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Abstract. Generating synthetic data is useful in multiple application
areas (e.g., database testing, software testing). Nevertheless, existing syn-
thetic data generators generally lack the necessary mechanism to produce
realistic data, unless a complex set of inputs are given from the user, such
as the characteristics of the desired data. An automated and e�cient
technique is needed for generating realistic data. In this paper, we pro-
pose ReX, a novel extrapolation system targeting relational databases
that aims to produce a representative extrapolated database given an
original one and a natural scaling rate. Furthermore, we evaluate our
system in comparison with an existing realistic scaling method, UpSizeR,
by measuring the representativeness of the extrapolated database to the
original one, the accuracy for approximate query answering, the database
size, and their performance. Results show that our solution significantly
outperforms the compared method for all considered dimensions.

Keywords: Representative extrapolation, Scaling problem, Synthetic data
generation, Relational database.

1 Introduction

Generating synthetic data is convenient in multiple application areas (e.g., soft-
ware validation, data masking, database testing). Synthetic data is generally
used when real data is not available, when it cannot be published publicly or
when larger amounts of data are needed. Therefore, it represents an artificial en-
abler for any analysis that requires data. When using synthetic data, a necessary
evaluation is how representative it is in comparison to real-life data.

Extrapolating the data from an existing relational database is a potential
solution to overcome the lack of realism of the synthetic data. There are two
directions that can be explored for scaling data: (i) to a particular size, or (ii) to
a particular time in the future. The first is useful in multiple application areas



where the size of the generated database matters, such as scalability testing. The
second direction could be addressed by applying machine learning techniques to
predict how data will evolve using accurate historical data. In this paper, we
explore the first path, which represents a starting point for studying the evolu-
tion of a database. Maintaining the distributions present in the original database
contributes to the realism of the generated data. The representativeness dimen-
sion is crucial as the results of the analysis to be applied on the representative
extrapolated database are expected to be similar to the ones from the original
database (e.g., in approximate query answering). This path has been explored
before. In [19], the authors introduce the scaling problem as follows:

Scaling Problem Given a relational database D and a scaling factor s, gener-
ate a database D0

that is similar to D but s times its size.

The authors propose a novel tool, namely UpSizeR, which aims to solve the scal-
ing problem in an innovative way, using mining algorithms such as clustering to
ensure that the representativeness is maintained. The method requires complex
inputs from the user (e.g., the probability perturbation exponent). Most of the
existing synthetic database generators require complex inputs from the user in
order to generate realistic data [3, 11, 1]. However, complex inputs require expert
knowledge, and thus may lead to poor accuracy in the results.

In this paper, we propose an automated representative extrapolation tech-
nique, ReX, that addresses the scaling problem above. Similarly to [4] and [19],
we define a representative database as a database where the distributions of the
relationships between the tables are preserved from the original database. As
foreign keys are enforced links between tables, they represent invaluable inputs
to depict the relationships between data in a relational database. This represents
a first step towards achieving a representative extrapolated database. We devise
two techniques for handling non-key attributes. To illustrate ReX’s applicability
in a real scenario, we perform approximate query answering evaluation. We com-
pare ReX to UpSizeR [19] and show that our solution outperforms UpSizeR in
terms of representativeness, query answering, database size, and execution time.

The remainder of this paper is organized as follows: Section 2 introduces the
potential solutions to the scaling problem. Section 3 presents the representative
extrapolation system, ReX. Sections 4 presents the evaluation of ReX. Section 5
presents the related work. Finally, Section 6 concludes the paper.

2 Potential Scaling Strategies

In this section we investigate the potential directions in which relational data
should grow such that it is representative of the original database.

Notations. We denote by FKj

i

the set of attributes of table t
i

that reference
table t

j

. We denote this relationship by t
i

! t
j

and say that t
i

and t
j

are
associated tables. This notation is used for constructing the graph structure
of a database where an edge represents a relationship and a node represents a
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Fig. 1: Example graph schema and distributions.
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Fig. 2: Extrapolation solution,
with s = 2.

