTL software [22] was used, providing the location

of genes in a specific region using NCBI and Ensembl databases,

and filtering them onto ontology annotation criterion. Thus, genes

belonging to ‘‘lipid metabolic process’’ Gene Ontology (GO) class,

and to ‘‘diabetes mellitus’’ and ‘‘obesity’’ Online Mendelian

Inheritance in Men (OMIM) classes were considered as functional

candidate genes.

Variant annotation was performed using a two steps procedure.

First, we used Ensembl Variant Effect Predictor (VEP) [23] for a

global annotation on WASHUC2.1, allowing us to focus on SNPs

associated to ‘‘missense’’, ‘‘stop gained’’ or ‘‘stop lost’’ coding

consequences, and on indels associated to ‘‘inframe insertion’’,

‘‘inframe deletion’’ or ‘‘frameshift’’ coding consequences. After a

validation of these annotations with VEP on the latest reference

genome Galgal4, these variants were finely analyzed using the

NGS-SNP tool [24] allowing to add meta-information about

conservation between orthologous sequences. For this second step,

we considered conservation information between Gallus gallus,
Canis lupus familiaris, Bos taurus, Mus musculus, Rattus
norvegicus, Sus scrofa and Homo sapiens. We considered two

types of conservation score provided by NGS-SNP. The first one
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defined by Grant et al. [24], termed ‘‘alignment score change’’ or

a score, and based on the log-odds scoring matrix BLOSUM62,

allows to range the similarity between the variant and the

reference amino acid resulting from a coding variant, and amino

acids in orthologous sequences. Considering the absolute value for

this score, largest scores indicate that highly conserved amino acid

residues are impacted and that substitution involved are less likely

according to BLOSUM62 matrix. After studying how alignment

score change was distributed for SNPs located on the two QTL

regions, we considered as functional SNPs those having a |a|
score higher than the first quartile value of the distribution. The

second score we used was provided by the Sorting Tolerant From

Intolerant (SIFT) algorithm [25], based on the principle of protein

evolution and using sequence homology based approach to classify

amino acid substitutions. This latter approach is based on the

hypothesis that highly conserved positions tend to be intolerant to

substitutions, while those with a low degree of conservation

tolerate most substitutions. We considered all SNPs classified as

‘‘deleterious’’ by SIFT as functional (excepted for ‘‘stop gained’’

SNPs, for which SIFT annotation is not available). Regarding

indels, as they impact sequence in a much more complex pattern

than SNPs, those annotations are not available.

Polymorphism validations by Sanger sequencing
Polymorphism validation was performed by Sanger sequencing

for 8 coding SNPs and 3 coding indels. Targeted sequences were

first PCR-amplified using 50 ng DNA with a Taq Uptitherm kit

(Interchim). Amplicons were then purified and sent to GATC-

Biotech (Konstanz, Germany) for Sanger sequencing using

primers described in Table S3. Sanger traces related to indels

were analyzed using Mixed Sequence Reader [26].

Results and Discussion

QTL analysis revealed two regions involved in the
regulation of abdominal fatness
Whole genome QTL analysis for the abdominal fatness trait

on 1362 offspring in 11 sire families using 1536 markers led to

the identification of two QTLs mapped on GGA7 (p,0.05) and

GGA19 (p,0.01) (Table 1). QTL effects were estimated at 0.54

and 0.45 phenotypic standard deviations and confidence interval

at 10.2 cM (i.e. 6.01 Mb) and 5.7 cM (i.e. 2.91 Mb) for QTL on

GGA7 and GGA19, respectively. These two regions were

previously described as affecting AF ([27–29] for GGA7, [30]

for GGA19, Figure 1), which reinforce the interest of focusing on

them.

NGS data allowed the identification of functional
polymorphisms in coding regions within QTL regions
As in all QTL fine-mapping studies, we first characterized genes

located in each QTL region. Using AnnotQTL [22], based on

both NCBI and Ensembl databases, all genes located in both QTL

regions were listed. This led to the identification of 77 genes and

84 positional candidate genes located on GGA7 and GGA19 QTL

regions, respectively.

