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Abstract

Background: For decades, genetic improvement based on measuring growth and body composition traits has
been successfully applied in the production of meat-type chickens. However, this conventional approach is
hindered by antagonistic genetic correlations between some traits and the high cost of measuring body
composition traits. Marker-assisted selection should overcome these problems by selecting loci that have effects on
either one trait only or on more than one trait but with a favorable genetic correlation. In the present study,
identification of such loci was done by genotyping an F2 intercross between fat and lean lines divergently selected
for abdominal fatness genotyped with a medium-density genetic map (120 microsatellites and 1302 single
nucleotide polymorphisms). Genome scan linkage analyses were performed for growth (body weight at 1, 3, 5,
and 7 weeks, and shank length and diameter at 9 weeks), body composition at 9 weeks (abdominal fat weight and
percentage, breast muscle weight and percentage, and thigh weight and percentage), and for several physiological
measurements at 7 weeks in the fasting state, i.e. body temperature and plasma levels of IGF-I, NEFA and glucose.
Interval mapping analyses were performed with the QTLMap software, including single-trait analyses with single
and multiple QTL on the same chromosome.

Results: Sixty-seven QTL were detected, most of which had never been described before. Of these 67 QTL, 47 were
detected by single-QTL analyses and 20 by multiple-QTL analyses, which underlines the importance of using
different statistical models. Close analysis of the genes located in the defined intervals identified several relevant
functional candidates, such as ACACA for abdominal fatness, GHSR and GAS1 for breast muscle weight, DCRX and
ASPSCR1 for plasma glucose content, and ChEBP for shank diameter.

Conclusions: The medium-density genetic map enabled us to genotype new regions of the chicken genome
(including micro-chromosomes) that influenced the traits investigated. With this marker density, confidence
intervals were sufficiently small (14 cM on average) to search for candidate genes. Altogether, this new information
provides a valuable starting point for the identification of causative genes responsible for important QTL controlling
growth, body composition and metabolic traits in the broiler chicken.
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Background
For decades, major genetic improvements in growth and
body composition of broiler chickens have been achieved
by standard selection based on pedigree and phenotypic
information. For body weight (BW), which has a moderate
heritability (~0.35), standard selection has been very effi-
cient because measurement of this phenotype is easy and
inexpensive, even for large populations. For body compo-
sition, such as breast muscle (BMW) or abdominal fat
(AFW) weight, despite a greater heritability (~0.50), ge-
netic progress has been slower for two reasons: (1) inten-
sity of selection has been lower because of the difficulty
and cost to measure these phenotypes, and (2) genetic
evaluations have been less accurate because evaluation of
candidates is based on information from relatives only. In
addition, over the years, the genetic gain for growth has
been accompanied by a large increase in carcass fatness
[1], which itself has a negative impact on both feed effi-
ciency and the environment via a higher excretion of
nitrogen and phosphate [2-4]. Genetic selection against
fatness is hindered by the high positive phenotypic corre-
lation between body weight and fat content (r = 0.74) [5].
For many traits, and more specifically for those under

lower selection pressure, genetic variability must still be
high within and across chicken populations. This vari-
ability has been studied in many different breeds or se-
lected lines for 20 years through quantitative trait locus
(QTL) detection (for a review, [6]). However, informa-
tion provided by traditional microsatellite-based QTL
analyses cannot be used in selection programs because
of very large confidence intervals on QTL location.
More recently, whole-genome sequencing of multiple
chicken breeds has led to the identification of thousands
of single nucleotide polymorphisms (SNPs), providing
very high-density genetic maps compared to the previ-
ously low-density microsatellite marker maps [7].
Despite the poor correlation between growth and body

composition performances, it has been possible to
divergently select experimental fat (FL) or lean (LL)
broiler chicken lines that have different body composi-
tions but quite similar body weights [5]. A difference in
energy metabolism between such divergent lines has
been highlighted [8]. FL chickens generally exhibit lower
plasma glucose levels than LL chickens, unlike what is
typically observed in obese mammals. Regardless of
their nutritional status (fed or fasted), total plasma lipid
and lipoprotein levels are higher in FL than in LL chick-
ens, suggesting a higher rate of hepatic lipogenesis in FL
chickens. The plasma level of non-esterified fatty acids
(NEFA) is also higher in FL chickens, possibly because
they have more adipocytes in their abdominal fat depot
[9]. Differences have also been reported for several hor-
mones, including IGF1, which has a higher level in plasma
in FL than in LL chickens, regardless of the nutritional
state [8]. Previous studies on these lines have determined
that alleles of QTL that affect growth and body compo-
sition are not fixed in the FL or LL lines [10,11].
Using SNPs, the present study aimed at detecting new

QTL that affect 17 traits related to growth, body com-
position and several relevant physiological variables in a
FL × LL F2 population. A medium-density genetic map
(1422 markers) was used, which is much lower than what
would be obtained with 60 K SNP arrays, and does not
allow for linkage disequilibrium analyses, but it is dense
enough for fine mapping of QTL using linkage analyses,
and the selected markers cover the whole sequenced
genome. Different interval mapping strategies were ap-
plied using QTLMap software: single-trait analyses with
single and multiple QTL on the same chromosome [12,13].