Pos k : (k1, k2) f0(x) f1(x)

1 8, “a” 1, “1” 6, “6”
2 15, “b” 2, “2” 7, “7”
3 13, “c” 3, “3” 8, “8”
4 1, “g” 4, “4” 9, “9”
5 3, “e” 5, “5” 10, “10”

Table 1: f
i

(x) example.

table. Moreover, we refer to parents of t as the set of tables that reference t:
parents(t) = {t

i

2 T : t
i

! t}. In Fig. 1(a), parents(t1) = {t2, t3}. Similarly,
we refer to children of table t by: children(t) = {t

i

2 T : t ! t
i

}. For instance,
children(t2) = {t1}. A table with no children is called a leaf table (e.g., t1).
In order to determine the growth direction of a database O, we represent the
relationships between each pair of tables, 8t

i

, t
j

2 T , t
j

! t
i

, through a scatter

plot denoted by sp
tj

ti
, where t

i

appears on the x-axis and t
j

on the y-axis. Let
us consider the case study presented in Fig. 1. Figure 1(a) presents the graph-
structured schema of the database O. Figure 1(b) portrays the generated scatter
plots spt2

t1
between t1 and t2, and spt3

t1
between t1 and t3. A point at a coordinate

(x, y) of a scatter plot sp
tj

ti
expresses that x tuples of t

i

are individually referenced
by y distinct tuples of t

j

, and that y · x tuples of t
j

reference x tuples of t
i

. For
instance, point p1(2, 6) in spt2

t1
indicates that two tuples of table t1 are each

individually referenced by six tuples of table t2 (i.e., 6 · 2 = 12 tuples of t2
reference 2 tuples of t1). When the axes are inverted, spti

tj
, since t

j

! t
i

, a point

p(x, y) of spti
tj

expresses the x tuples of t
j

reference y distinct tuples of t
i

. In

this case, spti
tj

consists of a single point, p(kt
j

k, 1), as each tuple of t
j

has a
single foreign key value referencing t

i

. For instance in Fig. 1(c), the scatter plot
spt1

t2
indicates that kt2k tuples of t2 are referencing a single tuple of t1, as each

tuple of t2 contains a single reference to t1. Through a scatter plot sp
tj

ti
we can



compute the number of tuples of t
i

and t
j

from O, kO(t
i

)k and kO(t
j

)k, with:

kO(t
i

)k =
X

8p(x,y)2sp

tj
ti

x, and kO(t
j

)k =
X

8p(x,y)2sp

tj
ti

(y · x)

From Figure 1(b), we determine that: kO(t1)k = 12, kO(t2)k = 40, and kO(t3)k =
52. When extrapolating O by s to produce the extrapolated database X, we ex-
pect that each table t ofO will be scaled in size by s such that: kX(t)k = s·kO(t)k.

A horizontal growth direction for each point of a scatter plot produces
the optimal results in terms of database size. Considering a horizontal growth
direction, each point p of sp

tj

ti
scales s times on the x-axis: 8p(x, y) becomes

p0(x0, y), where x0 = s ·x. This leads to the following properties of t
i

and t
j

in X:

kX(t
i

)k =
X

8p(x0
,y)2sp

tj
ti

(s·x) = s·kO(t
i

)k, kX(t
j

)k =
X

8p(x0
,y)2sp

tj
ti

(y·(s·x)) = s·kO(t
j

)k

Through horizontal scaling: kX(t1)k = 24, kX(t2)k = 80, and kX(t3)k = 104.
These are the desired expected sizes of the tables. This leads to X being repre-
sentative of O (i.e., as each point is scaled by s), and of accurate size (i.e., as each
table is scaled by s). Therefore, the extrapolation solution must create for each
of the x identifiers of t

i

, pk
i

, exactly s-1 new identifiers, pk0
i

, and for each of the
x ·y key values of t

j

, (pk
j

, fk
j

), exactly s-1 new key values of t
j

, (pk0
j

, fk0
j

), each
individually referencing one of the s-1 new identifiers created for t

i

, fk0
j

= pk0
i

.
This is exemplified in Fig. 2, where t

i

= t1, and parents(t
i

) = {t2, t3}.