Using whole genome DNA sequencing data, we then charac-

terized polymorphisms in both regions and revealed 39,781 and

19,755 SNPs and 4,613 and 1,829 indels (Table 2). As it is difficult

to annotate and determine the impact of polymorphisms on

regulatory regions – an issue that is still important in model species

due to the lack of annotation in non-coding regions [31–33] -, only

polymorphisms having an impact on coding sequences were

further considered.

With this aim, we used the Variant Effect Predictor (VEP) [23]

tool from Ensembl to annotate pre-selected polymorphisms. We

therefore focused on ‘‘missense’’, ‘‘stop lost’’ or ‘‘stop gained’’

annotated coding SNPs, and on ‘‘frameshift’’, ‘‘inframe insertion’’

and ‘‘inframe deletion’’ annotated coding indels. After a validation

procedure of those annotations using VEP on the latest version of

the chicken genome, we finally highlighted 120 (including three

‘‘stop gained’’ SNPs and one ‘‘frameshift’’ indel) and 104

(including two ‘‘stop gained’’ SNP, one ‘‘frameshift’’ indels, and

one ‘‘inframe insertion’’ indels) candidate polymorphisms occur-

ring in 35 and 42 genes in GGA7 and GGA19 QTL regions,

respectively (Table 2).

Considering that important positions in protein and nucleotides

sequence have been conserved throughout evolution, we then

applied a filter taking conservation into account using NGS-SNP

[24]. Indeed, high conservation rate through evolution among

different vertebrates may reveal a high selective pressure, and

therefore a major impact of substitutions on final protein function.

Therefore, selecting SNPs impacting highly conserved regions on

orthologous genes may help to focus on potential causal

polymorphism underlying QTLs. In this study, we considered

two criteria to estimate conservation at a given locus: the first one

BLOSUM62-based [24] (SNPs with a |a| score .0.27 impact

conserved amino-acid residues), and the other one based on SIFT

prediction [25] (SNPs annotated as deleterious, see Methods).

Considering SNPs that were respectful to either conservation

criteria, or to both, the number of functional candidate SNPs was

38 SNPs on GGA7 and to 30 SNPs on GGA19 distributed on 17

and 21 genes, respectively (Table 2, Table S1).

Even if for nonsense SNPs and for indels those criteria cannot

be robustly evaluated (see Methods), they were further considered

as functional, due to the high impact they may have on final

protein products (i.e. loss of a part of the protein sequence).

Indeed, three indels were identified, located in PRR11 and two

Figure 1. Chromosomal location of present and previously
published QTLs related to abdominal fat weight. Empty boxes
encompass the confidence interval of the QTL, when available. Plain
boxes point out the QTL peak location, when available. QTLs colored in
red are genome-wide significant (p,0.05), while those colored in blue
are suggestive QTLs (p,0.2). QTLs described in the present study are
colored in orange. a Ankra-Badu et al. [30], b Zhou et al. [54], c McElroy
et al. [55], d Jennen et al. [56], e Tatsuda et al. [57], f Ikeobi et al. [28], g

Lagarrigue et al. [27], h Park et al. [58], i Wang et al. [59], j Nadaf et al.
[60], k Demeure et al. [9], l Tian et al. [61].
doi:10.1371/journal.pone.0111299.g001
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unknown genes (ENSGALG00000021856 and EN-

SGALG00000005578), with 60%, 12% and 97% of protein loss

consequence, respectively. Similarly, three nonsense SNPs out of

five were likely to have a drastic effects on the protein structure;

they impact SCN1A, ENSGALG00000021856 and OPN1LW
genes, and cause 69%, 41%, and 92% of the proteins loss,

respectively (Table 3). None of them have been related to lipid

metabolism and therefore represent strong positional but not

functional candidate genes for the two QTL regions for adiposity.

To sum up, we finally considered 43 and 36 polymorphisms as

strong functional candidates, impacting 18 and 23 genes on GGA7

and GGA19 QTL, respectively (Table 2, Table S1 and Table S2).