Methods
Animals
A three-generation design was used at the INRA PEAT
experimental farm (Nouzilly, Indre-et-Loire) by inter-
crossing two experimental meat-type chicken lines, i.e.
the fat (FL) and lean (LL) lines, that had been diver-
gently selected for seven generations using the abdo-
minal fat weight/animal weight ratio as an index of
fattening, while reaching quite similar live body weights
at 9 weeks [5]. After selection, the two lines were
maintained by limiting inbreeding. In the F0 generation,
five FL males were mated to 13 unrelated LL females
and four LL males were mated with eight unrelated FL
females to generate the F1 generation. Five F1 males
(three from an FL × LL cross and two from an LL × FL
cross) were each mated to nine or 10 unrelated F1 dams
to produce 579 F2 progeny that were reared in five
successive hatching groups. Blood was collected from
all chickens for DNA analyses. The F2 chickens were
raised under similar conditions (one floor pen per
hatch) and fed ad libitum using conventional feed: a
starter ration from 0 to 3 weeks of age (metabolizable
energy: 3050 kcal/kg, crude protein: 220 g/kg, lysine:
12 g/kg, methionine + cystine: 8.5 g/kg, tryptophan:
2.5 g/kg, threonine: 8.3 g/kg, calcium: 11 g/kg, available
phosphorus: 4.2 g/kg), and a grower ration from 4 to
9 weeks of age (metabolizable energy: 3100 kcal/kg,
crude protein: 200 g/kg, lysine: 11.3 g/kg, methionine +
cystine: 8.22 g/kg, tryptophan: 2.27 g/kg, threonine:
7.38 g/kg, calcium: 8.96 g/kg, available phosphorus:
3.8 g/kg). To synchronize biological and metabolic
rhythms, the chickens were maintained under a 14-
hour light/10-hour darkness cycle (14L10D), with lights
on from 9 am to 11 pm. Chickens were slaughtered at
nine weeks of age and carcasses were eviscerated and
stored at 4°C for 20 hours before dissection. All proce-
dures were conducted under Licence No. 37–123 from
the Veterinary Services, Indre-et-Loire, France and in
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accordance with guidelines for Care and Use of Animals
in Agricultural Research and Teaching (French Agricul-
tural Agency and Scientific Research Agency).

Phenotypic measurements
Body weight was measured at 1, 3, 5, 7 and 9 weeks of age,
i.e. BW1, BW3, BW5, BW7, and BW9, respectively. Body
composition traits measured at 9 weeks included breast
muscle percentage (BMP), pectoralis minor (BMWmin)
and pectoralis major (BMWmaj) weights, abdominal fat
weight (AFW) and percentage (AFP), thigh weight (ThW)
and percentage (ThP), and shank diameter (ShD) and
length (ShL). Weights were expressed in grams. Lengths
and diameters were expressed in millimeters. For physio-
logical measurements, blood samples were collected at
7 weeks of age from the wing vein with syringes containing
EDTA as anticoagulant, after an overnight fast. To mi-
nimize stress, chickens were placed in crates at 4 pm on
the day prior to sample collection and lights were turned
off. On the day of sampling, chickens were maintained in
darkness until body temperature (Tb) was measured, and
then blood samples were collected and kept on ice. Tb

(in °C) was measured in the cloaca with an electronic
thermometer (Testo 110, Testo, Forbach, France) while
handling and restraining the chickens gently.
The level of fasting plasma glucose (glucose) was mea-

sured by the glucose oxidase method (Glucose Beckman
Analyzer 2, Beckman, Palo Alto, CA) and expressed in
mg/dL. The level of non-esterified fatty acids (NEFA) level
was determined with an enzymatic colorimetric kit (Wako,
Chemicals, Neuss, Germany) and expressed in mEq/L.
Fasting plasma IGF-I levels were measured by radio-
immunoassay, as previously described by Enright et al.
[14] and expressed and analyzed as pg/10 μl of plasma
diluted at a ratio of 1/7.

Marker selection and genotyping
The five F1 sires were genotyped for a set of 9216 SNPs
covering the 28 first autosomes and the GGAZ (Gallus
gallus chromosome Z). A subset of 1536 SNPs was selected
using MarkerSet software [15] based on SNP location and
heterozygozity in the F1 population to maximize both ge-
nome coverage and marker informativity. All F2 animals
were genotyped for these 1536 SNPs and for 120 micro-
satellites that were used in a previous analysis [11]. SNP
genotyping was performed at the National Genotyping
Center (CNG, Evry, France) using Illumina GoldenGate
technology (Illumina, San Diego, CA, USA). For microsat-
ellite genotyping, two to 10 markers were combined for
multiplex PCR amplification based on size and amplifica-
tion conditions and analyzed on an automated sequencer
(ABI 3700, PE Applied Biosystems, Foster City, CA). The
marker length and genotype of the animals were deter-
mined using GeneScan and Genotyper software (Applied
Biosystems, Version 3.7). Mendelian errors were corrected
using the MendelSoft software [16].

QTL mapping
When needed, the GLM procedure of SAS was used to
adjust traits for sex and hatch groups (fixed effects) and
BW9 (covariate). BW9 was not used as covariate for BW1,
BW3, BW5, BW7, ThP and IGF-I. Correlations between
adjusted traits were then calculated using the “cov2cor”
function in R [17]. The significance level for the bilateral
correlation test for more than 500 values and P < 0.01 was
0.115, using the Bravais-Pearson r table.
Heritabilities and genetic correlations of the measured

traits were estimated by the REML method with the VCE6
software [18]. The model included the fixed effects of
hatch (N = 5) and sex (N = 2), the animal genetic effect
(N = 623), as well as BW9 as a covariate (except for BW1,
BW3, BW5, BW7, ThP and IGF-I, as previously men-
tioned). For body weight traits, a maternal random effect
(N = 47) was added.
Genetic locations of the markers were extracted from

the international consensus map [19]. The location of
markers that were not included in the consensus map
was extrapolated from that of flanking markers. Briefly,
considering marker m with flanking markers a and b,
the local ratio of genetic (cM = centimorgans) to phys-
ical (Phy) distance [ratio = (cMa–cMb)/(Phya–Phyb)] was
used to calculate the genetic location of the marker based
on its physical distance from the previous marker cMm =
cMa + [(Phym–Phya) × ratio]. A total of 234 markers had
no reliable physical location or presented technical prob-
lems (low call rate and/or high Mendelian errors), so only
1422 of the 1656 markers (1536 SNPs and 120 micro-
satellites) were selected for the analysis.
A linkage QTL interval mapping analysis was performed