3 ReX: Extrapolation System

In this paper, we propose a system called ReX1 that aims to produce a repre-
sentative extrapolated database X, given a scaling rate, s 2 N, and a relational
database O. The objective is to maintain the distributions between the consecu-
tive linked tables and the referential integrity of the data. We assume that there
are no cycles of dependencies and that foreign keys only reference primary keys.

ReX produces the extrapolated database in a single pass over the entire
original database and thus reduces the complexity of a two-step algorithm that
would compute the expected scaled distribution and generate data accordingly.

Natural scale discussion. When the scaling rate is a real number (i.e., s /2 N),
the floating part requires the generation of tuples for only a fraction of each table
from O. Thus, the method must decide for which partial number of tuples of t

j

it should create new tuples. As this represents a di↵erent problem by itself [4,
8], in this paper we consider only natural scaling rates. Moreover, the scenario
of naturally scaling databases is commonly applicable to enterprises where it is
rarely needed to extrapolate to a fraction rather than a natural number. The
maximum error brought by approximating the real scaling rate to a natural

1 Representative eXtrapolation System, https://github.com/tbuda/ReX



number is 33.33%, and occurs for s = 1.5 (i.e., caused by X containing 33.33%
less or more tuples than desired). The impact of the floating part decreases as s
increases (e.g., when s = 10.5 the error caused by approximating is is reduced to
4.8%). Another solution is using a sampling method for the remaining fractional
number. However, both solutions would introduce errors in the results, and in
this paper we are interested in evaluating the extrapolation technique.

3.1 Key attributes generation

The keys generation function targets both primary and foreign keys of a table.
We denote the function by f

i

: D
k

! D

k

, where D

k

is the domain of the key k,
and i is the iteration number, i 2 [0, s). The function is required to satisfy the
following properties: (i) injectivity: 8i, j 2 N, 8x1, x2 2 D

k

, x1 6= x2 ) f
i

(x1) 6=
f
j

(x2), (ii) uniqueness between iterations: 8 i, j 2 N, i 6= j, 8x 2 D

k

,
f
i

(x) 6= f
j

(x). ReX uses a positive arithmetic progression with a common
di↵erence of 1 (i.e., 1,2,3,...). The function receives as input a value x and the
iteration number i 2 [0, s), and outputs a new value converted to D

k

: f
i

(x) =
cast(p(x) + i · ktk)Dk , where x is a value of the key k, primary in table t,
and p(x) represents the position of the tuple identified by x in O(t). The cast

function converts the natural number produced by the arithmetic progression
to the domain of the key. An example of f

i

(x) is presented in Table 1 where
T = {t}, kO(t)k = 5, kPK

t

k = 2, integer and varchar, and s = 2. When a
key is composed of multiple attributes, the function is applied on each attribute,
using the first position for each value across their occurrences to ensure referential
integrity. Moreover, for the same key value and position, the function generates
the same output. This ensures that the referential integrity is not breached as
the newly generated foreign key values will reference the new primary key values.

3.2 Non-key attributes generation

ReX can perform the following operations: (1) generate new values for the non-
key attributes either by: (i) generating synthetic values using the generation
function proposed, or (ii) using a dictionary with sample values for each type
of attribute, or (2) manipulate the existing values for the non-key attributes
either by: (i) selecting a random value from the original database, (ii) selecting
a random value from the original database such that the frequency count of the
non-key attribute is maintained, or (iii) maintaining their original values. In this
paper, we present results of ReX implemented using (2.ii) denoted further by
ReXrfc, and (2.iii) denoted by ReXmain, as these ensure that the value range
constraints are not breached and that the approximate query evaluation will
not be a↵ected by the synthetic values. The first solution, ReXrfc, increases the
diversity of the data produced by generating random content from O, and might
cover certain scenarios that the second solution would miss. Such a scenario is for
instance the sudden growth of female computer scientists. This could be vital for
instance in software testing, as a random selection of non-key attributes’ values
could cover more test cases than the original ones. Moreover, we expect that



