
HAL Id: hal-01207655
https://hal.science/hal-01207655v1

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safely Managing Data Variety in Big Data Software
Development

Thomas Cerqueus, Eduardo Cunha de Almeida, Stefanie Scherzinger

To cite this version:
Thomas Cerqueus, Eduardo Cunha de Almeida, Stefanie Scherzinger. Safely Managing Data Variety
in Big Data Software Development. 1st IEEE/ACM International Workshop on Big Data Software
Engineering, May 2015, Florence, Italy. �hal-01207655�

https://hal.science/hal-01207655v1
https://hal.archives-ouvertes.fr


Safely Managing Data Variety
in Big Data Software Development
Thomas Cerqueus†, Eduardo Cunha de Almeida‡ and Stefanie Scherzinger∗

† Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, thomas.cerqueus@insa-lyon.fr
‡ Federal University of Paraná, eduardo@inf.ufpr.br

∗ OTH Regensburg, stefanie.scherzinger@oth-regensburg.de

Abstract—We consider the task of building Big Data software
systems, offered as software-as-a-service. These applications are
commonly backed by NoSQL data stores that address the
proverbial Vs of Big Data processing: NoSQL data stores can
handle large volumes of data and many systems do not enforce
a global schema, to account for structural variety in data. Thus,
software engineers can design the data model on the go, a flexi-
bility that is particularly crucial in agile software development.
However, NoSQL data stores commonly do not yet account for
the veracity of changes when it comes to changes in the structure
of persisted data. Yet this is an inevitable consequence of agile
software development. In most NoSQL-based application stacks,
schema evolution is completely handled within the application
code, usually involving object mapper libraries. Yet simple code
refactorings, such as renaming a class attribute at the source code
level, can cause data loss or runtime errors once the application
has been deployed to production. We address this pain point
by contributing type checking rules that we have implemented
within an IDE plugin. Our plugin ControVol statically type
checks the object mapper class declarations against the code
release history. ControVol is thus capable of detecting common
yet risky cases of mismatched data and schema, and can even
suggest automatic fixes.

I. INTRODUCTION

Big Data software requires database systems that can scale
to large volumes of data, such as the NoSQL data stores
Google Cloud Datastore [1] or MongoDB [2]. Apart from
being highly scalable, these systems are schema-flexible. As
such, they do not require the specification of a fixed, global
data schema up front, to account for the structural variety of
Big Data. This is particularly convenient in agile development,
since the team can design the data model as it goes along.

Yet keeping the schema in sync with the application code
is a well-known data management challenge that arises with
relational data stores, object-oriented data stores, XML, and
NoSQL data stores alike (e.g., [3]–[10]). The problem presents
itself with a new acuteness and with different challenges in the
context of NoSQL application development:

First, there is a new pace to schema changes, with the
growing popularity of agile software development and there-
fore shorter release cycles. Popular Big Data products such
as Youtube are released weekly, if not daily (quoting Marissa
Meyer in [11]). With frequent schema changes, agile develop-
ers do not want to have to wait for the next scheduled database
maintenance window in order to release. Also, with software
being available 24/7, there simply may not be a time window
for migrating legacy data.

Second, the problem arises at a new scale in terms of
the number of people affected, as schema-flexible data stores
are becoming more and more popular in Big Data software
development. Unfortunately, solutions for controlling schema
evolution in relational data stores do not immediately carry
over to schema-flexible data stores, since relational data stores
assume that all data adheres to a global and fixed schema.
At the same time, the developer community is currently
promoting its own tools and strategies, e.g., dedicated object
mappers capable of lazy migration [12], [13], and frameworks
such as Kiji [14] (c.f. our related works section). This may be
seen as a strong signal that developers are experiencing a pain
that they do not yet see addressed by existing tools.

Third, the problem is hitting a new group of people. Tra-
ditionally, the team’s designated database administrator would
be responsible for migrating legacy data, in preparation for a
new release. Since schema-flexible NoSQL data stores do not
provide much functionality in terms of schema management,
the problem is now addressed by the software developers
themselves. This target group is used to working with powerful
IDEs, yet it has little experience with expert-level data man-
agement tools such as ETF toolchains. To effectively assist
them in their daily work, developers require tools that fit
seamlessly into their development environment.

