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Introduction

This article addresses the problem of derivative-free multi-objective optimization of real-valued functions subject to multiple inequality constraints. The problem consists in finding an approximation of the set Γ = {x ∈ X : c(x) ≤ 0 and x ∈ X such that c(x ) ≤ 0 and f (x ) ≺ f (x)} [START_REF] Box | An analysis of transformations[END_REF] where X ⊂ R d is the search domain, c = (c i ) 1≤i≤q is a vector of constraint functions (c i : X → R), c(x) ≤ 0 means that c i (x) ≤ 0 for all 1 ≤ i ≤ q, f = (f j ) 1≤j≤p is a vector of objective functions to be minimized (f j : X → R), and ≺ denotes the Pareto domination rule (see, e.g., [START_REF] Fonseca | Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation[END_REF]. Both the objective functions f j and the constraint functions c i are assumed to be continuous. The search domain X is assumed to be compact-typically, X is a hyper-rectangle defined by bound constraints. Moreover, the objective and constraint functions are regarded as black boxes and, in particular, we assume that no gradient information is available. Finally, the objective and the constraint functions are assumed to be expensive to evaluate, which arises for instance when the values f (x) and c(x), for a given x ∈ X, correspond to the outputs of a computationally expensive computer program. In this setting, the emphasis is on building optimization algorithms that perform well under a very limited budget of evaluations (e.g., a few hundred evaluations).

We adopt a Bayesian approach to this optimization problem. The essence of Bayesian optimization is to choose a prior model for the expensive-to-evaluate function(s) involved in the optimization problemusually a Gaussian process model [START_REF] Santner | The design and analysis of computer experiments[END_REF][START_REF] Williams | Gaussian processes for machine learning[END_REF] for tractabilityand then to select the evaluation points sequentially in order to obtain a small average error between the approximation obtained by the optimization algorithm and the optimal solution, under the selected prior.

See, e.g., [START_REF] Kushner | A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise[END_REF], Mockus (1975), [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF], [START_REF] Archetti | A probabilistic algorithm for global optimization[END_REF] and [START_REF] Mockus | Bayesian approach to global optimization: theory and applications[END_REF] for some of the earliest references in the field. Bayesian optimization research was first focused on the case of single-objective bound-constrained optimization: the Expected Improvement (EI) criterion [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF][START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] has emerged in this case as one of the most popular criteria for selecting evaluation points. Later, the EI criterion has been extended to handle constraints [START_REF] Schonlau | Global versus local search in constrained optimization of computer models[END_REF][START_REF] Sasena | Exploration of metamodeling sampling criteria for constrained global optimization[END_REF][START_REF] Gramacy | Optimization under unknown constraints[END_REF][START_REF] Gelbart | Bayesian optimization with unknown constraints[END_REF]Gramacy et al., just accepted) and to address bound-constrained multi-objective problems [START_REF] Emmerich | Single-and multi-objective evolutionary optimization assisted by Gaussian random field metamodels[END_REF][START_REF] Jeong | Optimization of combustion chamber for diesel engine using kriging model[END_REF][START_REF] Wagner | On expected-improvement criteria for modelbased multi-objective optimization[END_REF][START_REF] Svenson | Multiobjective optimization of expensive black-box functions via expected maximin improvement[END_REF].

The contribution of this article is twofold. The first part of the contribution is the proposition of a new sampling criterion that handles multiple objectives and non-linear constraints simultaneously. This criterion corresponds to a one-step look-ahead Bayesian strategy, using the dominated hyper-volume as a utility function (following in this respect [START_REF] Emmerich | Single-and multi-objective evolutionary optimization assisted by Gaussian random field metamodels[END_REF]. More specifically, the dominated hyper-volume is defined using an extended domination rule, which handles objectives and constraints in a unified way (in the spirit of [START_REF] Fonseca | Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation[END_REF][START_REF] Ray | Multiobjective design optimization by an evolutionary algorithm[END_REF][START_REF] Oyama | New constraint-handling method for multi-objective and multiconstraint evolutionary optimization[END_REF]. This new criterion is naturally adapted to the search of a feasible point when none is available, and several criteria from the literature-the EI criterion and some of its constrained/multi-objective extensions-are recovered as special cases when at least one feasible point is known. The second part of the contribution lies in the numerical methods employed to compute and optimize the sampling criterion. Indeed, this criterion takes the form of an integral over the space of constraints and objectives, for which no analytical expression is available in the general case. Besides, it must be optimized at each iteration of the algorithm to determine the next evaluation point. In order to compute the integral, we use an algorithm similar to the subset simulation method [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF][START_REF] Cérou | Sequential Monte Carlo for rare event estimation[END_REF], which is a well known Sequential Monte Carlo (SMC) technique (see Del [START_REF] Del Moral | Sequential monte carlo samplers[END_REF][START_REF] Liu | Monte Carlo strategies in scientific computing[END_REF], and references therein) from the field of structural reliability and rare event estimation. For the optimization of the criterion, we resort to an SMC method as well, following earlier work by [START_REF] Benassi | Bayesian optimization using sequential Monte Carlo[END_REF] for single-objective bound-constrained problems. The resulting algorithm is called BMOO (for Bayesian multi-objective optimization).

The structure of the article is as follows. In Section 2, we recall the framework of Bayesian optimization based on the expected improvement sampling criterion, starting with the unconstrained single-objective setting. Section 3 presents our new sampling criterion for constrained multi-objective optimization.

The calculation and the optimization of the criterion are discussed in Section 4. Section 5 presents experimental results. An illustration on a two-dimensional toy problem is proposed for visualization purpose. Then, the performances of the method are compared to those of reference methods on both single-and multi-objective constrained optimization problems from the literature. Finally, future work is discussed in Section 6.

2 Background literature

Expected Improvement

Consider the single-objective unconstrained optimization problem

x = argmin x∈X f (x) ,
where f is a continuous real-valued function defined over X ⊂ R d . Our objective is to find an approximation of x using a sequence of evaluation points X 1 , X 2 , . . . ∈ X. Because the choice of a new evaluation point X n+1 at iteration n depends on the evaluation results of f at X 1 , . . . , X n , the construction of an optimization strategy X : f → (X 1 , X 2 , X 3 . . .) is a sequential decision problem.

The Bayesian approach to this decision problem originates from the early work of [START_REF] Kushner | A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise[END_REF] and [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF]. Assume that a loss function ε n (X, f ) has been chosen to measure the performance of the strategy X on f after n evaluations, for instance the classical loss function

ε n (X, f ) = m n -m , (2) 
with m n = f (X 1 ) ∧ • • • ∧ f (X n ) and m = min x∈X f (x). Then, a good strategy in the Bayesian sense is a strategy that achieves, on average, a small value of ε n (X, f ) when n increases, where the average is taken with respect to a stochastic process model ξ (defined on a probability space (Ω, A, P 0 ), with parameter in X) for the function f . In other words, the Bayesian approach assumes that f = ξ(ω, •) for some ω ∈ Ω. The probability distribution of ξ represents prior knowledge about the function f -before actual evaluations are performed. The reader is referred to [START_REF] Vazquez | A new integral loss function for Bayesian optimization[END_REF] for a discussion of other possible loss functions in the context of Bayesian optimization.

Observing that the Bayes-optimal strategy for a budget of N evaluations is intractable for N greater than a few units, [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF] proposed to use a one-step look-ahead strategy (also known as a myopic strategy). Given n < N evaluation results, the next evaluation point X n+1 is chosen in order to minimize the conditional expectation of the future loss ε n+1 (X, ξ) given available evaluation results:

X n+1 = argmin x∈X E n ε n+1 (X, ξ) | X n+1 = x , (3) 
where E n stands for the conditional expectation with respect to X 1 , ξ(X 1 ), . . . , X n , ξ(X n ). Most of the work produced in the field of Bayesian optimization since then has been focusing, as the present paper will, on one-step look-ahead (or similar) strategies1 ; the reader is referred to [START_REF] Ginsbouger | Towards Gaussian process-based optimization with finite time horizon[END_REF] and [START_REF] Benassi | Nouvel algorithme d'optimisation bayésien utilisant une approche Monte-Carlo séquentielle[END_REF] for discussions about two-step look-ahead strategies.

When (2) is used as a loss function, the right-hand side of (3) can be rewritten as

argmin E n ε n+1 (X, ξ) | X n+1 = x = argmin E n m n+1 X n+1 = x = argmax E n (m n -ξ(x)) + , (4) 
with z + = max (z, 0). The function

ρ n (x) : x → E n (m n -ξ(x)) + (5)
is called the Expected Improvement (EI) criterion [START_REF] Schonlau | Global versus local search in constrained optimization of computer models[END_REF][START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]. When ξ is a Gaussian process with known mean and covariance functions, ρ n (x) has a closed-form expression:

ρ n (x) = γ m n -ξ n (x), σ 2 n (x) , (6) 
where

γ(z, s) = √ s ϕ z √ s + z Φ z √ s if s > 0, max (z, 0) if s = 0,
with Φ standing for the normal cumulative distribution function, ϕ = Φ for the normal probability density function, ξ n (x) = E n (ξ(x)) for the kriging predictor at x (the posterior mean of ξ(x) after n evaluations) and σ 2 n (x) for the kriging variance at x (the posterior variance of ξ(x) after n evaluations). See, e.g., the books of [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF], [START_REF] Santner | The design and analysis of computer experiments[END_REF], and [START_REF] Williams | Gaussian processes for machine learning[END_REF] for more information on Gaussian process models and kriging (also known as Gaussian process interpolation).

Finally, observe that the one-step look-ahead strategy (3) requires to solve an auxiliary global optimization problem on X for each new evaluation point to be selected. The objective function ρ n is rather inexpensive to evaluate when ξ is a Gaussian process, using ( 6), but it is typically severely multi-modal. A simple method to optimize ρ n consists in choosing a fixed finite set of points that covers X reasonably well and then performing a discrete search. Recently, sequential Monte Carlo techniques (see Del [START_REF] Del Moral | Sequential monte carlo samplers[END_REF]Liu, 2001, and references therein) have been shown to be a valuable tool for this task [START_REF] Benassi | Bayesian optimization using sequential Monte Carlo[END_REF]. A review of other approaches is provided in the PhD thesis of Benassi (2013, Section 4.2).

EI-based multi-objective optimization without constraints

We now turn to the case of unconstrained multi-objective optimization. Under this framework, we consider a set of objective functions f j : X → R, j = 1, . . . , p, to be minimized, and the objective is to build an approximation of the Pareto front and of the set of corresponding solutions

Γ = {x ∈ X : x ∈ X such that f (x ) ≺ f (x)} , (7) 
where ≺ stands for the Pareto domination rule defined by

y = (y 1 , . . . , y p ) ≺ z = (z 1 , . . . , z p ) ⇐⇒ ∀i ≤ p, y i ≤ z i , ∃j ≤ p, y j < z j . (8) Given evaluation results f (X 1 ) = (f 1 (X 1 ), . . . , f p (X 1 )), . . ., f (X n ) = (f 1 (X n ), . . . , f p (X n )), define H n = {y ∈ B; ∃i ≤ n, f (X i ) ≺ y} , (9) 
where B ⊂ R p is a set of the form B = {y ∈ R p ; y ≤ y upp } for some y upp ∈ R p , which is introduced to ensure that the volume of H n is finite. H n is the subset of B whose points are dominated by the evaluations.