maintaining the frequency count of the non-key attributes ensures that queries
that compute an aggregate of a non-key attribute scale according to s with
no errors (e.g., the maximum age entry in a Person table). Furthermore, the
second solution, ReXmain, ensures that the X preserves intra-tuple correlations
(e.g., between the age and marital status attributes of a Person table), intra-
table correlations at an attribute level (e.g., between the age of a Person table
and its balance in an Account table) and frequency count of non-key values.

3.3 Approach

ReX selects the leaf tables as starting tables. The algorithm maintains the po-
sition of each primary key value when populating a table using a hash table.
Thus, by starting with the leaf tables, the method avoids potentially time con-
suming queries for determining the position of a foreign key value in its original
referenced table, and retrieves is from the hash table previously constructed.
Moreover, through this bottom-up approach, X is produced through a single
pass over each table of O. Phase one of the algorithm consists of generating the
new key and non-key attributes’ values for the leaf tables. The method retrieves
the records of the leaf table from O and enforces a horizontal growth direction by
generating s new tuples for each tuple of a table from O. Regarding key values,
ReX will call the generation function f

i

(x), described in Section 3.1. Regarding
non-key values, ReXmain maintains their values from the original tuple. ReXrfc

randomly selects a value from O(t
i

), while maintaing its frequency count. This is
achieved through the SQL query on O: SELECT nk FROM t

i

ORDER BY RAND().
In order to maintain the frequency count, ReXrfc runs the query s times and
iterates through the result set returned, ensuring that each value has been used
s times for producing X. Phase two consists of identifying the next table to be
filled. The algorithm recursively fills the parents of the already populated ta-
bles until the entire database is processed. To avoid size overhead or referential
breaches due to processing a table multiple times (e.g., due to diamond patterns
[8]), a table can only be populated once its children have been populated.

4 Evaluation

In this section, we compare our extrapolation system ReX to the UpSizeR ap-
proach [19]. Both methods aim to construct an extrapolated database represen-
tative of the original one, that also maintains the referential integrity of the data.

UpSizeR Overview. UpSizeR represents a representative scaling method that
addresses the scaling problem. Its objective is to generate synthetic data with
similar distributions of the relationships between the tables of the database (i.e.,
between primary and foreign key pairs) to the ones from the original database
[19]. For this purpose, the approach computes the relationship degree (i.e., car-
dinality constraint) of each existing key of each table in the original database
and generates synthetic data accordingly. In the case of a table with multiple
foreign key constraints, the method uses a clustering algorithm for generating



G1 F1: SELECT AVG(‘Order‘.amount) FROM ‘Order‘onAccountonDispositiononCard
WHERE Card.type=’classic’; F4: SELECT SUM(Trans.balance) FROM Transon
onAccountonDispositiononCard WHERE Card.type=’junior’;
F2: SELECT Card.card id FROM CardonDisposition WHERE Disposition.type=

G2 ’OWNER’; F3: SELECT Loan.loan id FROM LoanonAccountonDisposition WHERE
Disposition.type=’DISPONENT’; F5: SELECT Client.client id FROM Clienton
onDispositiononAccount WHERE Account.frequency=’POPLATEK MESICNE’;

G3 F6: SELECT AVG(IQ.N) FROM (SELECT district id, COUNT(account id) AS N FROM
Account GROUP BY district id) AS IQ; H6: SELECT AVG(IQ.N) FROM (SELECT
l orderkey, COUNT(l id) AS N FROM Lineitem GROUP BY l orderkey) AS IQ;

G4 F7: SELECT AVG(avg-salary) FROM District;

Table 2: Queries used for approximate query evaluation.

a joint degree distribution of the table. However, the mechanisms employed by
UpSizeR can lead to time-consuming operations and require complex parameters
as inputs from the user, which can lead to inaccurate results.

