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Abstract

This paper is concerned with imaging a 3D scene from a set of 2D
laser images of backscattered intensity. The interaction between an elec-
tromagnetic wave and a medium can be understood and modeled in dif-
ferent ways. In the context considered here, the interaction results in a 3D
projection of the scene. After inspection in this projection, the reflection
data appear as a sum in 3D of local sinograms with severely limited angle
view. Therefore, the approach proposed here consists in considering re-
flection data as an incomplete data set of Radon-kind used in conventional
Computerized Tomography (CT). Under this assumption, the use of the
reconstruction techniques, such as the well-known filtered backprojection
(FBP), provides a 3D-surface reconstruction of the scene from reflective
data. Such 3D reconstructions are performed with short computation
times. Simulation results using real data in laser tomography attest of
the strength and of the relevancy of such an approach.

1 Introduction

Imaging is an area of research that, because of its vital importance and some-
times the wide variety of applications, focused a tremendous amount of work
since the early 1970s. The appearance and the development of the first X-ray
scanners, followed a few years later by the breakthrough of magnetic resonance
imaging, have made the use of these devices essential for the proper functioning
of our societies. The basis of imaging lies on the understanding and the modeling
of the interactions between an electromagnetic wave and a sought object. Then,
according to the kind of electromagnetic waves, different concepts has emerged
: X-rays in CT [10] or radiography, magnetic fields in MRI, ultrasounds in US
imaging...
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In this paper, we are focused on visible and infrared spectrums. We assume
that a laser source emits in the visible or near-infrared band (from 500 nm to
2200 nm) and that the pixels of a focal plane area collect the backscattered
intensity; the phase of the backscattered wave is not measured. The acquisition
is assumed to be monostatic: the 2D array of receivers is close to the source.
The scene is finally illuminated for different positions of the acquisition device,
and thus we get a collection of 2D images, for several angles of view. These
images need to be treated to get a 3D reconstruction of the original scene.

The reconstruction of a 3D scene by combining several intensity images re-
calls Computerized Tomography from X-Ray transmission tomography. Thus
several authors have already proposed to extend the use of X-Ray algorithms
to visible and near-infrared spectrum [1,2]; in particular the FDK algorithm [3]
is at the heart of a reconstruction method for the problem which is mentionned
above [4–8]. Since backscattering is a strong component of the considered laser
images, such an imaging method is sometimes called reflective tomography, to
be contrasted with transmission tomography.

A full mathematical description of reflective tomography is still needed. So
we start by studying some canonical case of reflection data. We identify the sup-
port of reflection data with the support of Radon data; we also express reflection
data as incomplete Radon-kind data. This motivates the use of transmission
inversion methods such as filtered back-projection (FBP) [9]. Then we present
Laser Imagery: we apply the FDK algorithm on realistic laser data. We present
some visualization of the 3D reconstructions, by thresholding. The results show
the relevancy of this approach.

This paper is organized as follows. We first recall the basis of the classical
Radon and X-ray transforms used in medical imaging as well as the FBP al-
gorithm and the concept of the cone-beam computed tomography. Then, we
present the working principle of the modality in reflection imaging that we pro-
pose to study. Simulation results are obtained on synthetic data. Finally, we
consider a real laser imaging system. The use of a classical FBP or FDK algo-
rithm on such data appears relevant and efficient for recovering 3D scene from
a 2D images set. A conclusion ends the paper.

2 Recall on some Radon transforms

2.1 The 2D Radon transform

This particular case was rediscovered and studied by Cormack and we will focus
on it because of its interest in tomography. As we need to give coordinates on
the unit sphere S1, we denote the unit vector in direction ϕ ∈ [0, 2π] as Θ and
its orthogonal as Θ⊥ :

Θ = (cosϕ, sinϕ), Θ⊥ = (− sinϕ, cosϕ). (1)

We define
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Figure 1: Geometric setup of the integration along a straight line

L(s, ϕ) = {x ∈ R2|x ·Θ(ϕ) = s} (2)

to be the line perpendicular to Θ(ϕ) and s directed units from the origin.
The Radon transform of a function f ∈ L2(R2) is given by

Rf(s, ϕ) =

∫
(x,y)∈Ls,ϕ

f(x, y) dl =

∫
R
f(sΘ + tΘ⊥)dt, (3)

and is continuous. This integral operator represents the projection of a given
function over hyperplanes parametrized by the pair (s,Θ) ∈ R× S1. J. Radon
introduced this transform in 1917 for pure mathematical reason. The adjoint
Radon transform of a function g ∈ L2(R× S1) is then deduced to

(R?g) (x) =

∫
S1

g(x ·Θ,Θ)dΘ. (4)

This operator can be interpreted as the spreading of the value of g(s,Θ) over
the hyperplane defined by s = x · Θ. This explains why this operator is often
called the Back-projection operator.
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2.2 The X-ray transform