A natural idea, to extend the EI sampling criterion (5) to the multi-objective case, is to use the volume of the non-dominated region as loss function:

ε n (X, f ) = |H \ H n | , where H = {y ∈ B; ∃x ∈ X, f (x) ≺ y} and | • | denotes the usual (Lebesgue) volume in R p . The improvement yielded by a new evaluation result f (X n+1 ) = (f 1 (X n+1 ), . . . , f p (X n+1
)) is then the increase of the volume of the dominated region (see Figure 1):

I n (X n+1 ) = |H \ H n | -|H \ H n+1 | = |H n+1 \ H n | = |H n+1 | -|H n | , (10) 
since H n ⊂ H n+1 ⊂ H. Given a vector-valued Gaussian random process model ξ = (ξ 1 , . . . , ξ p ) of f = (f 1 , . . . , f p ), defined on a probability space (Ω, A, P 0 ), a multi-objective EI criterion can then be derived as

ρ n (x) = E n (I n (x)) = E n B\Hn 1 ξ(x)≺y dy = B\Hn E n 1 ξ(x)≺y dy = B\Hn P n (ξ(x) ≺ y) dy , (11) 
where P n stands for the probability P 0 conditioned on X 1 , ξ(X 1 ), . . . , X n , ξ(X n ). The multi-objective sampling criterion (11), also called Expected Hyper-Volume Improvement (EHVI), has been proposed by Emmerich and coworkers [START_REF] Emmerich | Single-and multiobjective evolutionary design optimization assisted by Gaussian random field metamodels[END_REF][START_REF] Emmerich | Single-and multi-objective evolutionary optimization assisted by Gaussian random field metamodels[END_REF][START_REF] Emmerich | The computation of the expected improvement in dominated hypervolume of Pareto front approximations[END_REF].

Remark 1 A variety of alternative approaches have been proposed to extend the EI criterion to the multi-objective case, which can be roughly classified into aggregation-based techniques [START_REF] Knowles | Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[END_REF][START_REF] Knowles | Multiobjective optimization on a budget of 250 evaluations[END_REF][START_REF] Zhang | Expensive multiobjective optimization by MOEA/D with gaussian process model[END_REF] and domination-based techniques [START_REF] Jeong | Efficient global optimization (ego) for multi-objective problem and data mining[END_REF][START_REF] Keane | Statistical improvement criteria for use in multiobjective design optimization[END_REF][START_REF] Ponweiser | Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection[END_REF][START_REF] Bautista | A sequential design for approximating the pareto front using the expected pareto improvement function[END_REF][START_REF] Svenson | Multiobjective optimization of expensive black-box functions via expected maximin improvement[END_REF][START_REF] Wagner | On expected-improvement criteria for modelbased multi-objective optimization[END_REF]. We consider these approaches are heuristic extensions of the EI criterion, in the sense that none of them emerges from a proper Bayesian formulation (i.e., a myopic strategy associated to some wellidentified loss function). A detailed description of these approaches is out of the scope of this paper.

The reader is referred to [START_REF] Wagner | On expected-improvement criteria for modelbased multi-objective optimization[END_REF], [START_REF] Couckuyt | Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization[END_REF] and [START_REF] Horn | Model-based multi-objective optimization: Taxonomy, multi-point proposal, toolbox and benchmark[END_REF] for some comparisons and discussions. See also Picheny (2014b) and Hernández-Lobato et al. (2015a) for other approaches not directly related to the concept of expected improvement.

Remark 2

The multi-objective sampling criterion (11) reduces to the usual EI criterion (5) in the singleobjective case (assuming that f (X i ) ≤ y upp for at least one i ≤ n).

Under the assumption that the components ξ i of ξ are mutually independent2 , P n (ξ(x) ≺ y) can be expressed in closed form: for all x ∈ X and y ∈ B \ H n ,

P n (ξ(x) ≺ y) = p i=1 Φ y i -ξ i,n (x) σ i,n (x) , (12) 
where ξ i,n (x) and σ 2 i,n (x) denote respectively the kriging predictor and the kriging variance at x for the i th component of ξ.

The integration of ( 12) over B \ H n , in the expression (11) of the multi-objective EI criterion, is a nontrivial problem. Several authors [START_REF] Emmerich | The computation of the expected improvement in dominated hypervolume of Pareto front approximations[END_REF][START_REF] Bader | Hype: An algorithm for fast hypervolume-based many-objective optimization[END_REF][START_REF] Hupkens | Faster computation of expected hypervolume improvement[END_REF][START_REF] Couckuyt | Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization[END_REF] have proposed decomposition methods to carry out this computation, where the integration domain B \ H n is partitioned into hyper-rectangles, over which the integral can be computed analytically. The computational complexity of these methods, however, increases exponentially with the number of objectives3 , which makes the approach impractical in problems with more than a few objective functions. The method proposed in this work also encounters this type of integration problem, but takes a different route to solve it (using SMC techniques; see Section 4). Our approach will make it possible to deal with more objective functions.

Remark 3 Exact and approximate implementations of the EHVI criterion are available, together with other Gaussian-process-based criteria for bound-constrained multi-objective optimization, in the Matlab/Octave toolbox STK (Bect et al., 2016) and in the R packages GPareto [START_REF] Binois | GPareto: Gaussian Processes for Pareto Front Estimation and Optimization[END_REF] and mlrMBO [START_REF] Horn | Model-based multi-objective optimization: Taxonomy, multi-point proposal, toolbox and benchmark[END_REF]. Note that several approaches discussed in Remark 1 maintain an affordable computational cost when the number of objectives grows, and therefore constitute possible alternatives to the SMC technique proposed in this paper for many-objective box-constrained problems.

EI-based optimization with constraints

In this section, we discuss extensions of the expected improvement criterion for single-and multi-objective constrained optimization.

Consider first the case of problems with a single objective and several constraints:

min x∈X f (x) , c(x) ≤ 0 , (13) 
where c = (c 1 , . . . , c q ) is a vector of continuous constraints. The set C = {x ∈ X; c(x) ≤ 0} is called the feasible domain. If it is assumed that at least one evaluation has been made in C, it is natural to define a notion of improvement with respect to the best objective value m n = min {f (x); x ∈ {X 1 , . . . , X n } ∩ C}:

I n (X n+1 ) = m n -m n+1 = 1 c(Xn+1)≤0 • m n -f (X n+1 ) + = m n -f (X n+1 ) if X n+1 ∈ C and f (X n+1 ) < m n , 0 otherwise . (14) 
In other words, a new observation makes an improvement if it is feasible and improves upon the best past value [START_REF] Schonlau | Global versus local search in constrained optimization of computer models[END_REF]. The corresponding expected improvement criterion follows from taking the expectation:

ρ n (x) = E n 1 ξc(x)≤0 • m n -ξ o (x) + . ( 15 
)
If f is modeled by a random process ξ o and c is modeled by a vector-valued random process ξ c = (ξ c,1 , . . . , ξ c,q ) independent of ξ o , then the sampling criterion (15) simplifies to Schonlau et al.'s criterion:

ρ n (x) = P n (ξ c (x) ≤ 0) E n (m n -ξ o (x)) + . (16) 
In other words, the expected improvement is equal in this case to the product of the unconstrained expected improvement, with respect to m n , with the probability of feasibility. The sampling criterion ( 16) is extensively discussed, and compared with other Gaussian-process-based constraint handling methods, in the PhD thesis of [START_REF] Sasena | Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations[END_REF]. More generally, sampling criteria for constrained optimization problems have been reviewed by [START_REF] Parr | Infill sampling criteria for surrogatebased optimization with constraint handling[END_REF] and [START_REF] Gelbart | Constrained Bayesian Optimization and Applications[END_REF].

In the general case of constrained multi-objective problems, the aim is to build an approximation of Γ defined by [START_REF] Box | An analysis of transformations[END_REF]. If it is assumed that an observation has been made in the feasible set C, a reasoning similar to that used in the single-objective case can be made to formulate an extension of the EI (11):

ρ n (x) = E n (|H n+1 | -|H n |) , (17) 
where

H n = {y ∈ B; ∃i ≤ n, X i ∈ C and f (X i ) ≺ y} (18) 
is the subset of B, defined as in Section 2.2, whose points are dominated by feasible evaluations. When ξ o and ξ c are assumed independent, (17) boils down to the product of a modified EHVI criterion, where only feasible points are considered4 , and the probability of feasibility, as suggested by [START_REF] Emmerich | Single-and multi-objective evolutionary optimization assisted by Gaussian random field metamodels[END_REF] and [START_REF] Shimoyama | Updating kriging surrogate models based on the hypervolume indicator in multi-objective optimization[END_REF]:

ρ n (x) = P n (ξ c (x) ≤ 0) B\Hn P n (ξ o (x) ≺ y) dy. ( 19 
)
Observe that the sampling criterion ( 17) is the one-step look-ahead criterion associated to the loss function ε n (X, f ) = -|H n |, where H n is defined by (18). This loss function remains constant as long as no feasible point has been found and, therefore, is not an appropriate measure of loss for heavily constrained problems where finding feasible points is sometimes the main difficulty5 . From a practical point of view, not all unfeasible points should be considered equivalent: a point that does not satisfy a constraint by a small amount has probably more value than one that does not satisfy the constraint by a large amount, and should therefore make the loss smaller. Section 3 will present a generalization of the expected improvement for constrained problems, relying on a new loss function that encodes this preference among unfeasible solutions.

Remark 4 Other Gaussian-process-based approaches that can be used to handle constraints include the method by Gramacy et al. (just accepted), based on the augmented Lagrangian approach of [START_REF] Conn | A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds[END_REF], and several recent methods (Picheny, 2014a;[START_REF] Gelbart | Constrained Bayesian Optimization and Applications[END_REF]Hernández-Lobato et al., 2015b, to appear) based on stepwise uncertainty reduction strategies (see, e.g., [START_REF] Villemonteix | An informational approach to the global optimization of expensive-to-evaluate functions[END_REF][START_REF] Bect | Sequential design of computer experiments for the estimation of a probability of failure[END_REF][START_REF] Chevalier | Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set[END_REF], for more information on this topic).

Remark 5

The term E n (m n -ξ o (x)) + in ( 16) can be computed analytically as in Section 2.1, and the computation of the integral in (19) has been discussed in Section 2.2. If it is further assumed that the components of ξ c are Gaussian and independent, then the probability of feasibility can be written as

P n (ξ c (x) ≤ 0) = q j=1 Φ - ξ c, j, n (x) σ c, j, n (x) (20) 
where ξ c, j, n (x) and σ 2 c, j, n (x) stand respectively for the kriging predictor and the kriging variance of ξ c, j at x.