Environment and Methodology. ReX was developed using Java 1.6. ReX
and UpSizeR were applied on MySQL 5.5.35 databases. They were deployed on
a machine consisting of 2 Intel Xeon E5-2430 CPUs of 2.20GHz and 6 cores
each, 64GB RAM, and 2TB Serial ATA Drive with 7,200rpm, running 64-bit
Ubuntu 12.04. The MySQL server was run with default status variables. We
used the centralized version of UpSizeR available online2. We assume that the
user has no prior knowledge of the database to be extrapolated and keep the de-
fault parameters’ values. This coincides with the evaluation strategy the authors
presented in [19]. Moreover, we show in Section 4 that the default parameters
provide a near optimal configuration for the database considered.

Database. We used the Financial database3 from the PKDD’99 Challenge Dis-
covery in order to evaluate ReX and UpSizeR in a real environment. It contains
typical bank data, such as clients information, their accounts, and loans. It con-
tains 8 tables, and a total of 1,079,680 tuples. The sizes of the tables range
from 77 (District) to 1,056,320 tuples (Trans). The Financial database schema
is depicted in [4]. The starting table identified by ReX is the District table.
Moreover, we performed similar experiments using the TPC-H database, and
UpSizeR showed lower errors for the criteria considered. Similar observations
were drawn regarding ReX’s performance compared to UpSizeR’s.

Metrics. Both ReX and UpSizeR aim to scale the distributions of the rela-
tionships between tables by s (i.e., through primary and foreign keys). In [4] we
proposed a sampling method that aimed to scale the same distributions by a
sampling factor. We use the average representativeness error metric defined
in [4], replacing the sampling rate with the scaling rate. Moreover, we use the
global size error metric defined in [4] to evaluate the size of X related to O. We

2 comp.nus.edu.sg/⇠upsizer/#download
3 lisp.vse.cz/pkdd99/Challenge/berka.htm
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Fig. 3: Representativeness and database size errors.

measure the query relative error of the extrapolated database X for evaluating
the query answering onX compared to O. The metric is described in detail in [5].
In this evaluation, we consider: (G1) queries that compute an aggregate value
on a non-key attribute with a WHERE clause on a non-key attribute (e.g., average
account balance for a male client), (G2) queries that compute an aggregate value
on a key attribute with a WHERE clause on a non-key attribute (e.g., average num-
ber of cards for a female client), (G3) queries that compute an aggregate value
on a key attribute (e.g., average number of cards per account), and (G4) queries
that compute an aggregate value on a non-key attribute. G3 queries investigate
whether the distributions between the tables have been preserved from a query
answering perspective. Moreover, G4 queries investigate if the frequency count
preservation of non-key attributes increases the accuracy of queries targeting
the attributes. Table 2 presents the queries used in this evaluation. Finally, we
evaluate the methods’ performance by measuring their execution time. This
represents the run time (i.e., the pre-processing phases, such as the graph con-
struction or diamond patterns discovery, together with the extrapolation time).

Results and observations

Representativeness. Figure 3(a) presents the results of UpSizeR and ReX
(i.e., ReXmain and ReXrfc) in terms of representativeness of the relationships
between consecutively linked tables of the Financial database. We observe that
UpSizeR produces an extrapolated database with the representativeness error
varying between 21.2% and 6.5%, and an average of 10.5%. We observe that
ReX maintains 0% error with regards to representativeness. This is because
both ReXmain and ReXrfc enforce a horizontal scaling which leads to generating
for each (pk,fk) pair of each table exactly s new pairs, described in Section 2.

Database size. Figure 3(b) presents the results of UpSizeR and ReX (i.e.,
ReXmain and ReXrfc) in terms of expected database size. We observe that Up-
SizeR’s global size error varies between �16.9% and 2.7% error, with an abso-
lute average of 4.6% on the Financial database. Moreover, we observe that ReX
maintain 0% error in terms of global size errors due to horizontal scaling of each
relationship, which determines scaling each table by s.