using the QTLMap software (http://www.inra.fr/qtlmap),
which was developed for outbred experimental populations
[12,13], taking into account the familial structure of the
population (five half-sib sire families and heteroscedastic
model). Fixed and covariate effects were taken into account
as previously, i.e. when they were significant at the 5% level
in the GLM, and were estimated jointly with the QTL
parameters. No assumptions about fixation of alleles in
the founder lines and the number of the alleles segrega-
ting at QTL were made (i.e. a separate QTL effect was
estimated for each sire). This was particularly important
with this population, since it has been previously demon-
strated that most of the QTL detected, including those
that affect abdominal fatness, a highly selected trait, were
not fixed in the founder lines [10,11]. A fast algorithm
was used to estimate transmission probabilities at each
location of a chromosome based on the SNP genotypes
[20], which made it possible to use a large set of markers. A
specific GPU accelerated version of QTLMap was used to

http://www.inra.fr/qtlmap
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reduce computation time [21]. The presence of QTL was
assessed using a likelihood ratio test (LRT) under the hy-
pothesis of one versus no QTL linked to a given set of
markers [12]. The QTLMap software was also used to test
more complex hypotheses, such as whether two linked
QTL influence the same trait [22]. Two approaches were
used for multiple-QTL analysis. When one QTL was iden-
tified in a chromosome, the hypothesis of one QTL in the
chromosome (H1) was compared to the hypothesis of two
QTL in the chromosome (H2). This is of particular interest
to test whether a QTL detected in a single-QTL linkage
analysis was a ghost, or whether another QTL might be
segregating elsewhere on the chromosome. When no QTL
was detected for a chromosome by trait combination, the
hypothesis of no QTL on the chromosome (H0) was com-
pared to the H2 hypothesis to test for segregation of two
antagonistic QTL. In all cases, the two QTL locations
under H2 were estimated considering all possible combina-
tions of locations, using a two-dimensional grid. Since the
heterogametic sex in chicken is the male, it was possible to
perform within-sire family analyses on GGAZ. Confidence
intervals of QTL positions were estimated by the drop-off
method [23].
For all QTL analyses, significance thresholds were

determined by simulating phenotypes under the null
Table 1 Descriptive statistics and heritabilities (h2) of recorde

Trait Males Females

N Mean STD N M

BW1 274 97.67 14.18 290 9

BW3 271 460.7 54.29 296 4

BW5 272 1069.38 109.79 296 9

BW7 266 1690.7 177.42 296 1

BW9 276 2507.05 262.84 298 1

AFW 273 71.93 21.73 292 7

AFP 274 2.85 0.76 292 3

BMWmaj 273 110.62 13.58 292 8

BMWmin 274 37.87 4.57 292 3

BMP 273 11.82 0.86 290 1

ThW 273 301.92 36.23 291 2

ThP 278 24.04 1.19 291 2

ShD 268 12.59 0.79 297 1

ShL 275 123.38 5.92 296 1

Tb 272 41.85 0.27 293 4

Glucose 274 196.7 11.78 295 1

NEFA 261 0.488 0.098 269 0

IGF-I 272 38.01 8.36 295 3

BW1, 3, 5, 7, 9 body weight at age 1, 3, 5, 7 and 9 weeks (g), AFW and AFP abdomin
and major weights (g), BMP breast muscle percentage (%), ThW and ThP thigh weig
body temperature (°C), Glucose fasting plasma glucose level (mg/dL), IFG-I and NEFA
fatty acid levels (mEq/L); STD are standard deviation of the traits, expressed in trait
hypothesis of the test to obtain an empirical distribution
of the likelihood ratio test (LRT) in accordance with the
pedigree and marker information. Thus, for the no-
versus-one QTL test, phenotypes were simulated under
H0, assuming a polygenic model with the trait heritabi-
lity detailed in Table 1. For the two-versus-one QTL test,
performances were simulated under H1. The most likely
location and effect estimated during the no-versus-one
QTL test were used to determine the QTL effect on
phenotype. The QTL effect used in these simulations
was the average of the effects of all heterozygous sires.
One thousand and 10 000 (for multiple-QTL and single-
QTL analyses, respectively) simulations were performed
for each trait by chromosome combinations, and quantiles
of maximum LRT were calculated according to Harrel
and Davis [24].
At the position with the highest LRT, the substitution

effect of QTL alleles was estimated in each sire family
and significance of the effect (difference from 0) was
tested by a t-test, using the within-family residual stan-
dard error, i.e. the intra QTL genotype distribution of
the trait adjusted for the other effects in the model
(fixed, covariate and polygenic). The additive value of
the QTL effect was assessed as the average of significant
substitution effects in the sires (P < 0.05).
d traits