3 An EI criterion for constrained multi-objective optimization

Extended domination rule

In a constrained multi-objective optimization setting, we propose to handle the constraints using an extended Pareto domination rule that takes both objectives and constraints into account, in the spirit of [START_REF] Fonseca | Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation[END_REF], [START_REF] Ray | Multiobjective design optimization by an evolutionary algorithm[END_REF] and [START_REF] Oyama | New constraint-handling method for multi-objective and multiconstraint evolutionary optimization[END_REF]. For ease of presentation, denote by Y o = R p and Y c = R q the objective and constraint spaces respectively, and let

Y = Y o × Y c .
We shall say that y 1 ∈ Y dominates y 2 ∈ Y, which will be written as y 1 y 2 , if ψ(y 1 ) ≺ ψ(y 2 ), where ≺ is the usual Pareto domination rule recalled in Section 2.2 and, denoting by R the extended real line,

ψ : Y o × Y c → R p × R q (y o , y c ) →    (y o , 0) if y c ≤ 0, +∞, max(y c , 0) otherwise. (21) 
The extended domination rule (21) has the following properties:

(i) For unconstrained problems (q = 0, Y c = ∅), the extended domination rule boils down to the Pareto domination rule on Y = Y o . (ii) Feasible solutions (corresponding to y c ≤ 0) are compared using the Pareto domination rule applied in the objective space (in other words, using the Pareto domination rule with respect to the objective values y o ). (iii) Non-feasible solutions (corresponding to y c ≤ 0) are compared using the Pareto domination rule applied to the vector of constraint violations. (iv) Feasible solutions always dominate non-feasible solutions.

These properties are illustrated on Figure 2.

A new EI criterion

The extended domination rule presented above makes it possible to define a notion of expected hypervolume improvement as in Section 2.2 for the constrained multi-objective setting. Given evaluation results (f (X 1 ), c(X 1 )), . . ., (f (X n ), c(X n )), define -c) Non-feasible solutions are compared using the Pareto domination rule applied to the vectors of constraint violations according to property (iii). Note that y 4 dominates points having a higher value of c j regardless of the corresponding value of c i , and, likewise, y 5 dominates points with higher values of c i . (d-e) Feasible solutions always dominate non-feasible solutions: y 6 is feasible and hence dominates y 3 , y 4 and y 5 ; y 9 is feasible and dominates both y 7 and y 8 as stated in (iv).

H n = {y ∈ B; ∃i ≤ n, (f (X i ), c(X i )) y} with B = B o × B c ,
I n (X n+1 ) = |H n+1 \ H n | = |H n+1 | -|H n |
as in Section 2.2. In order to get a meaningful concept of improvement both before and after the first feasible point has been found, we assume without loss of generality that (0, . . . , 0

) ∈ R q is in the interior of B c . If (f, c) is modeled by a vector-valued random process ξ = (ξ o , ξ c ), with ξ o = (ξ o,1 , . . . , ξ o,p ) and ξ c = (ξ c,1 , , . . . ξ c,q
), then the expected improvement for the constrained multi-objective optimization problem may be written as

ρ n (x) = E n (I n (x) = E n Gn 1 ξ(x) y dy = Gn P n (ξ(x) y) dy , (22) 
where

G n = B \ H n is the set of all non-dominated points in B.
As in Section 2.2, under the assumption that the components of ξ are mutually independent and Gaussian, P n (ξ(x) y) can be expressed in closed form: for all x ∈ X and y = (y o , y c ) ∈ G n ,

P n (ξ(x) y) =                    p i=1 Φ y o, i -ξ o, i, n (x) σ o, i, n (x)   q j=1 Φ - ξ c, j, n (x) σ c, j, n (x)   if y c ≤ 0 , q j=1 Φ max(y c, j , 0) -ξ c, j, n (x) σ c, j, n (x) otherwise . (23) 
The EI-based constrained multi-objective optimization procedure may be written as (3). In practice, the computation of each new evaluation point requires to solve two numerical problems: a) the computation of the integral in ( 22); b) the optimization of ρ n in the procedure (3). These problems will be addressed in Section 4.

Remark 6 When there are no constraints (q = 0, Y c = ∅), the extended domination rule corresponds to the usual Pareto domination rule ≺. In this case, the sampling criterion ( 22) simplifies to

ρ n (x) = Bo\Hn,o P n (ξ o (x) ≺ y o ) dy o , (24) 
with 

H n,o = {y o ∈ B o ; ∃i ≤ n, f (X i ) ≺ y o } .

Decomposition of the expected improvement: feasible and unfeasible components

Assume that there is at least one constraint (q ≥ 1). Then, the expected improvement ρ n (x) can be decomposed as

ρ n (x) = ρ feas n (x) + ρ unf n (x), (25) 
by splitting the integration domain in the right-hand side of ( 22) in two parts: ρ feas n (x) corresponds to the integral on G n ∩ {y c ≤ 0}, while ρ unf n (x) corresponds to the integral on G n ∩ {y c ≤ 0}. More explicit expressions will now be given for both terms. First,

ρ unf n (x) = Gn∩{y c ≤0} P n ((ξ o (x), ξ c (x)) (y o , y c )) d(y o , y c ) = |B o | • Bc\Hn,c P n ξ + c (x) ≺ y + c 1 yc ≤0 dy c (26) 
where y + c = max (y c , 0) and

H n,c = y c ∈ B c | ∃i ≤ n, ξ + c (X i ) ≺ y + c . Let B - c = B c ∩]-∞, 0]
q denote the feasible subset of B c . Then, assuming that ξ c and ξ o are independent,

ρ feas n (x) = Gn∩{y c ≤0} P n ((ξ o (x), ξ c (x)) (y o , y c )) d(y o , y c ) = B - c • P n (ξ c (x) ≤ 0) • Bo\Hn,o P n (ξ o (x) ≺ y o ) dy o , (27) 
where

H n,o = {y o ∈ B o | ∃i ≤ n, ξ c (X i ) ≤ 0 and ξ o (X i ) ≺ y o } .
Remark 7 The set B c \ H n,c is empty as soon as a feasible point has been evaluated. As a consequence, the component ρ unf of the expected improvement vanishes and therefore, according to ( 27),

ρ n (x) ∝ P n (ξ c (x) ≤ 0) • Bo\Hn,o P n (ξ o (x) ≺ y o ) dy o .
In other words, up to a multiplicative constant, the expected improvement is equal, in this case, to the product of the probability of feasibility with a modified EHVI criterion in the objective space, where only feasible points are used to define the dominated region. In particular, in constrained single-objective problems, the criterion of 4 Sequential Monte Carlo techniques to compute and optimize the expected improvement

Computation of the expected improvement

Since the dimension of Y is likely to be high in practical problems (say, p + q ≥ 5), the integration of y → P n (ξ(x) y) over G n cannot be carried out using decomposition methods [START_REF] Emmerich | The computation of the expected improvement in dominated hypervolume of Pareto front approximations[END_REF][START_REF] Bader | Hype: An algorithm for fast hypervolume-based many-objective optimization[END_REF][START_REF] Hupkens | Faster computation of expected hypervolume improvement[END_REF] because, as mentioned in Section 2.2, the computational complexity of these methods increases exponentially with the dimension of Y.

To address this difficulty, we propose to use a Monte Carlo approximation of the integral ( 22):

ρ n (x) ≈ 1 m m k=1 P n (ξ(x) y n,k ), (28) 
where Y n = (y n,k ) 1≤k≤m is a set of particles distributed according to the uniform density π Y n ∝ 1 Gn on G n . In principle, sampling uniformly over G n could be achieved using an accept-reject method (see, e.g., [START_REF] Robert | Monte Carlo statistical methods[END_REF], by sampling uniformly over B and discarding points in H n [START_REF] Bader | Hype: An algorithm for fast hypervolume-based many-objective optimization[END_REF]. However, when the dimension of Y is high, G n will probably have a small volume with respect to that of B. Then, the acceptance rate becomes small and the cost of generating a uniform sample on G n becomes prohibitive. (As an example, consider an optimization problem with q = 20 constraints. If B c = [-v/2, +v/2] q , then the volume of the feasible region is 2 20 ≈ 10 6 times smaller than that of B c .)

In this work, we use a variant of the technique called subset simulation [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF][START_REF] Cérou | Sequential Monte Carlo for rare event estimation[END_REF] to achieve uniform sampling over G n . The subset simulation method is a well-known method in the field of structural reliability and rare event estimation, which is used to estimate the volume of small sets by Monte Carlo sampling.

Denote by Π Y 0 the uniform distribution over B and assume that the probability Π Y 0 (G n ) becomes small when n increases, so that sampling G n using an accept-reject method is impractical. Observe that the sets G n , n = 1, 2, . . . form a nested sequence of subsets of B (hence the name subset simulation): 

B ⊃ G 1 ⊃ G 2 ⊃ • • • . (29) Algorithm 1: Remove-Resample-Move procedure to construct Y n 1 if n = 0 then 2 Generate m independent and uniformly distributed particles over G 0 = B. 3 else 4 Remove: Set Y 0 n = Y n-1 ∩ Gn and m 0 = Y 0 n . 5 Resample: Set Y 1 n = Y 0 n ∪ {ỹ n,

Denote by Π Y

n the uniform distribution on G n , which has the probability density function π Y n defined above. Since the addition of a single new evaluation, at iteration n + 1, is likely to yield only a small modification of the set G n , the probability

Π Y n (G n+1 ) = Gn+1 π Y n (y) dy = Π Y 0 (G n+1 ) Π Y 0 (G n )
is likely to be high. Then, supposing that a set of particles Y n = (y n,k ) 1≤k≤m uniformly distributed on G n is already available, one obtains a sample Y n+1 uniformly distributed over G n+1 using the Remove-Resample-Move procedure described in Algorithm 1. (All the random variables generated in Algorithm 1 are independent of ξ conditionally on X 1 , ξ(X 1 ), . . . , X n+1 , ξ(X n+1 ).)

Algorithm 1 obviously requires that at least one particle from Y n , which belongs by construction to G n , also belongs to G n+1 ; otherwise, the set of surviving particles, referred to in the second step of the algorithm, will be empty. More generally, Algorithm 1 will typically fail to produce a good sample from Π Y n+1 if the number of surviving particles is small, which happens with high probability if

Π Y n (G n+1 ) is small-indeed, the expected number of particles of Y n in a given 6 set A ⊂ B is E n N (A; Y n ) = E n m k=1 1 A (y n,k ) = m • Π Y n (A) , (30) 
where N (A; Y) denotes the number of particles of Y in A. This situation occurs, for instance, when a new evaluation point brings a large improvement

G n \ G n+1 = H n+1 \ H n .
When the number of surviving particles is smaller than a prescribed fraction ν of the population size, that is, when N (G n+1 ; Y n ) < mν, intermediate subsets are inserted in the decreasing sequence (29) to ensure that the volume of the subsets does not decrease too fast. The corrected version of Algorithm 1 is described in Algorithms 2 and 3. The method used in Algorithm 3 to construct the intermediate subsets is illustrated on Figures 3 and4. 