The 3-dimensional X-ray transform P maps a function on R3 into the set of its
line integrals. More especially, for Θ ∈ S and x ∈ R3,

Pf(Θ, x) =

∫
R
f(x+ tΘ)dt (5)

is the integral of f ∈ L2(R3) over the straight line through x with direction Θ.
We can notice the 2-dimensional X-ray transform matches with the standard
2-dimensional Radon transform. Its inversion formula is given using the Riesz
potential I−1 and the backprojection operator P∗,

f = (2π)−2P∗I−1g, g = Pf. (6)

The above expression is classically called a filtered backprojection since the com-
putation of the Riesz potential is performed in Fourier space using an apodized
ramp filter, see [9, 10].

2.3 Cone-beam computed tomography

Cone beam computed tomography (CBCT) is a medical imaging technique
working by transmission where the X-rays form a cone. The use of CBCT
has increased in the last decades in treatment planning and diagnosis, and has
been widely studied, [11]. In particular, the well-known Grangeat’s algorithm
enables to change the cone-beam geometry data in classical parallel geometry
data [9] which are easily inverted [12, 13]. An approximation of this change of
spaces leads to a reconstruction technique called the FDK algorithm [3,14].

Due to the strong connection between the cone-beam and parallel geometries,
we will consider in our study only the parallel one for the sake of simplicity.
Then, in the next section we present the working principle of reflection imaging
for the 2D case. The 3D case is extended due to these relations.

3 Reflective tomography

3.1 Working principle

We now present the essence of this work. We consider an acquisition system
similar to a CBCT except that the source and the flat detector (a detectors
grid) are located from the same side of the object, see Fig. 2. Whereas X-
rays illuminate and propagate into the object in CBCT, here the source emits
from visible to infrared waves. This changes completely the modality since
with the considered frequency range, the emitted waves are mainly scattered
instead of being transmitted. Therefore, the use of reflection properties of the
electromagnetic waves on the sought object will bring us information about the
apparent 3D surface and not on the whole volume.

4



projection plane

x

y Θ

ϕ

ΓΘ

Figure 2: Setup for our reflection modality in 2D with a parallel geometry.

From a phenomenological point of view, the electromagnetic field diffused
by a rough surface will be more or less specular or diffuse depending on the
roughness state of the diffuse surface [15–20]. Fig.4 exhibits the contributions
of the two contributors depending on the roughness state of the surface. For
a perfect plane (a) the diffused field is completely determinist and its phase
is well knows. When the roughness increases (b) an incoherent contributor
appears which phase is totally random. For a very strong roughness (c) only the
diffused contributor remains. The coherent component of the electromagnetic
scattered field is a deterministic value, the incoherent component is a stochastic
one with a null mean value.Therefore, the electromagnetic field backscattered by
a randomly rough surface, which a random variable depending on the stochastic
process of the representation of the object surface, is given by the first (coherent
component) and second (diffuse or incoherent component) moments of the field.
Most of natural surfaces or manufactured materials observed in an optronic
scene have a strong diffused contributor and even if specular reflections can
occur, they are linked to very tight observation angles.

As electromagnetic wave propagating in a given medium, measured data
will suffer from an attenuation effect. Other phenomena while propagating
through atmosphere as scintillation, beam wandering are taken into account.
Below, for our mathematical development we consider that such factors can be
compensated or neglected.

In the case of the visible spectrum, the assumption is often to consider a
lambertian modeling: it simplifies the analysis. We will see in more details this
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Figure 3: Reflection on a lambertian surface.

Figure 4: Representation of the specular and diffuse contributors depending on
the surface state

case in the next section.

3.2 Lambertian surface

When the surfaces are randomly rough, with rough patches larger than the
wavelength of the incident radiation, we can consider for a Lambertian interface
that the the electromagnetic wave is uniformly scattered in any direction. It
is classical to consider a lambertian surface [21] in this kind of stereovision for
instance. In this case, the intensity of the reflected radiation is independant of
the direction, see Fig. 3.

We now consider a backscattered imaging system. The data acquisition is
assumed parallel and the object surface is taken lambertian. We take the same
point for the source and detection point, see Fig. 2. Then for a given position of
the source/detector grid (and so for Θ ∈ S1), measurement will correspond to
the projection of the observed surface. We denote by ΓΘ the observed surface
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in the direction Θ = (cosϕ, sinϕ).
In this context, one can define the projections I(p,Θ) on the line L(p,Θ) in

the sense of the reflection as

gL(p,Θ) = f(x = ΓΘ ∩ L(p,Θ)) (7)

where the function f > 0 stands for a reflectivity characteristic function of the
illuminated surface and p ∈ R denotes the radial position of the detector. Due to
the definition of ΓΘ, we have unicity of the intersection when ΓΘ ∩L(p,Θ) 6= ∅.
It can be noticed that the measurements are formally related to a special Radon
transform

gL(p,Θ) = R (f × δΓΘ) (p,Θ) (8)

where δΓΘ characterizes the visible contour ΓΘ. Of course, this data are not
in the range of the Radon transform because of the dependancy to Θ of the
function itself and therefore cannot be stricly inverted. However it is interesting
to notice that for a sufficiently regular surface, a given point of the surface
will be observed and then measured on a given angular range. In this context,
the problem of image reconstruction can be understood as an incomplete data
issue [22].