 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10
F

1
 r

e
la

tiv
e
 e

rr
o
r 

(%
)

Scale rate s

UpSizeR
ReXrfc

ReXmain

(a) F1 query relative error.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10

F
4
 r

e
la

tiv
e
 e

rr
o
r 

(%
)

Scale rate s

UpSizeR
ReXrfc

ReXmain

(b) F4 query relative error.
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 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10

F
2
 r

e
la

tiv
e
 e

rr
o
r 

(%
)

Scale rate s

UpSizeR
ReXrfc

ReXmain

Fig. 5: F2 query error.

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10

F
3
 r

e
la

tiv
e
 e

rr
o
r 

(%
)

Scale rate s

UpSizeR
ReXrfc

ReXmain

Fig. 6: F3 query error.

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10

F
5
 r

e
la

tiv
e
 e

rr
o
r 

(%
)

Scale rate s

UpSizeR
ReXrfc

ReXmain

Fig. 7: F5 query error.

Query answering. We observe in Figure 4 that UpSizeR and ReXrfc show sim-
ilar query answering errors on the Financial database. UpSizeR shows slightly
worse results than ReXrfc, with a peak error of 39.7%, occurring for F4 when s

equals 1. This is because both methods do not aim at preserving intra table cor-
relations at a non-key attribute level, and as such, their answers are influenced
firstly by their non-key attribute generation strategy and secondly by how well
they preserve the representativeness of the relationships across tables. The query
answering errors are expected to decrease in the case of G2 type queries, as a
single non-key attribute is involved in the WHERE clause of the queries. There-
fore, we observe in Fig. 5 to 7 improved results of ReXrfc over UpSizeR due
to its precision in preserving both representativeness of the key attributes rela-
tionships and frequency count of the non-key attributes. ReXrfc shows close to
0% error for F5 query. We observe from Fig. 4 to 7 that ReXmain maintains 0%
query relative error in terms of G1 and G2 queries due to horizontal scaling and
maintaining the original values of the non-key attributes. Moreover, we observe
a similar trend between Fig. 8 and Fig. 3(a), for the F6 query answering and the
representativeness error for UpSizeR. We notice that ReX maintains 0% error
for the G3 query answering, due to horizontal scaling. Moreover, we observe in
Fig. 9 that UpSizeR shows little errors, confirming that the method considers
preserving the frequency count when generating non-key attributes. We observe
that ReX maintain 0% error for the G4 query answering, due to them preserving
the frequency count of the non-key attributes.

Execution time. Figure 10 presents the methods’ execution time on the Finan-
cial database. We notice that ReX is up to 2 times faster than UpSizeR. When
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applied on a larger database, such as a 1GB TPC-H database, we observed
more significant di↵erences between the methods’ performance. In particular,
ReX performed between 3 and 8.5 times faster with an average of 23 minutes
di↵erence between UpSizeR and ReX’s execution run time.

Additional Discussion. When using a system with complex inputs, the chal-
lenge stands in determining the optimal parameters on the target database. We
investigate the impact of the number of clusters expected, k (used in the genera-
tion of the joint degree distribution) and the probability perturbation exponent, p
(used in the generation of the joint probability matrix) on UpSizeR, as they rep-
resent key inputs for UpSizeR’s generation process. We considered the following
set of values for k and p: {3,5,25,50,100,500,2500,5000}, and {-15,-10,-7,-5,-3,-
1,0,10}, respectively. Increasing k to 5,000 raised the run time of UpSizeR to
16.4h, compared to 12s when k is 3 by default. Running UpSizeR with p equal
to �25 and �50 did not scale and after 10 days their execution was stopped.
Identical results were found for p equal to 10, 50, and 500. The query relative
error of F7 is 1.8%, regardless of k and p. Similar conclusions were drawn for
s = {2, 5, 8} and when jointly varying k and p. Results suggest that the modifi-
cation of the parameters brings little benefits for all dimensions considered. In
contrast, we observe that UpSizeR’s parameters have a significant impact mainly
on the query answering accuracy. Small variations of the parameters resulted in
high errors in query answering. This suggests that a trial and error approach
might not lead to any benefits, even after a large amount of time is invested.