= (f (X 1 ), c(X 1 )) and y 2 = (f (X 2 ), c(X 2 )
). P T corresponds to the Pareto front determined by P 0 ∪ {y 3 }, with y3 = (f (X 3 ), c(X 3 )). At the end of steps 1-9, y 3 is not in P because the number of surviving particles in Y 2 is too small: in (a), there is only one particle (black dot) in G 3 (white region). Thus, intermediate subsets are needed. The main idea here is to build a continuous path between P 0 and P , which is illustrated in (b). Here, we pick y = y 3 and since y 3 is not feasible, q < q. Then, we set an anchor point y anchor on the edge of B, as described in step 14, and we build an intermediate Pareto front Pu determined by y 1 , y 2 and ỹu, where ỹu lies on the segment (y anchor -y 3 ). The intermediate Pareto front Pu is chosen in such a way that the number of killed particles (grey dots) is not too large.

y 2 y 1 Bc × Bo c i f j (a) y 2 y 1 ỹu Bc × Bo c i f j y 0 anchor y i anchor (b)
Fig. 4: Illustration of the steps 10 → 12 and 16 → 20 of Algorithm 3. The setting is the same as that described in Figure 3, except that the new observation (y 2 in this case) is feasible. Hence, q = q. As above, the main idea is to construct a continuous path between P 0 and P , as illustrated in (b). P is the front that we will build upon. First we try to add the points of P into P: At the end of this first step, either P = P or P \ P contains points that cannot be added without killing a large number of particles, in which case we insert intermediate fronts.

10 if (P \ P) = ∅ then 11
Randomly choose a point y = (y o , y c ) ∈ (P \ P) toward which we will try to augment the front P.

12 Count the number q of constraints satisfied by y . 13 if q < q then 14 y anchor ← (y upp o , yc) ∈ Bo × Bc, where y c,j = y upp c,j if y c,j > 0 and zero otherwise, 1 ≤ j ≤ q.

15 Find Pu such that N (G( Pu); Yt) ≈ νm using a dichotomy on u ∈ [0, 1], where Pu = Pareto(P ∪ {y anchor + u(y -y anchor )}). Find Pu such that N (G( Pu); Yt) ≈ νm using a dichotomy on u ∈ [0, 1], where Pu = Pareto(P ∪ {y 1 anchor + u(y 0 anchor -y 1 anchor )} ∪ • • • ∪ {y q anchor + u(y 0 anchor -y q anchor )}). Generate Y t+1 = y t+1,k 1≤k≤m uniformly distributed on G (P t+1 ) using the "Remove-Resample-Move" steps described in Algorithm 1.

26 t ← t + 1
Remark 9 The algorithms presented in this section provide a general numerical method for the approximate computation of the expected improvement criterion, that can be used with multiple objectives, multiples constraints and possibly correlated Gaussian process models. When the objectives and constraints are independent, the decomposition introduced in Section 3.3 makes it possible to compute two integrals over spaces of lower dimension (over

B c \ H n,c and B o \ H n,o , respectively) instead of one integral over G n = B \ H n .
In fact, only one of the two integrals actually needs to be approximated numerically: indeed, the term ρ feas of the decomposition can be calculated in closed form prior to finding feasible solutions, and the term ρ unf vanishes once a feasible observation has been made. We have taken advantage of this observation for all the numerical results presented in Section 5.

Maximization of the sampling criterion

The optimization of the sampling criterion ( 22) is a difficult problem in itself because, even under the unconstrained single-objective setting, the EI criterion is very often highly multi-modal. Our proposal is to conduct a discrete search on a small set of good candidates provided at each iteration by a sequential Monte Carlo algorithm, in the spirit of [START_REF] Benassi | Bayesian optimization using sequential Monte Carlo[END_REF], [START_REF] Li | Bayesian Subset Simulation: a kriging-based subset simulation algorithm for the estimation of small probabilities of failure[END_REF], [START_REF] Li | Sequential Design of Experiments to Estimate a Probability of Failure[END_REF] and [START_REF] Benassi | Nouvel algorithme d'optimisation bayésien utilisant une approche Monte-Carlo séquentielle[END_REF].

The key of such an algorithm is the choice of a suitable sequence π X n n≥0 of probability density functions on X, which will be the targets of the SMC algorithm. Desirable but antagonistic properties for this sequence of densities are stability-π X n+1 should not differ too much from π X n -and concentration of the probability mass in regions corresponding to high values of the expected improvement. We propose, following [START_REF] Benassi | Bayesian optimization using sequential Monte Carlo[END_REF], to consider the sequence defined by

π X n (x) ∝ 1 if n = 0, π X n (x) ∝ P n (ξ(x) ∈ G n ) for n = 1, 2, .
. . In other words, we start from the uniform distribution on X and then we use the probability of improvement x → P n (ξ(x) ∈ G n ) as an un-normalized probability density function.

A procedure similar to that described in Algorithms 1 is used to generate particles distributed from the target densities π X n . At each step n of the algorithm, our objective is to construct a set of weighted particles

X n = (x n,k , w n,k ) m k=1 ∈ (X × R) m ( 
31) such that the empirical distribution k w n,k δ x n,k (where δ x denotes the Dirac measure at x ∈ X) is a good approximation, for m large enough, of the target distribution with density π X n . The main difference with respect to Section 4.1 is the introduction of weighted particles, which makes it possible to deal with non-uniform target distributions. When a new sample is observed at step n, the weights of the particles are updated to fit the new density π X n+1 :

w 0 n+1,k ∝ π X n+1 (x n,k ) π X n (x n,k ) w n,k . (32) 
The weighted sample X 0 n+1 = (x n,k , w 0 n+1,k ) 1≤k≤m is then distributed from π X n+1 . Since the densities π 0 , π 1 , . . . become more and more concentrated as more information is obtained about the functions f and c, the regions of high values for π X n+1 become different from the regions of high values for π X n . Consequently, the weights of some particles degenerate to zero, indicating that those particles are no longer good candidates for the optimization. Then, the corresponding particles are killed, and the particles with non-degenerated weights are replicated to keep the size of the population constant. All particles are then moved randomly using an MCMC transition kernel targeting π X n+1 , in order to restore some diversity. The corresponding procedure, which is very similar to that described in Algorithm 1, is summarized in Algorithm 4.

When the densities π X n and π X n+1 are too far apart, it may happen that the number of particles with non-degenerated weights is very small and that the empirical distribution k w n+1,k δ x n,k is not a good approximation of π X n+1 . This is similar to the problem explained in Section 4.1, except that in the case of non uniform target densities, we use the Effective Sample Size (ESS) to detect degeneracy (see, e.g., Del [START_REF] Del Moral | Sequential monte carlo samplers[END_REF], instead of simply counting the surviving particles. When the ESS falls below a prescribed fraction of the population size, we insert intermediate densities, in a similar way to what was described in Section 4.1. The intermediate densities are of the form πu (x) ∝ P n (ξ(x) ∈ Gu ), with G n+1 ⊂ Gu ⊂ G n . The corresponding modification of Algorithm 4 is straightforward. It is very similar to the procedure described in Algorithms 2 and 3 and is not repeated here for the sake of brevity.

Algorithm 4: Reweight-Resample-Move procedure to construct X n

1 if n = 0 then 2 Set X 0 = x 0,k , 1
m 1≤k≤m with x 0,1 , . . . , x 0,m independent and uniformly distributed on X. 3 else 4 Reweight X n-1 according to Equation (32) to obtain X 0 n .

5

Resample with a residual resampling scheme (see, e.g., [START_REF] Douc | Comparison of resampling schemes for particle filtering[END_REF] to obtain a set of particles

X 1 n = x 1 n,k , 1 m 1≤k≤m
.

6

Move the particles with an MCMC transition kernel to obtain Xn = x n,k , 1 m 1≤k≤m .

Remark 10 A closed form expression of the probability of improvement is available in the single-objective case, as soon as one feasible point has been found. When no closed form expression is available, we estimate the probability of improvement using a Monte Carlo approximation:

1/N N k=1 1 Gn (Z k )
, where (Z k ) 1≤k≤N is an N -sample of Gaussian vectors, distributed as ξ(x) under P n . A rigorous justification for the use of such an unbiased estimator inside a Metropolis-Hastings transition kernel (see the Move step of Algorithm 4) is provided by [START_REF] Andrieu | The pseudo-marginal approach for efficient monte carlo computations[END_REF].

Remark 11 It sometimes happens that a new evaluation result-say, the n-th evaluation result-changes the posterior so dramatically that the ESS falls below the threshold νm (see Algorithm 3) for the current region G n-1 . When that happens, we simply restart the sequential Monte Carlo procedure using a sequence of transitions from P 0 = ∅ to the target front P (notation introduced in Algorithm 3).

Remark 12 For the sake of clarity, the number of particles used in the SMC approximation has been denoted by m both in Section 4.1 and in Section 4.2. Note that the two sample sizes are, actually, not tied to each other. We will denote them respectively by m X and m Y in Section 5.

Experiments

Settings

The BMOO algorithm has been written in the Matlab/Octave programming language, using the Small Toolbox for Kriging (STK) (Bect et al., 2016) for the Gaussian process modeling part. All simulation results have been obtained using Matlab R2014b. In all our experiments, the algorithm is initialized with a maximin Latin hypercube design consisting of N init = 3d evaluations. This is an arbitrary rule of thumb. A dedicated discussion about the size of initial designs can be found in [START_REF] Loeppky | Choosing the sample size of a computer experiment: A practical guide[END_REF]. The objective and constraint functions are modeled using independent Gaussian processes, with a constant but unknown mean function, and a Matérn covariance function with regularity parameter ν = 5/2 (these settings are described, for instance, in [START_REF] Bect | Sequential design of computer experiments for the estimation of a probability of failure[END_REF]. The variance parameter σ 2 and the range parameters θ i , 1 ≤ i ≤ d, of the covariance functions are (re-)estimated at each iteration using a maximum a posteriori (MAP) estimator. Besides, we assume that the observations are slightly noisy to improve the conditioning of the covariance matrices, as is usually done in kriging implementations.

In Sections 5.3 and 5.4, the computation of the expected improvement is carried out using the SMC method described in Section 4.1. Taking advantage of Remark 9, the integration is performed only on the constraint space (prior to finding a feasible point) or the objective space (once a feasible point is found). In the case of single-objective problems (Section 5.3), we perform exact calculation using ( 16) once a feasible point has been observed. The parameter ν of Algorithm 3 is set to 0.2 and we take m = m Y = 1000 particles. The bounding hyper-rectangles B o and B c are determined using the adaptive procedure described in Appendix B with λ o = λ c = 5. For the optimization of the sampling criterion, we use the SMC method of Section 4.2, with m = m X = 1000 particles, residual resampling [START_REF] Douc | Comparison of resampling schemes for particle filtering[END_REF], and an adaptive anisotropic Gaussian random walk Metropolis-Hastings algorithm to move the particles [START_REF] Andrieu | A tutorial on adaptive mcmc[END_REF][START_REF] Gareth | Examples of adaptive mcmc[END_REF]. When the probability of improvement cannot be written under closed-form, a Monte Carlo approximation (see Remark 10) with N = 100 simulations is used.