Another important point is the support. Indeed, the data gL describes the
same support than the Radon transform of the sought object/contours. Equiv-
alently this means that gL and Rf are null at the same set of points. Then, a
first reconstruction of the object is possible using the support theorem, see [23].
This can reconstruct the convex envelope of the object, and it can be useful to
clean the noise outside the convex hull.

We see below that the application of a classical filtered back-projection algo-
rithm on our data gL can be sufficient to reconstruct the contours of our object.
Since we consider a data set of size sufficiently large (larger than the number
of pixels of the image), we have more data points than contours points to re-
construct. This can explain the quality of the reconstruction that we obtain in
spite of the incompleteness issue.

3.3 Simulation results on synthethic data

We now present simulation results on synthetic data. We consider the contour
which is depicted in Fig. 5 as the original image in the setup. The image
is defined on a 256x256 grid. At every pixel of the contour, the function f
is a random number (uniform law between 0.1 and 1). This canonical object
enables to observe how the method deals with non-convexity, which generates
occultations.

We first have to compute the reflection data of these contours, by following
eq. (7). We consider an angular vector ϕ = { πN ,

2π
N , ..., π} where N = 256. The

detector parameter is p is defined from − N√
2

to N√
2

with ∆p = 1 the sampling

step. Fig. 6 shows the data that we obtained from Fig. 5. It is interesting to
compare this data with the classical Radon transform of the original contours,
Rf , which is displayed in Fig. 7, especially in terms of support; see Fig. 8,
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Figure 5: Original synthetic contours

which is a binarisation of the reflection data. As expected, both data have
the same support which means the same null set. The integral effect of R
leads to continuous data set (Fig. 7) whereas for our reflection modality (Fig.
6), data are composed of incomplete and distinguishable point spread function
(the impulse response which is a cosine function) involved by each piece of the
contours.

To reconstruct the function f , we apply the filtered back-projection algo-
rithm which can be written as

f(x) =
1

4π
R∗H ∂

∂p
g(p, ϕ). (9)

We use the standard way performing the Hilbert transform, H, in Fourier space
and multiplying by an apodized ramp filter (here Hann function is used as
apodization). Then we have to apply the back-projection operator R∗ on the
filtered data g∗ defined as

g∗(p, ϕ) = F−1 {|ν| · F {g(p, ϕ)}} , (10)

where F (resp. F−1) stands for the 1D-Fourier transform (resp. the inverse 1D-
Fourier transform). Its computation is performed by a Fast Fourier transform
(FFT). Because of frequency unstability and cut-off we have to apodize the
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Figure 6: Reflection data from Fig. 5.

Figure 7: Radon data from Fig. 7.
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Figure 8: Support of Fig. 6 (and Fig. 7).

ramp filter, |ν|, with a smooth function. We choose the Hann filter defined by :

H(ν) =

{
0.5
(

1 + cos
(
π ν
νmax

))
if |ν| < νmax

0 if |ν| ≥ νmax

(11)

where νmax is the maximum value of the frequency of the discretized projections.
Thus the ramp filter becomes H(ν)|ν|. Other choices of the windowing function
H are of course possible. These are examples of standard filters which are
smoother and smoother: Ram-Lak, Shepp-Logan, Cosine, Hamming, Hann,
Blackman; see Fig. 9 for the associated ramp filters and see Fig. 10 for their
spatial counterparts. Changing the filter changes the artifacts of reconstruction:
increasing the Fourier-smoothness of a window decreases its maximum spatial-
amplitude, produces weakest oscillations of the tail, and thus increases stability.
For instance, the Ram-Lak window produces a Gibbs phenomenon due to the
strong jump of the Fourier-window: overshoot, undershoot and ringing. The
Hann filter window that has been chosen for this paper presents the advantage of
being continuous; then the spatial-filter decreases faster to zero and the filtering
is less sensitive to noise.

Fig. 11 displays the reconstruction of the contours using the FBP algorithm
on reflection data from Fig. 6. The FBP algorithm has also been applied on
the suppport set from Fig. 8, see Fig. 12. The convex part of the contours
is recovered in both reconstructions. Furthermore the upper left part of the
object, which is non-convex, is reconstructed only in the first case: FBP on
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Figure 9: Smoother and smoother ramp filters in the (ν-)frequential domain.