All

ean STD Mean STD h2

4.15 13.39 95.86 13.87 0.32 ± 0.03

13.36 50.08 435.99 57.21 0.36 ± 0.03

07.29 99.43 984.91 132.18 0.41 ± 0.04

380.42 139.27 1527.28 221.61 0.32 ± 0.02

979.05 201.42 2232.93 351.99 0.22 ± 0.02

3.97 22.17 72.98 21.96 0.61 ± 0.15

.7 0.93 3.29 0.95 0.63 ± 0.05

9.15 10.13 99.53 16.03 0.47 ± 0.05

1.37 3.36 34.52 5.15 0.40 ± 0.06

2.17 0.94 12.02 0.91 0.59 ± 0.05

29.38 25.73 264.49 47.87 0.33 ± 0.03

3.13 1.08 23.58 1.22 0.37 ± 0.04

0.92 0.59 11.72 1.08 0.45 ± 0.03

08.37 4.61 115.60 9.17 0.44 ± 0.03

1.88 0.25 41.87 0.26 0.31 ± 0.08

96.28 11.04 196.48 11.40 0.19 ± 0.08

.496 0.099 0.49 0.10 0.16 ± 0.06

8.4 8.93 38.22 8.65 0.38 ± 0.11

al fat weight (g) and percentage (%), BMWmin and BMWmaj pectoralis minor
ht (g) and percentage (%), ShD and ShL shank diameter and length (mm), Tb,
s fasting plasma IGF-I (pg/10 μl of plasma diluted at 1/7) and non-esterified
units.
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Results and discussion
Phenotypic and genetic correlations between residuals
A description of traits, along with Pearson correlation
coefficients and estimated genetic correlations between
adjusted traits are in Tables 1 and 2, respectively. No
correlations were presented for BW9 since it was used
as covariate to adjust the other traits. Significant (P <
0.01) phenotypic correlations were either higher than
0.115 or lower than −0.115. As expected, correlations
between BW measured at different ages were positive,
Table 2 Pearson correlation coefficients (phenotypic, above t
standard errors, below the diagonal) and heritabilities (diago

BW1 BW3 BW5 BW7 AFW AFP BMW
maj

BMW
min

BW1 0.32 0.63 0.30 0.21 0.05 0.05 0.01 0.16

BW3 0.87 0.36 0.54 0.37 0.08 0.08 −0.04 0.06

(0.05)

BW5 0.74 0.94 0.41 0.93 0.04 0.05 −0.03 0.05

(0.11) (0.04)

BW7 0.64 0.72 0.72 0.32 0.01 0.02 −0.02 0.01

(0.18) (0.13) (0.13)

AFW 0.09 0.17 0.34 0.27 0.61 0.99 −0.30 −0.05

(0.20) (0.18) (0.19) (0.24)

AFP 0.14 0.21 0.38 0.33 1.0 0.63 −0.30 −0.05

(0.20) (0.19) (0.18) (0.23) (0.00)

BMW maj −0.30 −0.40 −0.31 −0.07 −0.22 −0.25 0.47 0.57

(0.19) (0.17) (0.20) (0.26) (0.19) (0.19)

BMW min −0.27 −0.24 −0.18 −0.18 0.17 0.14 0.66 0.40

(0.21) (0.21) (0.23) (0.30) (0.21) (0.21) (0.12)

BMP −0.31 −0.39 −0.33 −0.15 −0.16 −0.18 0.97 0.81

(0.19) (0.18) (0.20) (0.26) (0.19) (0.18) (0.01) (0.08)

ThW 0.11 0.03 0.22 0.54 0.02 0.05 0.29 0.20

(0.22) (0.22) (0.22) (0.27) (0.22) (0.22) (0.21) (0.22)

ThP 0.12 0.08 0.29 0.61 0.06 0.10 0.24 0.20

(0.22) (0.22) (0.21) (0.26) (0.21) (0.15) (0.21) (0.22)

ShD −0.19 −0.21 −0.18 0.09 −0.60 −0.63 0.49 0.17

(0.20) (0.19) (0.21) (0.27) (0.13) (0.13) (0.17) (0.21)

ShL 0.39 0.53 0.49 0.26 −0.09 −0.07 −0.49 −0.10

(0.18) (0.16) (0.17) (0.26) (0.18) (0.19) (0.17) (0.22)

Tb −0.09 −0.09 −0.07 0.11 −0.58 −0.57 0.33 0.10

(0.24) (0.23) (0.25) (0.33) (0.18) (0.17) (0.21) (0.25)

Gluc 0.34 0.30 0.42 0.42 −0.66 −0.66 0.20 −0.22

(0.29) (0.29) (0.29) (0.40) (0.18) (0.17) (0.28) (0.28)

NEFA 0.30 0.76 0.83 0.73 NE NE NE 0.53

(0.36) (0.50) (0.21) (0.24) (0.37)

IGF-I −0.13 0.01 0.28 0.39 −0.47 −0.44 −0.05 −0.06

(0.23) (0.23) (0.21) (0.26) (0.21) (0.21) (0.23) (0.26)

Traits are described in Table 1; significant phenotypic (P < 0.01) and genetic correla
and ranged from 0.21 (for BW1 and BW7) to 0.93 (for
BW5 and BW7). Abdominal fatness, expressed either as
total weight (AFW) or percentage of BW (AFP), was nega-
tively phenotypically correlated with several composition
traits, i.e. BMP (−0.26), BMWmaj (−0.3), ThW (−0.14),
ThP (−0.14), ShL (−0.24) and ShD (−0.38) and the meta-
bolite glucose (−0.2). Glucose was also negatively correlated
with NEFA (−0.20) but positively correlated with body
temperature (0.28). No significant correlations were ob-
served for AFW and AFP with BMWmin. ThW and ThP
he diagonal), estimated genetic correlations (with their
nal) for the measured traits

BMP ThW ThP ShD ShL Tb Gluc NEFA IGF-I

0.06 −0.03 −0.01 −0.17 0.08 −0.07 −0.06 0.00 −0.11

−0.02 −0.04 −0.01 −0.13 0.21 −0.06 −0.05 0.08 −0.05

−0.04 −0.09 −0.06 −0.08 0.12 −0.04 −0.08 0.05 −0.08

−0.05 −0.07 −0.03 −0.04 0.08 −0.04 −0.06 0.03 −0.05

−0.26 −0.15 −0.14 −0.38 −0.24 −0.09 −0.20 0.11 0.04

−0.26 −0.14 −0.13 −0.37 −0.24 −0.09 −0.20 0.11 0.04

0.96 0.26 0.26 0.05 −0.08 0.17 0.08 −0.07 −0.11

0.75 −0.01 −0.01 −0.08 0.03 0.14 −0.02 0.01 −0.15

0.59 0.21 0.21 0.04 −0.03 0.19 0.07 −0.05 −0.13

0.26 0.33 0.98 0.12 0.25 0.05 0.11 −0.05 0.06

(0.19)

0.22 1.00 0.37 0.13 0.28 0.05 0.09 −0.04 0.05

(0.20) (0.00)