Illustration on a constrained multi-objective problem

In this section, the proposed method is illustrated on a two-dimensional two-objective toy problem, which allows for easy visualization. The optimization problem is as follows:

minimize f 1 and f 2 , subject to c(x) ≤ 0 and x = (x 1 , x 2 ) ∈ [-5, 10] × [0, 15] ,
where

                 f 1 : (x 1 , x 2 ) → -(x 1 -10) 2 -(x 2 -15) 2 , f 2 : (x 1 , x 2 ) → -(x 1 + 5) 2 -x 2 2 , c : (x 1 , x 2 ) → x 2 - 5.1 4π 2 x 2 1 + 5 π x 1 -6 2 + 10 1 - 1 8π cos(x 1 ) + 9.
The set of solutions to that problem is represented on Figure 5. The feasible subset consists of three disconnected regions of relatively small size compared to that of the search space. The solution Pareto front consists of three corresponding disconnected fronts in the space of objectives. (The visualization is achieved by evaluating the objectives and constraints on a fine grid, which would not be affordable in the case of truly expensive-to-evaluate functions.)

The behavior of BMOO is presented in Figure 6. The algorithm is initialized with 5d = 10 function evaluations. Figure 6 shows that the algorithm correctly samples the three feasible regions, and achieves good covering of the solution Pareto front after only a few iterations. Note that no feasible solution is given at the beginning of the procedure and that the algorithm finds one after 10 iterations. and non-dominated ones by circles (or disks). The symbols are filled for feasible points and empty otherwise. On the left column, the small dots represent the particles used for the optimization of the expected improvement (see Section 4.2). On the right column, the small dots represent the particles used for the computation of the expected improvement (see Section 4.1). Note in particular that they appear only when a feasible point has been observed: before that, the term ρ feas n (see Section 3.3) can be computed analytically. 

Mono-objective optimization benchmark

The first benchmark that we use to assess the performance of BMOO consists of a set of sixteen constrained single-objective test problems proposed by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF]. Table 1 summarizes the main features of these problems. The input dimension d varies from 2 to 20, and the number q of constraints from 1 to 38. The problems may have linear or non-linear constraints but this information is not used by the algorithms that we use in our comparisons (all functions are regarded as black boxes). Column Γ (%) gives the ratio in percents of the volume of feasible region C to the volume of the search space X. This ratio has been estimated using Monte Carlo sampling and gives an indication on the difficulty of the problem for finding a feasible point. Note that problems g1, g3mod, g6, g7, g10, g19 and in particular problem g18 have very small feasible regions. The last two columns correspond respectively to the best known feasible objective value and to target values for the optimization. The target values are the ones used in the work of [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF].

BMOO is compared to two classes of algorithms. The first class consists of four local optimization algorithms: the COBYLA algorithm of [START_REF] Powell | A direct search optimization method that models the objective and constraint functions by linear interpolation[END_REF], using the implementation proposed by [START_REF] Johnson | The nlopt nonlinear-optimization package (version 2.3)[END_REF], and three algorithms implemented in the Matlab function fmincon7 , namely, an interior-point algorithm, an active-set algorithm and an SQP algorithm. Local optimization methods are known to perform well on a limited budget provided that good starting points are chosen. We think that they are relevant competitors in our context. The second class of algorithms are those proposed by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF], which are state-of-the-art-to the best of our knowledge-algorithms for constrained optimization under a limited budget of evaluations.

Each algorithm is run 30 times on each problem of the benchmark. Note that we use a random starting point uniformly distributed inside the search domain for local search algorithms, and a random initial design for BMOO, as described in Section 5.1. For the local search algorithms the maximum number of evaluations is set to two hundred times the dimension d of the problem. Concerning the algorithms proposed by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF], we simply reproduce the results presented by the author; the reader is referred to the original article for more details about the settings. Results are presented in Tables 2 and3. In both tables, a solution is considered as feasible when there is no constraint violation larger than 10 -5 .

In Cob for the COBYLA algorithm, IP for the interior-point algorithm, AS for the active-set algorithm and SQP for the SQP algorithm. Similarly, for the algorithms proposed by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF], the first column indicates the best scoring algorithm: CG for COBRA-Global, CL for COBRA-Local and Ext for Extended-ConstrLMSRBF. The second column gives the number of successful runs-a run being successful when at least one feasible solution has been found. The third column gives the number of function evaluations that were required to find the first feasible point, averaged over the successful runs. The corresponding standard deviation is given in parentheses.

Table 3 presents convergence results. Again, for local algorithms and for those proposed by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF], the first column indicates the best scoring algorithm. The next columns give successively the number of successful runs (a run being considered successful when a feasible solution with objective value below the target value of Table 1 has been found), the average number-over successful runs-of evaluations that were required to reach the target value, and the corresponding standard deviation (in parentheses).

The reader is referred to Appendix C for the full results.

BMOO achieves very good results on most test problems. It very often comes close to the best algorithm in each of the two classes of competitors, and sometimes significantly outperforms both of them-see, in particular, the results for g1, g6, g7, g9, g16 and WB4 in Table 3. However, BMOO stalls on test problems g3mod, g10, g18 and PVD4. We were able to identify the causes of theses problems and to propose remedies, which are presented in the following paragraphs. It can also be observed that BMOO is sometimes slower than the best algorithm of Regis ( 2014) to find a first feasible point. In almost all cases (except for g10, g18 and PVD4, which are discussed separately below), this is easily explained by the size of the initial design which is N init = 3d in our experiments (see Section 5.1). Further work on this issue is required to make it possible to start BMOO with a much smaller set of evaluations.

Regarding g3mod, g10 and PVD4, the difficulty lies in the presence of functions, among the objective or the constraints, which are not adequately modeled using a Gaussian process with a stationary covariance function. However, as we can see in Table 4, the performances of BMOO are greatly improved in all three cases if a transformation of the form f → f λ (for λ > 0) is applied to the functions that cause the problem (see Appendix D for more details). Thus, we think that the theoretical foundations of BMOO are not being questioned by these tests problems, but further work is needed on the Gaussian process models for a proper treatment of these cases. In light of the results of our experiments, one promising direction would be to consider models of the form ξ λ , where ξ is a Gaussian process and λ is a parameter to be estimated from the evaluation results (see, e.g., [START_REF] Box | An analysis of transformations[END_REF][START_REF] Snelson | Warped gaussian processes[END_REF].

Regarding the g18 test problem, the difficulty stems from our choice of a sampling density derived from the probability of improvement for optimizing the expected improvement. When the number of constraints is high (q = 13 for the g18 test problem) and no feasible point has yet been found, the expected number of particles in the feasible region C is typically very small with this choice of density. Consequently, there is a high probability that none of the particles produced by the SMC algorithm are good candidates for the optimization of the expected improvement. To illustrate this phenomenon, consider the following idealized setting. Suppose that q = d, X = [-1/2, 1/2] q and c j :

x = (x 1 , . . . , x q ) → |x j | -ε 2 , j = 1, . . . , q, for some ε ∈ (0; 1]. Thus, the feasible domain is C = [-ε/2, ε/2]
q and the volume of the subset of X where exactly k constraints are satisfied is

V k ≈ ( q k ) ε k (1 -ε) q-k .
Assume moreover that the Gaussian process models are almost perfect, i.e.,

P n (ξ c,j (x) ≤ 0) ≈ 1, if c j (x) ≤ 0, 0, otherwise, (33) 
for j = 1, . . . , q. Further assume n = 1 with X 1 = 1 2 , . . . , 1 2 and observe that ξ(X 1 ) is dominated by ξ(x) for any x ∈ X (except at the corners) so that the probability of improvement P n (ξ(x) ∈ G 1 ) is close to one everywhere on X. As a consequence, the sampling density π X 1 that we use to optimize the expected improvement is (approximately) uniform on X and the expected number of particles satisfying exactly k constraints is m V k . In particular, if q is large, the particles thus tend to concentrate in regions where k ≈ qε, and the expected number m V q of particles in C is small. To compensate for the decrease of V k , when k is close to q, we suggest using the following modified sampling density:

π X n ∝ E n K(x)! 1 ξ(x)∈Gn ,
where K(x) is the number of constraints satisfied by ξ at x. Table 6: Main features of the multi-objective problems in our benchmark.

Multi-objective optimization benchmark

The second benchmark consists of a set of eight constrained multi-objective test problems from [START_REF] Chafekar | Constrained multi-objective optimization using steady state genetic algorithms[END_REF] and [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. The main features of these problems are given in Table 6. The input dimension d varies from two to six, and the number q of constraints from one to seven. All problems have two objective functions, except the WATER test problem, which has five. As in Table 1, column Γ (%) gives an estimate of the ratio (in percents) of the volume of the feasible region to that of the search space. Column V gives the volume of the region dominated by the Pareto front8 , measured using a reference point y ref o , whose coordinates are specified in the last column. As an illustration, the result of one run of BMOO is shown on Figure 7, for each test problem.

To the best of our knowledge, published state-of-the-art methods to solve multi-objective optimization problems in the presence of non-linear constraints are based on genetic or evolutionary approaches. The most popular algorithms are probably NSGA2 [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] and SPEA2 [START_REF] Zitzler | SPEA2: Improving Strength Pareto Evolutionary Algorithm[END_REF]. Such algorithms, however, are not primarily designed to work on a limited budget of function evaluations. Some methods that combine genetic/evolutionary approaches and surrogate modeling techniques have been proposed in the literature (see, e.g., [START_REF] Emmerich | Single-and multi-objective evolutionary optimization assisted by Gaussian random field metamodels[END_REF]Jin, 2011, and references therein), but a quantitative comparison with these methods would necessitate to develop proper implementations, which is out of the scope of this paper. In this section, we shall limit ourselves to emphasizing advantages and limitations of the proposed approach. Since the ability of the BMOO algorithm to find feasible solutions has already been demonstrated in Section 5.3, we will focus here on the other contributions of the paper: the SMC methods for the computation and optimization of the expected improvement sampling criterion.

First, we demonstrate the effectiveness of the proposed SMC algorithm for optimizing expected improvement based criteria. We compare our SMC approach (see Section 4.2) with the approach used by 
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Fig. 7: Result of one run of the BMOO algorithm on the problems of Table 6, with n = 100 evaluations on the bi-objective problems and n = 200 evaluations on the WATER problem. Black dots represent non-dominated solutions. For bi-objective problems, the set of feasible objective values is shown in gray. On the subfigure corresponding to the WeldedBeam problem, a zoom has been made to improve visualization. [START_REF] Couckuyt | Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization[END_REF], that we shall call MCSQP (for Monte-Carlo Sequential Quadratic Programming). This approach consists in selecting the best point out of a population of candidates uniformly distributed on the search space X, and then running an SQP algorithm starting from this point. In our experiments, the number of candidates is chosen equal to the population size m X = 1000 of the SMC method.