Figure 10: Representation of the filters of Fig. 9 in the (p-)spatial domain.
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Figure 11: FBP reconstruction with the reflection data from Fig. 6

varying reflection data is richer than FBP on shapes. Artifacts can be observed
in both cases. They are due to the incompleteness: the point spread function
(cosine function for the classical Radon transform) are incomplete.

To complete the numerical study, we consider the same object, with a
smoothly varying function f : see Fig. 13. Data and reconstruction are depicted
in Figs. 14 and 15. Again, the object is reconstructed with incompleteness
artifacts.

4 Applications to laser imaging

We present now the extension of Computerized Tomography to 3D Laser Im-
agery. More particularly, we illustrate the method with real data.

4.1 Principle

We assume that a laser source turns around a 3D scene. The scene may contain
an object with or without occultations. At each position, the laser illuminates
the scene, and a receptor array measures the backscattered light in a focal plane,
in the monostatic configuration. Thus we get a set of 2D images; it contains
backscattered intensities, resulting from an interaction of the laser beam with
surfaces of the scene. The aim is to reconstruct the 3D scene from these 2D
images.
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Figure 12: FBP reconstruction with the support from Fig. 8

Figure 13: Original synthetic contours, with a smooth function
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Figure 14: Reflection data from Fig. 13.

Figure 15: FBP reconstruction from Fig. 14
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Projection plane
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Figure 16: Perpective projection through a pinhole camera

In the sequel we consider that a laser image is designed according to an
optical model, such as perspective projection through a pinhole camera; see
Fig. 16. After a laser illumination each object point of the scene reemits in
many directions. An optical instrument is used to record the data. It contains
a receptor plane which is (parallel to) the tangent plane of the circle, and it is
assumed to refocused rays coming from a same object point to a same image
point in the receptor plane; this image point is aligned with some optical center
of the recording instrument and the object point. As a result a laser image is
a projection of the scene along rays through the optical center. So the acqui-
sition geometry is exactly a cone-beam scanning geometry as the transmission
tomography one.

Then the laser signal is considered as a sinogram and is processed with a
FBP-kind algorithm: the FDK algorithm is used as a heuristic to compute fastly
a 3D volume of the scene. Eventually (but not necessary), when the acquisition
device is in far field with respect to the scene, the acquisition geometry tends to
a parallel geometry and processings can be reduced to parallel FBPs, 2D slice
by 2D slice.

4.2 Simulation results

In this part, we present the results obtained applying a FBP algorithm on
realistic data (courtesy of Thales Optronics). The computations are performed
on a GPU: Nvidia Tesla C2075. This enables short computation times.

The first case deals with real laser data. A car is illuminated with the laser
imaging system that has been presented above. In the reconstruction process,
the sought volume is discretized on a 127x127x342 grid. The measurements are
defined on a 360x181x342 grid. The contrasts are first adjusted by a rescaling:
data are here pre-processed with a (12-th) root. Slices of the resulting real 3D
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laser sinogram are depicted in Fig. 17; the vertical slice is one laser image of the
sequence, and the horizontal slice looks like a 2D fan-beam sinogram. We can
observe a noise which is due to the scintillation phenomenona. The FBP of these
real data is performed here in 2.3 seconds. Fig. 18 shows the 3D reconstruction
of the car. This visualization of the reconstructed volume has been obtained
with the isovolume functionnality of the free software ParaView [24], with a
lower threshold of 10%. The features of the car are well-reconstructed; some
details such as door handle are also reconstructed.

Figure 17: Slices through a real laser sinogram.

In a second time, the method is tested on a simulated complex 3D scene
which is discretized on a 179x179x229 grid. Now the car is partially occluded
by trees. The size of the data is 360x254x229. As before, slices are depicted by
Fig. 19 after rescaling. The reconstruction is shown in Fig. 20, with a threshold
of 10%. The computation time for this example is about 2.5 seconds. The car
and the trees (including the foliage) are both reconstructed. Lacunarities are
due to the occultations and thresholding.

5 Conclusion

We have seen in this work how the connection between the considered reflection
modality and the classical transmission modalities (CT-scan) could encourage
the use of fast and accurate algorithms such as FBP to recover a 3D scene from
a set of 2D images. The lambertian diffusion was first considered and appears
to be consistent in terms of support with the classical sinogram (Radon trans-
form). Then, we have considered laser sinograms from 3D complex scenes. The
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Figure 18: Reconstruction using FBP on data shown in Fig. 17

application of the FDK algorithm on them provides fastly 3D reconstructions
that can be used for identification.
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tir de radiographies X en géométrie conique. Ph.D. thesis, Ecole Nationale
Supérieure des Télécommunications, 1987.
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