Among those latter one, we selected 3 indels and 8 SNPs to

perform Sanger sequencing. All SNP were validated as being

polymorphic in our experimental designs. Concerning the 3 indels,

this analysis led to the validation of an existing polymorphism in

each case, and confirmed the open read frame shift for two of

them, while a fine analysis of the one occurring on the

chromosome 7 revealed it was not impacting the coding frame

as first predicted by VEP and NGS-SNP, but was instead leading

to the elongation of the encoded protein. As variants annotation

rely on the use of a reference genome, miss-assemblies in such

reference could lead to erroneous prediction. Moreover, short

indels are usually constituted with homopolymers or tandem

repeats, which tends to show higher error rates in re-sequencing

data, and negatively impact the mappability of reads supporting

them [34]. It appears therefore mandatory to consider carefully

indels deeply impacting protein sequences highlighted with high-

throughput sequencing approaches and to perform fine validation

for further consideration.

Gene functional information allowed prioritization on
genes related to adiposity and associated candidate
polymorphisms
Those polymorphisms, selected for being both coding and being

functional (i.e. having a high propensity for impacting final protein

product) were considered as strong candidates underlying QTLs.

But, even if the causal polymorphisms may be located in genes that

have not already been described as involved in the lipid

metabolism, genes known as being related to the trait of interest

stand for the first strong candidate genes to be considered. Using

gene functional annotations could therefore allow prioritizing

polymorphisms among pre-selected candidates. Considering the

phenotype targeted in our study, such functional genes were

selected using GO and OMIM databases (and genes related to

lipid metabolic process, diabetes mellitus and obesity, see

Methods). We identified, 6 and 4 functional candidate genes

among the 18 and 23 genes with at least one functional

polymorphism previously selected on GGA7 and GGA19 QTL

regions, respectively. All these genes and associated polymor-

phisms (17 and 4 for the two regions) are listed in Table S1 and

S2. Location and impact of the mutation on the protein and

conservation between species are presented in Figure S1.

Among those functional candidates, SLC25A12 that encodes

the Ca2+-regulated mitochondrial aspartate-glutamate carrier, is

involved in carbohydrates and glucose metabolism and is known as

a major autism spectrum disorder susceptibility gene and support

oxidative phosphorylation and energy production [35]. GRB14
and DOC2B are involved in regulation of insulin secretion,

through insulin receptor binding abilities for the first one [36–39]

and through insulin vesicle-mediated secretion and uptake

capacity for the second one [39–42]. LRP2 encodes for an

Table 1. QTL analysis results.

Chromosome GGA7 GGA19

QTL location (cM) 58 52

Size (cM) 10.2 5.7

Size (Mb) 6.01 2.91

LRT 31.9 31.5

Significance level1 * **

QTL effect2 0.54 0.45

Flanking marker 2 rs15853071 rs15850508

Flanking marker + rs14615490 rs13576125

1: * 5%; ** 1%; Chromosome wide significance.
2: Substitution effect, expressed in phenotypic standard deviation.
doi:10.1371/journal.pone.0111299.t001

Table 2. Selection of candidate polymorphisms.

In QTL region And affecting protein sequence And potentially functional

GGA7 Number of SNPs 39781 119 41

Number of indels 4613 1 1

Number of genes 77 35 18

GGA19 Number of SNPs 19755 102 32

Number of indels 1829 2 2

Number of genes 84 42 24

doi:10.1371/journal.pone.0111299.t002
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endocytic receptor known as megalin, which internalizes a variety

of ligands such as nutrients, signalling molecules, hormones and

lipoproteins and regulates hepatic lipid flow-through [43,44].

ABCB11 operate the release of bile salt on the canalicular

membrane of hepatocytes and is associated to intrahepatic

cholestasis [45,46]. PLA2R1 is involved in the modulation of

eicosanoid production [47,48]. LY75 is involved in antigen

presentation and endocytosis, and has been identify as a

Table 3. Distribution of functional polymorphisms.