0.43 0.12 0.09 0.45 0.07 0.05 0.13 −0.07 0.09

(0.17) (0.21) (0.22)

−0.43 0.38 0.34 −0.22 0.44 −0.04 −0.05 0.03 −0.01

(0.18) (0.19) (0.20) (0.20)

0.37 −0.06 0.03 0.17 −0.37 0.31 0.28 0.01 0.03

(0.21) (0.24) (0.24) (0.22) (0.22)

0.13 0.04 0.03 0.45 −0.13 0.40 0.19 −0.20 0.01

(0.30) (0.29) (0.28) (0.19) (0.29) (0.28)

−0.31 −0.04 −0.02 −0.36 NE −0.16 0.14 0.16 0.06

(0.42) (0.33) (0.32) (0.34) (0.36) (0.47)

−0.06 0.35 0.35 0.35 0.44 0.39 0.29 0.67 0.38

(0.23) (0.21) (0.22) (0.22) (0.21) (0.23) (0.26) (0.26)

tions (P < 0.05) are in bold; NE could not be estimated.
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were positively correlated with BMP (0.21) and BMWmaj
(0.26) but had no significant correlation with BMWmin
(−0.01). ShL was positively correlated with BW3 and BW5,
while ShD was negatively correlated with BW1 (−0.17) and
BW3 (−0.13). Positive correlations were found between
shank and thigh traits (ShL, ShD, ThW and ThP). Fi-
nally, white muscle traits (BMP, BMWmaj and
BMWmin) were positively correlated with Tb (0.19) and
negatively correlated with plasma IGF-I levels (−0.13).
Several phenotypic correlations were confirmed at the

genetic level: large positive genetic correlations (ranging
from 0.64 to 0.94) were found between BW at the differ-
ent ages, moderate positive correlations of ShL with BW
at 1 to 5 weeks of age (0.39 to 0.49), and marked nega-
tive correlations of abdominal fatness (expressed as
weight or percentage) with ShD (−0.62) and plasma glu-
cose (−0.66) (Table 2). Significant negative genetic corre-
lations were also found for AFW and AFP with Tb

(−0.58) and with IGF1 (−0.46). BW7 was positively corre-
lated with thigh traits (0.58), while breast muscle develop-
ment (BMWmaj and BMP) was positively correlated with
ShD (0.46) but negatively with ShL (−0.46). Genetic corre-
lations of NEFA with BW at 5 or 7 weeks of age and with
IGF1 were positive and high (ranging from 0.67 to 0.83)
but could not be estimated with abdominal fat and breast
muscle traits (AFW, AFP and BMWmaj) because of lack
of convergence (most probably because of the rather low
heritability of NEFA).

Genetic map
The distribution of the 1422 markers that were used is
detailed in Table 3. The first 28 autosomes and GGAZ
were covered by at least 17 genetic markers, except for
GGA16, 25 and 27 (3, 5 and 13 markers, respectively).
Chromosome GGA16 contains the major histocompati-
bility complex (MHC) and many duplications. Since this
chromosome is not well covered by genome sequencing,
only a few genetic markers are available, all located in an
interval of less than 100 kb. Chromosomes 25 and 27
were poorly represented in the initial 9216 SNP set, and
most of them were not informative in our population.
The average marker interval was 2.1 cM. Since MarkerSet
uses SNP locations and heterozygozity information in the
F1 population to maximize genome coverage and marker
informativity, the average marker interval was very homo-
geneous between chromosomes, except again for GGA16
(0 cM) and GGA25 (7.7 cM). This average marker interval
was much lower than that obtained when using only
microsatellite markers, i.e. 18.7 cM (data not shown);
furthermore, it covers almost all chromosomes. The ex-
perimental design used for this study was based on large
sire families, optimized for linkage analysis. Recent
studies in layers have shown that for association ana-
lyses, the maximal distance between markers should not
exceed 100 kb, and concluded that the Illumina 60 K
SNP chip is appropriate for such studies [25]. Conside-
ring that the present study had one marker every 2.1 cM
(or about 700 kb), using association analysis approaches
would not be appropriate.

Single-QTL analyses
Single-QTL analyses led to the identification of 47 QTL
that were located on 19 chromosomes and affected all 17
phenotyped traits, except BW1 and BW3 (Table 4). A few
QTL had both a high chromosome-wide significance (P <
0.001) and a high genome-wide significance (P < 0.05).
These QTL affected AFW and AFP (GGA19), BMWmin
(GGA2 and GGAZ), BMP (GGA9), ShD (GGA19), IGF-I
(GGA1), Tb (GGA5) and glucose (GGA18). Other QTL
were also highly significant but only at the chromosome-
wide level and affected AFP (GGA27, P < 0.01), ThP
(GGA8, P < 0.01), and Tb (GGA11, P < 0.01). All other
identified QTL had a chromosome-wide significance of
P < 0.05. QTL allelic substitution effects ranged from
0.42 (BMWmaj on GGA4, BMWmin on GGA9 and glu-
cose on GGA7) to 1.03 (BMWmin on GGA7) residual
standard deviations with a mean of 0.55 standard devia-
tions. Chromosome GGA27 was the best represented,
with five identified QTL, followed by GGA3, 4, 7, 19 and
20, which each carried four QTL. The average confidence
interval (CI) was equal to 14 cM, with large differences
depending on the region (from 2 cM to 36 cM), mainly
due to differences in marker density and informativity.
However, the average CI was much smaller compared to
the average CI of 32 cM observed for the same population
in a study on abdominal fatness and breast muscle weight
when using only microsatellites [11].
QTL that affected growth, body composition and meta-

bolic traits have been extensively studied in the chicken [6]
and some of the QTL identified in this study had been pre-
viously described: AFW on GGA19 [32], AFP on GGA19
[32] and GGA27 [33], BMWmaj and BMWmin on GGA7
[31], BW5 on GGA3 [28] and GGA4 [30], BW7 on GGA4
[29] and IGF-I on GGA1 [27,29]. However, 38 of the 47
QTL identified here have not been described before. Con-
versely, some QTL that control glucose or NEFA that were
previously identified in another chicken population were
not observed here [34].