Table 7 presents experimental results obtained with the extended EHVI criterion proposed in Section 3 as a sampling criterion. As a preliminary remark, observe that the finest target precision is systematically reached by our SMC method in all but three test cases (OSY, TwoBarTruss and WeldedBeam). The OSY case will be discussed below. On the TwoBarTruss and WeldedBeam problems, we found out that the poor performances are due to Gaussian process modeling issues, similar to those encountered earlier on the g3mod, g10 and PVD4 test problems (see Section 5.3). The results on these problems are thus left out of the analyses in the following, but will motivate future work on the models, as concluded in Section 5.3. Regarding the optimization of the criteria, the results show that our SMC approach compares very favorably with MCSQP. More specifically, we note a drop of performance of the MCSQP method compared with the SMC approach as we try to converge more finely toward the Pareto front (see, in particular, column "Target 99%" of Table 7, but this is also visible in the other columns as well for most of the test cases). Because of its sequential nature, the SMC approach is able to track much more efficiently the concentration of the sampling criterion in the search domain, and thus makes it possible to reach higher accuracy.

Tables 8 and9 provide additional results obtained when performing the same study with respectively the EMMI and WCPI criteria9 (see [START_REF] Svenson | Multiobjective optimization of expensive black-box functions via expected maximin improvement[END_REF]Keane, 2006, respectively). These criteria are not primarily designed to address constrained problems, but they can easily be extended to handle constraints by calculating them using only feasible values of the objectives, and then multiplying them by the probability of satisfying the constraints (as explained in Section 2.3). When no feasible solution is available at the start of the optimization procedure, we use the probability of feasibility as a sampling criterion, as advised by [START_REF] Gelbart | Bayesian optimization with unknown constraints[END_REF]. The conclusions drawn from Table 7 for the extended EHVI criterion carry through to the results presented in Tables 89. It shows that the SMC algorithm proposed in Section 4.2 can be viewed as a contribution of independent interest for optimizing improvement-based sampling criteria.

Next we study the influence on the convergence of the algorithm of the number m = m Y of particles used in Algorithm 1 for approximating the expected improvement value. In Table 10 we compare the number of evaluations required to dominate successively 90%, 95% and 99% of the volume V of Table 6 when using different numbers of particles. As expected, the overall performances of the algorithm deteriorate when the number m Y of particles used to approximate the expected improvement decreases. However, the algorithm maintains satisfactory convergence properties even with a small number of particles. For reference, we have also included results obtained by choosing the evaluation point randomly in the set of candidate points. Notice that these results are always much worse than those obtained using the sampling criterion with m Y = 200. This shows that not all candidate points are equally good, and thus confirms that the sampling criterion, even with a rather small value of m Y , is effectively discriminating between good and bad candidate points.

We observe poor performances of the BMOO algorithm on the OSY test problem, regardless of the number of particles that are used to estimate the expected improvement. Figure 8 reveals that this is due to the choice of a uniform sampling density on B o \ H n as the target density of the SMC algorithm used for the approximate computation of the criterion. Indeed, most of the particles do not effectively participate to the approximation of the integral, since they lie outside the set of feasible objective values (see Figure 7(d)). Further work is required on this topic to propose a better sampling density, that would concentrate on objective values that are likely to be feasible (instead of covering uniformly the entire non-dominated region

B o \ H n ).
In practice, for problems with a small number of objectives, and especially for bi-objective problems, we do not recommend the use of our SMC algorithm for the (approximate) computation of the EHVI Table 7: Results achieved when using either SMC or MCSQP for the optimization of the extended EHVI, on the problems of Table 6. We measure the number of function evaluations for dominating successively 90%, 95% and 99% of the volume V . For each target, the first column contains the number of successful runs over 30 runs. The second column contains the number of function evaluations, averaged over the successful runs, with the corresponding standard deviation (in parentheses). Dash symbols are used when a value cannot be calculated. criterion since exact and efficient domain-decomposition-based algorithms are available (see [START_REF] Hupkens | Faster computation of expected hypervolume improvement[END_REF]Couckuyt et al., 2014, and references therein). An in-depth study of the quality of the approximation provided by our SMC method, and a comparison with exact methods, is therefore needed before more precise recommandations can be made. Table 9: Results achieved when using the WCPI criterion. See Table 7 for more information.

Conclusions and future work

In this article, a new Bayesian optimization approach is proposed to solve multi-objective optimization problems with non-linear constraints. The constraints are handled using an extended domination rule and a new expected improvement formulation is proposed. In particular, the new formulation makes it possible to deal with problems where no feasible solution is available from the start. Several criteria from the literature are recovered as special cases.

The computation and optimization of the new expected improvement criterion are carried out using sequential Monte Carlo sampling techniques. Indeed, the criterion takes the form of an integral over the space of objectives and constraints, for which no closed-form expression is known. Besides, the sampling Table 10: Results achieved on the problems of Table 6 when using successively m Y = 200, 1000 and 5000 particles for the approximate computation of the extended EHVI criterion. For reference, results obtained by selecting the evaluation point randomly in the pool of candidates points are provided ("random" rows). See Table 7 for more information.

criterion may be highly multi-modal, as is well known in the special case of unconstrained single-objective optimization, which makes it difficult to optimize. The proposed sampling techniques borrow ideas from the literature of structural reliability for estimating the probability of rare events, and can be viewed as a contribution in itself.

We show that the resulting algorithm, which we call BMOO, achieves good results on a set of singleobjective constrained test problems, with respect to state-of-the-art algorithms. In particular, BMOO is able to effectively find feasible solutions, even when the feasible region is very small compared to the size of the search space and when the number of constraints is high. In the case of multi-objective optimization with non-linear constraints, we show that BMOO is able to yield good approximations of the Pareto front on small budgets of evaluations.

Several questions are left open for future work. First, our numerical studies reveal that the choice of sampling densities in the input domain (as demonstrated by unsatisfactory results on the g18 test problem) and in the output domain (as shown on the OSY case) could be improved. Suggestions for improvement are proposed in the article and will be the object of future investigations. Second, an indepth study of the quality of the approximation provided by our SMC method, and a comparison with exact methods, is needed before recommandations can be made on when to switch between exact and approximate calculation of the expected improvement, and how to select the sample size-possibly in an adaptive manner-used for the SMC approximation. Last, the choice of the random processes used for modeling objective and constraint functions deserves more attention. Stationary Gaussian process models have been found to lack flexibility on some single-and multi-objective cases (g3mod, g10, PVD4, TwoBarTruss and WeldedBeam). Several types of models proposed in the literature-warped Gaussian processes [START_REF] Snelson | Warped gaussian processes[END_REF], non-stationary Gaussian processes (see [START_REF] Toal | Non-stationary kriging for design optimization[END_REF], and references therein), deep Gaussian processes [START_REF] Damianou | Deep gaussian processes[END_REF], etc.-provide interesting directions regarding this issue.

A On the bounded hyper-rectangles B o and B c

We have assumed in Section 3 that Bo and Bc are bounded hyper-rectangles; that is, sets of the form ∈ Yc, with the additional assumption that y low c,j < 0 < y upp c,j for all j ≤ q. Remember that upper bounds only where required in the unconstrained case discussed in Section 2.2. To shed some light on the role of these lower and upper bounds, let us now compute the improvement I 1 (X 1 ) = |H 1 | brought by a single evaluation.

If X 1 is not feasible, then

|H 1 | = |Bo| • q j=1 y upp c,j -y low c,j γ j y upp c,j -ξ c,j (X 1 ) 1-γ j (34) 
where γ j = 1 ξ c,j (X 1 )≤0 . Equation (34) also reveals that the improvement is a discontinuous function of the observations: indeed, the j th term in the product jumps from y upp c,j to y upp c,j -y low c,j > y upp c,j when ξ c,j (X 1 )

goes from 0 + to 0. The increment -y low c,j can be thought of as a reward associated to finding a point which is feasible with respect to the j th constraint.

The value of |H

1 | when X 1 is feasible is |H 1 | = |Bo| • |Bc| -B - c + j≤p min ξ o,j (X 1 ), y upp o,j -max ξ o,j (X 1 ), y low o,j • B - c , (35) 
where B - c = q j=1 y low c,j is the volume of the feasible subset of Bc, B - c = Bc ∩ ]-∞; 0] q . The first term in the right-hand side of ( 35) is the improvement associated to the domination of the entire unfeasible subset of B = Bo × Bc; the second term measures the improvement in the space of objective values.

B An adaptive procedure to set B o and B c

This section describes the adaptive numerical procedure that is used, in our numerical experiments, to define the hyperrectangles Bo and Bc. As said in Section 3.3, these hyper-rectangles are defined using estimates of the range of the objective and constraint functions, respectively. To this end, we will use the available evaluations results, together with posterior quantiles provided by our Gaussian process models on the set of candidate points Xn (defined in Section 4.2).

More precisely, assume that n evaluation results ξ(X i ), 

for 1 ≤ i ≤ p, and the corners of Bc by    y low c,j,n = min 0, min i≤n ξ c,j (X i ), min x∈Xn ξ c, j, n (x) -λcσ c, j, n (x) , y upp c,j,n = max 0, max i≤n ξ c,j (X i ), max x∈Xn ξ c, j, n (x) + λcσ c, j, n (x) ,

for 1 ≤ j ≤ q, where λo and λc are positive numbers.

C Mono-objective benchmark result tables

In Section 5.3, only the best results for both the "Local" and the "Regis" groups of algorithms were shown. In this Appendix, we present the full results. Tables 11 and12, and Tables 13 and14 present respectively the results obtained with the local optimization algorithms and the results obtained by [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF] on the single-objective benchmark test problems (see Table 1). Table 11 and Table 12 show the performances for finding feasible solutions and for reaching the targets specified in Table 1 for the COBYLA, Active-Set, Interior-Point and SQP algorithms. Similarly, Table 13 and Table 14 show the performances for finding feasible solutions and for reaching the targets for the COBRA-Local, COBRA-Global and Extended-ConstrLMSRBF algorithms of [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF].

D Modified g3mod, g10 and PVD4 test problems

We detail here the modified formulations of the g3mod, g10 and PVD4 problems that were used in Section 5.3 to overcome the modeling problems with BMOO. Our modifications are shown in boldface. The rationale of the modifications is to smooth local jumps.

modified-g3mod problem

f (x) = -plog(( √ d) d d i=1 x i ) 0.1 c(x) = ( d i=1 x 2 i ) -1 -modified-g10 problem                 
f (x) = x 1 + x 2 + x 3 c 1 (x) = 0.0025(x 4 + x 6 ) -1 c 2 (x) = 0.0025(x 5 + x 7 -x 4 ) -1 c 3 (x) = 0.01(x 8 -x 5 ) -1 c 4 (x) = plog(100x 1 -x 1 x 6 + 833.33252x 4 -83333.333) 7 c 5 (x) = plog(x 2 x 4 -x 2 x 7 -1250x 4 + 1250x 5 ) 7 c 6 (x) = plog(x 3 x 5 -x 3 x 8 -2500x 5 + 1250000) modified-PVD4 problem

      
f (x) = 0.6224x 1 x 3 x 4 + 1.7781x 2 x 2 3 + 3.1661x 2 1 x 4 + 19.84x 2 1 x 3 c 1 (x) = -x 1 + 0.0193x 3 c 2 (x) = -x 2 + 0.00954x 3 c 3 (x) = plog(-πx 2 3 x 4 -4/3πx 3 3 + 1296000) 7

Note that the above defined problems make use of the plog function defined below (see [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF] [START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF]. See Table 2 for conventions.