Chromosome Ensembl gene ID HGNC Functional missense SNPs1 Nonsense SNPs2 Coding indels3

GGA7 ENSGALG00000011149 PLA2R1 7 (12) - -

ENSGALG00000011153 LY75 3 (5) - -

ENSGALG00000010858 LRP2 2 (6) 1 (255, 5%) -

ENSGALG00000020703 GRB14 2 (3) - -

ENSGALG00000010891 ABCB11 1 (2) - -

ENSGALG00000009545 SLC25A12 1 (1) - -

ENSGALG00000010943 SCN1A 1 (1) 1 (816, 69%) -

ENSGALG00000021856 - - 1 (41, 41%) 1 (12, 12%)

ENSGALG00000010933 XIRP2 5 (15) - -

ENSGALG00000011068 COBLL1 4 (14) - -

ENSGALG00000011052 SLC38A11 3 (5) - -

ENSGALG00000010956 TTC21B 2 (9) - -

ENSGALG00000014209 GPR155 2 (3) - -

ENSGALG00000013235 PDK1 1 (1) - -

ENSGALG00000009583 GORASP2 1 (2) - -

ENSGALG00000020737 KLHL23 1 (3) - -

ENSGALG00000011110 DPP4 1 (2) - -

ENSGALG00000011172 LOC429030 1 (7) - -

GGA19 ENSGALG00000023554 PIGW 1 (8) - -

ENSGALG00000005420 AATF 1 (4) - -

ENSGALG00000005084 TRIM37 1 (2) - -

ENSGALG00000004917 DOC2B 1 (1) - -

ENSGALG00000005037 TEX14 4 (13) 1 (131, 9%) -

ENSGALG00000004924 OPN1LW - 1 (324, 9%) -

ENSGALG00000021526 PRR11 2 (6) - 1 (176, 60%)

ENSGALG00000005578 - - - 1 (133, 97%)

ENSGALG00000005061 PPM1E 3 (4) - -

ENSGALG00000005279 BRIP1 2 (2) - -

ENSGALG00000005230 MED13 2 (2) - -

ENSGALG00000005295 BCAS3 2 (2) - -

ENSGALG00000005468 SYNRG 1 (6) - -

ENSGALG00000005350 USP32 1 (5) - -

ENSGALG00000005489 DDX52 1 (4) - -

ENSGALG00000005516 HEATR6 1 (4) - -

ENSGALG00000005173 TUBD1 1 (4) - -

ENSGALG00000005594 OMG 1 (3) - -

ENSGALG00000005269 INTS2 1 (2) - -

ENSGALG00000005285 TBX4 1 (2) - -

ENSGALG00000005362 - 1 (2) - -

ENSGALG00000005868 RAP1GAP2 1 (2) - -

ENSGALG00000011040 SCN2A 1 (2) - -

ENSGALG00000005126 DHX40 1 (1) - -

1: Number of SNPs having a potential impact on protein function; Number of total SNPs affecting protein sequence is given in brackets.
2: Number of SNPs having a nonsense impact; Number of amino acids and percentage of protein sequence that are lost are given in brackets.
3: Number of coding indels; Number of amino acids and percentage of protein sequence that are lost are given in brackets.
doi:10.1371/journal.pone.0111299.t003
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susceptibility locus for type 2 diabetes mellitus [49,50]. TRIM37,
which encodes a peroxysomal protein with E3 ubiquitin ligase

known to cause mulibrey nanism when mutated, is also related to

severe insulin resistance syndrome [51]. Finally, PIGW is involved

in the glycosylphosphatidylinositol synthesis [52] and AATF in

apoptosis inhibition [53].

Conclusions

Using NGS data allowed the identification of 120 (GGA7) and

104 (GGA19) polymorphisms having an impact on protein

sequence. While all of them are good candidates, conservation-

and functionality-based filters applied on polymorphisms or genes

functional annotation allows us to prioritize a list, with 45 (GGA7)

and 36 (GGA19) polymorphisms that might have a strong effect on

the protein function (including 7 coding indels or nonsense SNPs),

17 (GGA7) and 4 (GGA19) of them being in functional candidate

genes. Even if we cannot exclude that the causal polymorphisms

may be located in regulatory regions, this strategy gives a complete

overview of the candidate polymorphisms in coding regions,

prioritize them and open the way to further validation, by genetic

approaches using other populations phenotyped for the traits of

interest, or by molecular and cellular functional approaches.
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