Multiple-QTL analyses
Multiple-QTL analyses were performed to examine the
potential presence of two QTL that segregate on the
same chromosome and control the same trait. The results
of multiple-QTL analyses are summarized in Table 5. The
test of one-against-two QTL (H1 vs. H2) was first per-
formed. Four pairs of QTL were identified and for each
pair, the QTL previously detected under the single-QTL
analysis was confirmed and a second QTL was identified.



Table 3 Distribution of genetic markers across the chicken genome used in the analyses

GGA Number of markers SNP Microsatellites Total length (cM) Average marker interval (cM)

1 222 202 20 445.4 2.0

2 167 151 16 312.4 1.9

3 126 113 13 268.7 2.1

4 90 82 8 202.4 2.2

5 84 75 9 152.4 1.8

6 39 37 2 110.4 2.8

7 40 33 7 113.1 2.8

8 32 28 4 90.7 2.8

9 56 52 4 88.4 1.6

10 47 44 3 82.4 1.8

11 52 47 5 69.2 1.3

12 43 41 2 73.9 1.7

13 43 39 4 57.8 1.3

14 41 37 4 67.5 1.6

15 32 29 3 55.2 1.7

16 3 3 0 0 0

17 25 25 0 51.2 2.0

18 24 22 2 50.0 2.1

19 20 20 0 52.6 2.6

20 31 27 4 51.9 1.7

21 19 19 0 45.9 2.4

22 17 17 0 58.1 3.4

23 19 19 0 45.2 2.4

24 19 19 0 43.9 2.3

25 5 5 0 38.4 7.7

26 22 17 5 45.9 2.1

27 13 11 2 52.6 4.0

28 17 14 3 51.1 3.0

Z 74 74 0 244.1 3.3

Total 1422 1302 120 3021

GGA Gallus gallus chromosome.
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The new QTL on GGA3 at 96 cM that influenced BW5
had a high chromosome-wide significance (P < 0.01),
while the remaining chromosome-wide QTL were signifi-
cant at P < 0.05.
The test of none-against-two QTL (H0 vs. H2) was

then examined to test the possibility that two linked
QTL located in a short interval might not be detected
because of their antagonist effects. Eight new pairs of
QTL were identified (P < 0.05) using this test.
Together, these two two-QTL analyses (H0 vs. H2 and

H1 vs. H2 hypotheses), identified 20 additional QTL.
Their effects ranged from 0.48 (BW3 on GGA18) to 0.93
(BMWmaj on GGA5) standard deviations, with a mean
of 0.63 standard deviations. When a QTL was identified
at a same location using H1 and H2 hypotheses, their
effects were quite similar. Considering only the QTL
detected under the H0 vs. H2 hypothesis, the average
distance between the two QTL was 59 cM and ranged
from 8 to 210 cM. Surprisingly, the two QTL that
affected BMP and BW3 on GGA3 were very distant
(210 cM and 168 cM, respectively). This may be because
estimating two QTL effects together is more powerful
and leads to a more precise QTL location [36]. However,
excluding these two pairs of QTL, the average distance
between the two QTL was 15 cM, consistent with the
hypothesis of two closely located QTL with antagonist
effects. Two of the QTL detected under the H0 vs. H2
hypothesis had previously been described in other popula-
tions, supporting the validity of the results for BMWmaj
on GGA5 [35] and BMP on GGA3 [29].



Table 4 Results of single-QTL analysis

Trait GGA Loc (cM) CI (cM) Nearest markers SL QTL effect HS Ref

ShD 1 80.5 76 - 85 rs14803813 - rs14805816 * 0.59 ± 0.17 3 -

IGF-I 1 149.5 141 - 153 rs13870138 - RBL3072 ***, $ 0.55 ± 0.10 4 [26,27]

ThP 1 159.5 150 - 165 rs14831825 - rs14833110 * 0.52 ± 0.11 3 -

BMW min 2 234 232 - 240 rs14231442 - rs14231751 ***, $ 0.69 ± 0.54 2 -

Tb 2 263 256 - 267 rs13730256 - rs14246372 * 0.62 ± 0.46 2 -

BW7 3 97 92 - 100 rs14334468 - rs15316026 * 0.62 ± 0.18 2 -

ShL 3 174 163 - 180 rs14378036 - rs15394046 * 0.44 ± 0.15 4 -

Glucose 3 189 184 - 194 rs15406274 - rs14385386 * 0.47 ± 0.19 4 -

BW5 3 250 247 - 257 rs15452125 - rs14410153 * 0.65 ± 0.26 3 [28]

BMW maj 4 22 16 - 30 rs14421644 - rs14423272 * 0.42 ± 0.16 4 -

BMP 4 22 16 - 28 rs14421644 - rs14423272 * 0.49 ± 0.16 3 -

BW7 4 159 145 - 166 rs14707369 - rs14492188 * 0.60 ± 0.11 2 [29]

BW5 4 160 149 - 166 rs14492188 - rs13664708 * 0.57 ± 0.20 2 [30]

Tb 5 119.9 119 - 121 rs15730058 - rs15731150 ***, $ 0.75 ± 0.52 2 -

ThW 6 79 71 - 82 rs15806906 - rs14588414 * 0.45 ± 0.27 3 -

ThP 6 79 72 - 82 rs15806906 - rs14588414 * 0.57 ± 0.23 2 -

Glucose 7 4 0 - 13 rs15824390 - rs13739121 * 0.42 ± 0.09 4 -

BMW min 7 34 31 - 56 rs14605238 - rs14605963 * 1.03 1 [31]