Fig. 1 :

 1 Fig. 1: Example of an improvement of the dominated region. The regions dominated by y 1 and y 2 are represented in shaded areas, with darker shades indicating overlapping regions. The hatched area corresponds to the improvement of the dominated region resulting from the observation of y 3 .

Fig. 2 :

 2 Fig. 2: Illustration of the extended domination rule in different cases. The region dominated by each point is represented by a shaded area. Darker regions indicate overlapping regions. (a) Feasible solutions are compared with respect to their objective values using the usual domination rule in the objective space-see properties (i) and (ii). (b-c) Non-feasible solutions are compared using the Pareto domination rule applied to the vectors of constraint violations according to property (iii). Note that y 4 dominates points having a higher value of c j regardless of the corresponding value of c i , and, likewise, y 5 dominates points with higher values of c i . (d-e) Feasible solutions always dominate non-feasible solutions: y 6 is feasible and hence dominates y 3 , y 4 and y 5 ; y 9 is feasible and dominates both y 7 and y 8 as stated in (iv).

Denote by y low o , y upp o ∈

 o Y o the lower and upper corners of the hyper-rectangle B o . Then, the sampling criterion (24) is equivalent to the multi-objective EI criterion presented in Section 2.2 in the limit y low o → -∞. If, moreover, the problem has only one objective function, then the criterion (22) boils down to the original Expected Improvement criterion as soon as the best evaluation dominates y upp o (see Remark 2).

  1 , . . . , ỹn,m-m 0 }, where ỹn,1 , . . . , ỹn,m-m 0 are independent and uniformly distributed on Y 0 n . (Each ỹn,k is a replicate of a particle from Y 0 n .)6Move: Move the particles using a Metropolis-Hastings algorithm (see, e.g,[START_REF] Robert | Monte Carlo statistical methods[END_REF] which targets the uniform distribution over G n+1 . The resulting set of particles is Y n+1 . Algorithm 2: Modified procedure to construct Y n Notation: Given a set A in Y, denote by Pareto(A) the set of points of A that are not dominated by any other point of A 1 if n = 0 then 2 Generate m independent and uniformly distributed particles over G 0 = B. 3 else 4 Set P n-1 = Pareto ({ξ(X 1 ), . . . , ξ(X n-1 )}). 5 Set Pn = Pareto ({ξ(X 1 ), . . . , ξ(Xn)}) = Pareto (P n-1 ∪ {ξ(Xn)}).6Construct Yn using the adaptive multi-level splitting procedure described in Algorithm 3, with Y n-1 , P n-1 , Pn and B as inputs.

Fig. 3 :

 3 Fig.3: Illustration of the steps 10 → 12 and 13 → 15 of Algorithm 3. The objective is to build a uniform sample Y 3 on G 3 from Y 2 . The initial Pareto front P 0 is determined by evaluation results y 1 = (f (X 1 ), c(X 1 )) and y 2 = (f (X 2 ), c(X 2 )). P T corresponds to the Pareto front determined by P 0 ∪ {y 3 }, with y3 = (f (X 3 ), c(X 3 )). At the end of steps 1-9, y 3 is not in P because the number of surviving particles in Y 2 is too small: in (a), there is only one particle (black dot) in G 3 (white region). Thus, intermediate subsets are needed. The main idea here is to build a continuous path between P 0 and P , which is illustrated in (b). Here, we pick y = y 3 and since y 3 is not feasible, q < q. Then, we set an anchor point y anchor on the edge of B, as described in step 14, and we build an intermediate Pareto front Pu determined by y 1 , y 2 and ỹu, where ỹu lies on the segment (y anchor -y 3 ). The intermediate Pareto front Pu is chosen in such a way that the number of killed particles (grey dots) is not too large.

Algorithm 3 :

 3 Adaptive multi-level splitting in the Y-domain Notations: Given a set A in Y, denote by -Pareto(A) the set of points of A that are not dominated by any other point of A, -G(A) := B \ {y ∈ B; ∃y ∈ A such that y y} the region of B not dominated by A. Inputs: Y 0 , P 0 , P and B such that -P 0 = Pareto (P 0 ), i.e., no point in P 0 is dominated by another point in P 0 , and similarly P = Pareto (P ), -G (P ) ⊂ G (P 0 ), -Y 0 = y 0,k 1≤k≤m ∈ Y m is uniformly distributed on G (P 0 ). Note that Y 0 may contain replicated values. y low o , y upp o , y low c and y upp c such that Bo = y ∈ Yo; y low o ≤ y ≤ y upp o , Bc = y ∈ Yc; y low c ≤ y ≤ y upp c , and B = Bo × Bc contains P 0 and P . Output: A set of particles Yt = y t,k 1≤k≤m ∈ Y m uniformly distributed on G(P ).

  1 t ← 0 2 while Pt = P do 3 Initialize: P ← Pt.

  4

5

  for y ∈ P do 6 Ptry ← Pareto (P ∪ {y}) 7 Compute the number N (G(Ptry); Yt) of particles of Yt in G(Ptry) 8 if N (G(Ptry); Yt) ≥ νm then 9 P ← Ptry

Find

  c ) ∈ Bo × Bc, where y k c,j = y upp c,j if j = k and zero otherwise, for 1 ≤ j ≤ q and 1 ≤ k ≤ q. 19 if N (G({y 0 anchor }); Yt) ≥ νm then 20 Pu such that N (G( Pu); Yt) ≈ νm using a dichotomy on u ∈ [0, 1], where Pu = Pareto(P ∪ {y 0 anchor + u(y -y 0 anchor )}). 21 else 22

Fig. 5 :

 5 Fig. 5: Figure (a) represents contour lines of the constraint function, and Figure (b) corresponds to contour lines of the two objective functions. The three gray areas correspond to the feasible region on Figures (a) and (b), and the image of the feasible region by the objective functions on Figure (c). Thick dark curves correspond to the set of feasible and non-dominated solutions on Figures (a) and (b). On Figure (c), thick dark curves correspond to the Pareto front.

Fig. 6 :

 6 Fig.6: Convergence of the algorithm after n = 10, 20, 40 and 60 evaluations. The left column shows the input space X, whereas the right one shows the objective space Bo. Dominated observations are represented by triangles (filled or empty), and non-dominated ones by circles (or disks). The symbols are filled for feasible points and empty otherwise. On the left column, the small dots represent the particles used for the optimization of the expected improvement (see Section 4.2). On the right column, the small dots represent the particles used for the computation of the expected improvement (see Section 4.1). Note in particular that they appear only when a feasible point has been observed: before that, the term ρ feas

Fig. 8 :

 8 Fig. 8: An illustration, in the objective domain Yo, of BMOO running on the OSY test problem. The small dots are the particles used for the computation of the expected improvement. They are uniformly distributed on the non-dominated subset of Bo. Dark disks indicate the non-dominated solutions found so far, light gray disks indicate the dominated ones.

∈

  Yo and y low c , y upp c

  where B o ⊂ Y o and B c ⊂ Y c are two bounded hyper-rectangles that are introduced to ensure, as in Section 2.2, that |H n | < +∞ (see Appendix A). Then, define the improvement yielded by a new evaluation (f (X n+1 ), c(X n+1 )) by

  Schonlau et al. (see Section 2.3) is recovered as the limit case y low o → -∞, as soon as the best evaluation dominates y upp o .

Remark 8 In our numerical experiments, B o and B c are defined using estimates of the range of the objective and constraint functions (see Appendix B). Another natural choice for the B o would have been to use (an estimate of) the range of the objective functions restricted to the feasible subset C ⊂ X for B o . Further investigation of this idea is left for future work.

Table 1 :

 1 Main features of the mono-objective problems of our first benchmark.

	Pbm	d	q	Γ (%)	Best	Target
	g1	13	9	4 • 10 -4	-15	-14.85
	g3mod	20	1	10 -4	-0.693	-0.33
	g5mod	4	5	8.7 • 10 -2	5126.2	5150
	g6	2	2	6.6 • 10 -3	-6961.8	-6800
	g7	10	8	10 -4	24.3	25
	g8	2	2	0.86	-0.0958	-0.09
	g9	7	4	0.52	680.6	1000
	g10	8	6	7 • 10 -4	7049.4	8000
	g13mod	5	3	4.5	0.0035	0.005
	g16	5	38	1.3 • 10 -2	-1.916	-1.8
	g18	9	13	2 • 10 -10	-0.866	-0.8
	g19	15	5	3.4 • 10 -3	32.66	40
	g24	2	2	44.3	-5.5080	-5
	SR7	7	11	9.3 • 10 -2	2994.4	2995
	PVD4	4	3	5.6 • 10 -1	5804.3	6000
	WB4	4	6	5.6 • 10 -2	2.3813	2.5

  Table 2, we measure the performance for finding feasible solutions. For local algorithms and Regis' algorithms, only the results of the best scoring algorithm are reported in the table. Full results are presented in Appendix C. For local algorithms, the first column indicates the best scoring algorithm:

Table 2 :

 2 Number of evaluations to find a first feasible point. In bold, the good results in terms of average number of evaluations. We consider the results to be good if more than 20 runs where successful and the average number of evaluations is at most 20% above the best result. See Tables11 and 13in Appendix C for more detailed results. Dash symbols are used when a value cannot be calculated.