5 Related Work

Significant e↵orts have been made to improve the realism of synthetic data gen-
erators. We acknowledge them below, based on their application area.

General methods.Many commercial applications generate synthetic databases
that respect the given schema constraints and use real sources as input for sev-
eral attributes (e.g., names, age)4. Furthermore, the academic community have
proposed many general-purpose synthetic data generators [12, 9, 11]. MUDD [17]
is another parallel data generator that uses real data for the attributes’ domain.
In [3], the authors propose a Data Generation Language to specify and generate

4 sqledit.com/dg, {spawner,dgmaster}.sourceforge.net, generatedata.com



databases that can respect inter and intra table correlations. However, the user
must learn the specification language and input the distributions.

Software testing. Existing methods for populating testing environments usu-
ally generate synthetic data values or use some type of random distribution to
select data from the production environment to be included in the resulting
database [18, 14]. AGENDA [7] is a synthetic data generator based on a-priori
knowledge about the original database (e.g., test case expected behavior). Fur-
thermore, in [6] the authors describe a new approach for generating data for
specific queries received as input. QAGen [2], MyBenchmark [13], and Data-
Synth [1] similarly generate query-aware test databases through cardinality con-
straints. However, they require complex inputs (e.g., distribution of an attribute,
queries), which can be error-prone, as they might exclude vital test cases.

Data mining. In [15], the authors propose a synthetic data generator for data
clustering and outlier analysis, based on the parameters given as input (e.g.,
number of clusters expected, size, shape). In [16], the authors propose a syn-
thetic data generator that receives as input a set of maximal frequent itemset
distributions and generate itemset collections that satisfy these input distribu-
tions. Other tools that can be used in this field are WEKA [10], GraphGen5,
IBM QUEST6. For instance, GraphGen generates synthetic graph data for fre-
quent subgraph mining. However, the approaches require input parameters and
generally produce synthetic data targeting a data mining algorithm.

6 Conclusion and Future work

In this paper, we proposed ReX, a novel automated and e�cient system to rep-
resentatively extrapolate a relational database, given an existing database and a
natural scaling rate. The objective is to preserve the distributions of the relation-
ships between tables and the referential integrity of the data. We presented two
variations of ReX: (i) ReXmain, which maintains the original non-key attributes’
values of the generated tuples, and (ii) ReXrfc which randomly selects values for
the non-key attributes from the original database such that their frequency count
is preserved. We compared our technique with a representative scaling technique,
UpSizeR, and showed that ReX significantly outperforms UpSizeR in representa-
tiveness and database size. Moreover, ReX is up to 2 times faster than UpSizeR.
Results show that ReX is highly suitable for approximate query answering, which
leads to various application scenarios, such as scalability testing. Finally, results
suggest that UpSizeR is sensitive to the variation of the parameters, and a time
consuming trial and error approach might not lead to significant benefits.

As future work, we plan to extend our system such that real scaling rates
are accepted. A potential solution is to combine ReX with a sampling technique
in order to handle real scaling rates [4, 8]. Furthermore, we plan to investigate
a solution to extrapolate a database to a particular time in future by adapting

5 cse.ust.hk/graphgen
6 ibmquestdatagen.sourceforge.net



the existing approach. This represents an interesting future direction, as it raises
the challenge of studying an evolving dataset. Moreover, we plan to apply ReX
on an existing testing environment from our industrial partner, IBM, and use
the extrapolated database for testing the scalability of the system under test.

Acknowledgments. This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering Research
Centre (www.lero.ie). The authors also acknowledge Dr. Nicola Stokes’ feedback.

References

1. A. Arasu, R. Kaushik, and J. Li. Data generation using declarative constraints. In
SIGMOD, pages 685–696, 2011.

2. C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. Qagen: Generating query-aware
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