BMW maj 7 39 30 - 66 rs14606550 - rs15844013 * 0.49 ± 0.27 3 [31]

BMP 7 39 31 - 58 rs14606550 - rs15844013 * 0.49 ± 0.35 3 -

ThW 8 5.9 0 - 13 RBL4827 - rs14635367 * 0.50 ± 0.19 3 -

ThP 8 62.9 56 - 77 rs15925157 - rs15927400 ** 0.47 ± 0.33 3 -

BMWmin 9 62 57 - 69 rs15977388 - rs15978241 * 0.42 ± 0.19 4 -

BMWmaj 9 66 59 - 82 rs14677393 - RBL2391 * 0.65 ± 0.07 2 -

BMP 9 66 61 - 70 rs14677393 - RBL2391 ***, $ 0.55 ± 0.24 3 -

AFP 10 59.8 56 - 68 rs14009177 - MCW0035 * 0.60 ± 0.17 2 -

AFW 10 62.8 56 - 75 rs14009888 - rs14010538 * 0.65 ± 0.02 2 -

Tb 11 36 31 - 44 rs14025158 - rs15617411 ** 0.44 ± 0.11 4 -

Glucose 18 30.2 23 - 38 rs14110229 - ADL0184 ***, $ 0.52 ± 0.19 4 -

ShD 19 18 0 - 22 rs14116183 - rs15837334 ***, $ 0.54 ± 0.16 3 -

BMW min 19 41 35 - 49 rs14120685 - RBL1230 * 0.47 ± 0.01 2 -

AFW 19 52 48 - 53 rs15855444 - rs14124107 ***, $ 0.52 ± 0.27 3 [32]

AFP 19 52 47 - 53 rs15855444 - rs14124107 ***, $ 0.52 ± 0.25 3 [32]

BW5 20 3.3 1 - 6 LEI0080 - rs14268358 * 0.60 ± 0.18 3 -

BW7 20 3.3 1 - 6 LEI0080 - rs14268358 * 0.60 ± 0.12 3 -

AFW 20 51.3 29 - 52 rs16175432 - rs14280613 * 0.60 ± 0.09 2 -

AFP 20 51.3 28 - 52 rs16175432 - rs14280613 * 0.59 ± 0.09 2 -

NEFA 21 34 31 - 36 RBL2361 - rs15184064 * 0.54 ± 0.19 4 -

AFW 26 45 18 - 46 rs16204669 - ADL0285 * 0.45 ± 0.12 3 -

ShD 27 28 19 - 36 RBL2860 - rs14303776 * 0.46 ± 0.32 3 -

ShL 27 32 18 - 40 rs14303776 - RBL4014 * 0.51 ± 0.22 3 -

ThP 27 48 33 - 53 ADL0376 - RBL10518 * 0.60 ± 0.18 3 -

AFW 27 51 47 - 53 ADL0376 - RBL10518 * 0.55 ± 0.25 3 -

AFP 27 51 47 - 53 ADL0376 - RBL10518 ** 0.50 ± 0.26 4 [33]
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Table 4 Results of single-QTL analysis (Continued)

ShL 28 41 28 - 51 MCW0227 - rs13726077 * 0.59 ± 0.19 2 -

BMP 28 51 47 - 51 rs14307413 - rs16212250 * 0.45 ± 0.25 3 -

BMW min Z 88.9 86 - 99 RBL3035 - rs16110306 ***, $ 0.59 ± 0.32 4 -

Traits are described in Table 1; GGA Gallus gallus chromosome, Loc location, CI confidence interval, SL significance level with * at 5%, ** at 1%, *** at 0.1%
chromosome-wide and $ at 5% genome-wide, QTL effect substitution effect expressed in residual standard deviation. HS number of heterozygous sires out of 5.
Ref publications describing similar QTL affecting the same trait and presenting a similar genomic location.
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When determining the threshold under the H1 vs. H2
hypothesis, one QTL was simulated using the location
and effect previously identified under the single-QTL
analysis. This is quite a conservative test, because if the
location and effect were false (i.e. if a ghost QTL was
detected under H1), the H2 hypothesis would likely be
rejected. However, the second QTL affecting BW5 iden-
tified on GGA3 under this hypothesis was highly signifi-
cant (P < 0.01), and has been previously described
[28,30]. The QTL affecting BW7 and located on GGA4
has also been previously described [29]. Identification of
highly significant QTL that have been previously de-
scribed in other populations indicates that the results
are robust.

Candidate genes analyses
Many QTL were identified in this study, with intervals
that contain for most of them a few dozen genes. From
among these positional candidate genes, functional can-
didate genes were identified using the AnnotQTL web
tool [37] for QTL regions that were significant at the
genome level (P < 0.05). For BMWmin on GGA2 and Tb

on GGA5, none of the described genes had a function
that could be linked to the trait. However, many genes
are not yet annotated or currently have a functional an-
notation that is difficult to link to the studied traits.
Table 5 Results of multiple QTL analysis

Trait GGA QTL1
Loc (cM)

QTL1 nearest markers QTL2
Loc (cM)