	Pbm	Local (best among 4)	Regis (best among 3)		BMOO
	g1	IP	30	128.4 (27.8)	CG	30	15.0 (0)	30	44.2 (1.9)
	g3mod	IP	30	342.3 (66.3)	Ext	30	31.2 (0.3)	30	63.1 (0.6)
	g5mod	AS	30	35.0 (5.5)	CL	30	6.4 (0.1)	30	13.0 (1.2)
	g6	AS	30	29.7 (5.0)	CL	30	10.9 (0.3)	30	9.7 (0.7)
	g7	SQP	30	107.6 (9.3)	CG	30	47.5 (4.6)	30	38.8 (3.3)
	g8	IP	30	12.1 (7.7)	CL	30	6.5 (0.2)	30	7.0 (0.2)
	g9	IP	30	170.9 (42.9)	CG	30	21.5 (1.9)	30	21.8 (5.1)
	g10	SQP	25	144.6 (132.3)	CG	30	22.8 (1.5)	30	71.5 (28.1)
	g13mod	IP	30	21.4 (17.1)	Ext	30	8.6 (0.7)	30	10.5 (5.6)
	g16	Cob	27	31.5 (20.4)	Ext	30	19.6 (1.8)	30	21.7 (7.3)
	g18	SQP	30	101.9 (19.8)	CL	30	108.6 (6.5)	0	-(-)
	g19	SQP	30	19.7 (6.1)	CL	30	16.5 (0.5)	30	46.4 (3.0)
	g24	IP	30	4.0 (3.5)	CG	30	1.3 (0.1)	30	2.6 (1.6)
	SR7	SQP	30	27.1 (3.6)	CG	30	9.5 (0.1)	30	22.0 (0.2)
	WB4	SQP	30	76.6 (21.9)	CL	30	37.4 (5.9)	30	19.1 (5.8)
	PVD4	SQP	26	7.6 (4.8)	CG	30	7.9 (0.4)	30	15.7 (5.7)
	Pbm	Local (best among 4)	Regis (best among 3)		BMOO
	g1	IP	20	349.7 (57.0)	CG	30	125.2 (15.3)	30	57.7 (2.6)
	g3mod	IP	30	356.9 (65.1)	Ext	30	141.7 (8.6)	0	-(-)
	g5mod	AS	30	35.8 (4.3)	CL	30	12.9 (0.5)	30	16.3 (0.6)
	g6	AS	30	29.7 (5.0)	CL	30	53.6 (14.0)	30	13.3 (0.8)
	g7	SQP	30	107.6 (9.3)	CG	30	99.8 (5.7)	30	55.8 (2.8)
	g8	IP	18	59.3 (87.0)	CL	30	30.3 (2.8)	30	26.3 (10.4)
	g9	IP	30	179.3 (42.0)	CG	30	176.4 (26.3)	30	61.6 (14.3)
	g10	SQP	18	658.3 (316.7)	CG	29	193.7 (-)	0	-(-)
	g13mod	IP	25	122.5 (70.3)	Ext	30	146.4 (29.2)	30	180.3 (84.6)
	g16	Cob	27	60.0 (65.2)	Ext	30	38.4 (3.6)	30	30.3 (12.3)
	g18	SQP	21	97.5 (23.8)	CL	24	195.9 (-)	0	-(-)
	g19	SQP	30	61.3 (12.4)	CL	30	698.5 (75.3)	30	133.3 (6.2)
	g24	IP	16	10.4 (5.3)	CG	30	9.0 (0)	30	9.9 (1.0)
	SR7	SQP	30	27.1 (3.6)	CG	30	33.5 (1.6)	30	29.3 (0.7)
	WB4	SQP	30	78.3 (18.0)	CL	30	164.6 (12.2)	30	44.5 (13.3)
	PVD4	SQP	23	54.7 (27.5)	CG	30	155.4 (38.2)	2	151.0 (21.2)

Table 3 :

 3 Number of evaluations to reach specified target. See Table2for conventions. See Tables12 and 14in Appendix C for more detailed results.

Table 4 :

 4 Table5shows the promising results obtained with this modified density on g18. Further investigations on this particular issue are left for future work. Number of evaluations to find a first feasible point and to reach the target on transformed versions of the g3mod, g10 and PDV4 problems, using the BMOO algorithm.

	Pbm			Feasible		Target
	modified-g3mod	30	63.3 (0.8)	30	151.8 (12.2)
	modified-g10		30	48.4 (8.0)	30	63.1 (10.4)
	modified-PVD4	30	12.9 (1.6)	30	32.9 (13.2)
	Pbm		Feasible		Target
	g18	30	75.5 (11.5)	30	83.6 (9.1)

Table 5 :

 5 Number of evaluations to find a first feasible point and to reach the target using a modified probability density function for the criterion optimization.

	Pbm	d	q	p	Γ (%)	V	y ref o
	BNH	2	2	2	93,6	5249	[140; 50]
	SRN	2	2	2	16,1	31820	[200; 50]
	TNK	2	2	2	5,1	0,6466	[1,2; 1,2]
	OSY	6	6	2	3,2	16169	[0; 80]
	TwoBarTruss	3	1	2	86,3	4495	[0,06; 10 5 ]
	WeldedBeam	4	4	2	45,5	0,4228	[50; 0,01]
	CONSTR	2	2	2	52,5	3,8152	[1; 9]
	WATER	3	7	5	92	0,5138	[1; 1; 1; 1,6; 3,2]

Table 8 :

 8 Results achieved when using the EMMI criterion. See Table7for more information.

	Problem	optimizer		Target 90%		Target 95%		Target 99%
	BNH	SMC	30	9.8 (1.1)	30	15.9 (1.5)	30	41.2 (2.8)
		MCSQP	30	9.5 (0.7)	30	15.4 (1.4)	30	42.6 (2.4)
	SRN	SMC	30	15.5 (1.2)	30	21.0 (1.4)	30	48.3 (2.8)
		MCSQP	30	18.6 (1.8)	30	29.1 (2.7)	30	90.9 (9.0)
	TNK	SMC	30	47.7 (3.5)	30	61.8 (4.4)	30	100.2 (5.4)
		MCSQP	30	60.6 (8.2)	30	94.3 (13.2)	5	224.2 (15.0)
	OSY	SMC	30	32.3 (2.9)	30	41.9 (3.9)	25	73.6 (20.8)
		MCSQP	0	> 250 (-)	0	> 250 (-)	0	> 250 (-)
	TwoBarTruss	SMC	28	116.5 (48.5)	3	199.0 (24.1)	0	> 250 (-)
		MCSQP	26	130.9 (63.9)	1	174.0 (-)	0	> 250 (-)
	WeldedBeam	SMC	16	156.6 (50.5)	4	177.0 (40.5)	0	> 250 (-)
		MCSQP	9	161.9 (60.1)	3	156.0 (35.8)	0	> 250 (-)
	CONSTR	SMC	30	22.1 (2.5)	30	33.8 (3.0)	30	100.9 (8.6)
		MCSQP	30	18.4 (2.1)	30	30.9 (3.1)	30	154.8 (9.0)
	WATER	SMC	30	60.4 (6.5)	30	93.4 (8.8)	30	153.9 (9.0)
		MCSQP	30	68.2 (8.1)	30	103.9 (11.3)	30	172.7 (13.7)
	Problem	optimizer		Target 90%		Target 95%		Target 99%
	BNH	SMC	30	20.9 (8.9)	30	43.4 (7.6)	30	132.4 (15.4)
		MCSQP	30	18.7 (8.2)	30	49.0 (14.2)	30	176.1 (29.1)
	SRN	SMC	30	39.1 (6.0)	30	57.53 (7.5)	30	154.9 (12.8)
		MCSQP	20	154.5 (62.1)	1	248.0 (-)	0	> 250 (-)
	TNK	SMC	30	53.3 (6.8)	30	68.3 (6.9)	30	120.8 (13.7)
		MCSQP	0	> 250 (-)	0	> 250 (-)	0	> 250 (-)
	OSY	SMC	30	39.7 (5.7)	29	61.5 (22.0)	14	123.0 (41.9)
		MCSQP	0	> 250 (-)	0	> 250 (-)	0	> 250 (-)
	TwoBarTruss	SMC	29	70.1 (40.3)	8	180.4 (40.0)	0	> 250 (-)
		MCSQP	29	69.6 (47.3)	11	185.2 (53.0)	0	> 250 (-)
	WeldedBeam	SMC	0	> 250 (-)	0	> 250 (-)	0	> 250 (-)
		MCSQP	0	> 250 (-)	0	> 250 (-)	0	> 250 (-)
	CONSTR	SMC	30	40.0 (5.6)	30	60.4 (7.8)	30	212.1 (15.6)
		MCSQP	30	42.2 (16.0)	26	150.7 (42.8)	0	> 250 (-)

  1 ≤ i ≤ n, are available. Then, we define the corners of Bo by = min min i≤nξ o,i (X i ), min x∈Xn ξ o, i, n (x) -λoσ o, i, n (x) , y upp o,i,n = max max i≤n ξ o,i (X i ), max x∈Xn ξ o, i, n (x) + λoσ o, i, n (x) ,

	 	y low o,i,n
		

Table 11 :

 11 Number of evaluations to find a first feasible point for the COBYLA, Active-Set, Interior-Point and SQP local optimization algorithms. See Table 2 for conventions.
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Table 12 :

 12 Number of evaluations to reach the target for the COBYLA, Active-Set, Interior-Point and SQP local optimization algorithms. See Table2for conventions.

Table 13 :

 13 ). Number of evaluations to find a first feasible point for the COBRA-Local, COBRA-Global and Extended-ConstrLMSRBF optimization algorithms. These results are taken from[START_REF] Regis | Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[END_REF].See Table2for conventions.

	plog(x) =	log(1 + x) if x ≥ 0 -log(1 -x) otherwise

Table 14 :

 14 Number of evaluations to reach the target for the COBRA-Local, COBRA-Global and Extended-ConstrLMSRBF optimization algorithms. These results are taken from

Mockus (1989, Section 

2.5) heuristically introduces a modification of (3) to compensate for the fact that subsequent evaluation results are not taken into account in the myopic strategy and thus enforce a more global exploration of the search domain. In this work, we consider a purely myopic strategy as in[START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF].

This is the most common modeling assumption in the Bayesian optimization literature, when several objective functions, and possibly also several constraint functions, have to be dealt with. See the VIPER algorithm of[START_REF] Williams | Sequential design of computer experiments for constrained optimization[END_REF] for an example of an algorithm based on correlated Gaussian processes.

See, e.g.,[START_REF] Beume | S-metric calculation by considering dominated hypervolume as klee's measure problem[END_REF],[START_REF] Hupkens | Faster computation of expected hypervolume improvement[END_REF],[START_REF] Couckuyt | Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization[END_REF] and references therein for decomposition algorithms and complexity results.

Note that this modified EHVI criterion remains well defined even when Hn = ∅, owing to the introduction of an upper bound y upp in the definition of B. Its single-objective counterpart introduced earlier (see Equation (15)), however, was only well defined under the assumption that at least one feasible point is known. Introducing an upper bound y upp is of course also possible in the single-objective case.

The same remark holds for the variant (see, e.g.,[START_REF] Gelbart | Bayesian optimization with unknown constraints[END_REF] which consists in using the probability of feasibility as a sampling criterion when no feasible point is available. This is indeed equivalent to using the loss function εn(X, f ) = -1 ∃i≤n,X i ∈C in the search for feasible points.

Equation (30) does not hold exactly for A = G n+1 since, conditionally on X 1 , ξ(X 1 ), . . . , Xn, ξ(Xn), the set G n+1 is a random set and is not independent of Yn. Indeed, G n+1 depends on ξ(X n+1 ) and X n+1 is chosen by minimization of the approximate expected improvement, which in turn is computed using Yn.

Optimization toolbox v7.1, MATLAB R2014b 

This volume has been obtained using massive runs of the gamultiobj algorithm of Matlab. It might be slightly underestimated.

An implementation of the EMMI criterion is available in the STK. An implementation of the WCPI sampling crtiterion for bi-objective problems is distributed alongside with Forrester et al.'s book[START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF].
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