QTL2 near

BMP 3 39 rs16225707- rs14316721 249 rs15452125

BW3 3 96 rs14334468- rs15316026 264 rs15457054

BW5 3 96 rs14334468- rs15316026 252 rs15452125

BW7 3 96 rs14334468- rs15316026 249 rs15452125

BW7 4 132 rs15595474- RBL4469 150 MCW0240-

BMW maj 5 122 rs15731150- rs15733056 130 rs15733400

BMP 5 122 rs15731150- rs15733056 130 rs15733400

ThW 8 10 rs14635367- rs15900903 59 rs14648254

BW3 9 67 rs15979233- RBL4169 76 rs15981733

BMW maj 12 29 rs13610024- rs14036782 50 rs14981507

BMP 12 29 rs13610024- rs14036782 50 rs14981507

BW3 18 14 rs15813867- rs15037317 37 rs15826197

Traits are described in Table 1; GGA Gallus gallus chromosome, Loc location, SL sign
bold, QTLs previously detected in single-QTL analysis, QTL effect substitution effect
out of 5. Ref publications describing similar QTL affecting the same trait and presen
Conversely, on GGA1, a very strong QTL that affects
plasma IGF-I level is co-located with the gene that codes
for the IGF-I protein. This strongly suggests that a mu-
tation involved in IGF-I expression, putatively in the
promoter of the IGF-I gene, could be responsible for the
regulation of plasma IGF-I levels in the chicken. This
mutation appears to be highly frequent in the popula-
tion, since four of the five tested males were heterozy-
gous for this QTL. Although the fat and lean chicken
lines differ for circulating IGF-I levels at 9 weeks of age
(FL > LL, [38]), the mutation does not appear to be
specific to one of the founder lines, since allele origins
were equally shared between the two lines. A similar
QTL was previously suggested in an F2 population that
resulted from the cross of chickens with high and low
growth rates [34]. These lines have no common genetic
background with the FL and LL lines. Up to 11 QTL for
IGF-I plasma level have been described in different
mouse strains ([39] and references therein) but the most
significant QTL has been identified on mouse chromo-
some 10, where the IGF1 gene is located. In mice, circu-
lating IGF-I levels are closely correlated with IGF-I
mRNA expression in the liver [40]. However, an eQTL
search conducted on liver samples collected from 282
F2 mice failed to detect IGF-I cis-eQTL and thus did
not support the hypothesis that a mutation in the
est markers H0 vs
H2 SL

H1 vs
H2 SL

QTL1
effect

HS QTL2
effect

HS Ref

- rs14410153 * 0.59 ± 0.30 2 0.75 ± 0.47 2 [29]

- rs15459111 * 0.51 ± 0.16 3 0.54 ± 0.07 2 -

- rs14410153 ** 0.66 ± 0.13 2 0.52 ± 0.21 4 [28,30]

- rs14410153 * 0.64 ± 0.20 2 0.65 ± 0.26 3 -

rs14488074 * 0.57 ± 0.19 5 0.72 ± 0.41 4 [29]

- rs14551368 * 0.93 ± 0.12 2 0.60 ± 0.27 5 [35]

- rs14551368 * 0.71 ± 0.40 3 0.62 ± 0.24 5 -

- rs15925157 * 0.62 ± 0.15 2 0.49 ± 0.15 3 -

- rs13735709 * 0.72 ± 0.43 4 0.69 ± 0.40 4 -

- rs14043099 * 0.57 ± 0.20 4 0.65 ± 0.18 3 -

- rs14043099 * 0.62 ± 0.21 4 0.56 ± 0.21 4 -

- rs14112762 * 0.48 ± 0.15 4 0.65 ± 0.30 2 -

ificance level with * at 5% and ** at 1% chromosome-wide, QTL locations in
expressed in phenotypic standard deviation. HS number of heterozygous sires
ting a similar genomic location.
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regulatory regions of IGF-I could be responsible for the
QTL that influences the level of circulating IGF-I [39].
Since liver samples were not collected from the FL × LL
F2 population, this hypothesis could not be tested in the
present study.
On GGA9, a QTL that affects BMP was identified. The

gene GHSR (growth hormone secretagogue receptor), previ-
ously described as associated with chicken growth, specifi-
cally breast muscle weight [41], is located in this region.
For glucose plasma concentration, a QTL was identified on
GGA18. Two genes in this QTL interval could be interes-
ting functional candidates: DCXR (dicarbonyl/L-xylulose
reductase) and ASPSCR1 (alveolar soft part sarcoma
chromosome region, candidate 1). When overexpressed in
transgenic mice, DCXR has been described as affecting
blood level glucose [42]. ASPSCR1 interacts with glucose
transporter type 4 (GLUT4), but no effect on glucose
plasma concentration has been reported.
On GGA19, a highly significant novel QTL that affects

both AFP and AFW was identified. This region contains
the ACACA gene (acetyl-CoA carboxylase A), which is
involved in fatty acid synthesis. A study of an SNP lo-
cated in this gene has been found to be associated with
fatness traits in chickens [32], enhancing the candidate
status of this gene. A closer look at these genes might
identify putative mutations that could be used for
marker-assisted selection in chickens. On this same
chromosome, but at a different location, another QTL
affected ShD. A possible candidate gene for this QTL
is ChREBP (carbohydrate-responsive element-binding
protein), which is known to affect the fiber type trans-
formation in skeletal muscle [43]. Finally, a QTL that
affects BMWmin was observed on GGAZ. For this re-
gion, GAS1 (growth arrest-specific 1) could be a good
functional candidate gene, since it is involved in the
cell cycle and has been described as promoting myo-
genic differentiation [44]. While these genes appear to
be good functional candidates, it is necessary to iden-
tify and validate mutations to confirm their link with
the observed QTL.

Conclusions
This study enabled us to identify 67 QTL, many of
which had not been described before. This result may be
explained by the population used and the higher marker
density, which increased marker coverage of micro-
chromosomes. Because of the lack of markers on most
micro-chromosomes in previous studies, only a few
QTL had been identified on GGA19, 23, 24, 26 and 28,
and none on GGA21, 22 and 25 [6]. In contrast, we
identified QTL on GGA21 (NEFA), GGA19 (AFW, AFP,
BMWmin and ShD), GGA26 (AFW), and GGA28 (BMP
and ShL). In addition to greater genome coverage, the
use of a larger set of SNPs made it possible to carry out
multiple-QTL analyses and thus to detect many new
QTL. This comprehensive study highlights several candi-
date genes that affect growth and body composition
traits in meat-type chickens but further studies are re-
quired to confirm their role. Epistatic effects should also
be considered, since such interactions have already been
described in chicken for growth and body composition
traits [29,45-48].
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