Let us sketch a typical setup of a Big Data web development
project. Figure 1 shows the development environment on the
left. The software engineers have just finalized version v1 of
the application using an Integrated Development Environment
(IDE). The code repository manages the source code versions,
and currently stores the upcoming release v1, as well as the
earlier release v0. On the right, version v0 of the application
has been serving in production, hosted on a platform-as-a-
service infrastructure (PaaS). To the bottom is a NoSQL data
store, offered as database-as-a-service (DaaS).

Object mapper libraries translate between objects in the
application space and persisted entities. To clearly distinguish
between the data structures handled within the application
code and the data structures persisted in the data store, we call
the former objects and the latter entities. Let us assume that
we are building an online role playing game, where players
are the central objects. So far, version v0 has persisted player
entities according to the Java class declaration in Figure 2(a).
Player Frodo’s entity is shown in JSON format:



Fig. 1: Releasing new version v1 of the application from the develop-
ment environment into production. While version v0 no longer serves
users, its legacy entities remain in the NoSQL data store.

{ "kind": "Player",
"login": "ringbearer",
"name": "Frodo Baggins",
"level": 1 }

Version v1 is now ready for release and the engineers deploy
it to production. This step is visualized in Figure 1. We assume
that the new application code persists players according to the
new Java class declaration shown in Figure 2(b).

The player entities persisted by version v0 have now become
legacy entities. The new application code must robustly handle
these legacy entities. For instance, if the new class declaration
loads the legacy entity for player Frodo, it expects an attribute
rank, but does not expect the attribute level. In this scenario,
the Objectify object mapper [12] will not raise a runtime error.
Instead, the legacy entity is loaded, but the unmatched rank
attribute is set to null. The value of level in the persisted entity
cannot be loaded. Worse yet, the next time that the player
object is persisted, the value of level is effectively dropped:

{ "kind": "Player",
"login": "ringbearer",
"name": "Frodo Baggins",
"rank": null }

Today, developers largely rely on their foresight and exhaus-
tive testing to catch such errors early on. What is missing is a
framework that type checks object mapper class declarations
against their schema evolution history and gives feedback
already during the development process. Type checking in
database programming has a long history [15]. In this tradition,
we present a set of custom-tailored type checking rules.
Contributions: The main contributions of this paper are:
• We introduce a set of type checking rules that allow for

static type checking of object mapper class declarations
against the release history, as recorded in the code repos-
itory. Our rules detect possible cases of runtime errors or
data loss already at development time.

• We have implemented our type checking rules within the
ControVol Eclipse plugin. This plugin has been demoed
in the past [16], [17], yet the theory on ControVol, in
particular the type checking rules, are presented in this
paper for the first time. In contrast, the demo papers focus

(a) Before renaming. (b) After renaming.

Fig. 2: Refactoring the source code: Attribute level is renamed to
rank. The Eclipse IDE consistently changes all references in the
source code, but this does not affect persisted legacy entities in
production. So when legacy players are loaded into the application
space, attribute level cannot be matched and its value is not loaded.

on the workflow from the viewpoint of the developer
interacting with ControVol.

• The average developer will be agnostic of our type
checking rules. However, power users may customize
or extend the rules. Accordingly, we propose pragmatic
relaxations and extensions to our type checking rules,
e.g., to allow for safe type promotions in loading entities.

• By checking the complete chain of class declarations over
time, we can even catch more subtle schema evolution
problems that appear when class member attributes that
have been removed from the source code in some past
release are being reintroduced.

Organization: Section II reviews NoSQL object mappers with
life-cycle annotations. We point out common pitfalls, before
we introduce our type checking rules in Section III. Section IV
discusses relaxations and extensions. Section V gives a brief
overview of the implementation as the ControVol Eclipse
plugin. We conclude with related work and a summary.

II. PRELIMINARIES

We briefly introduce NoSQL-specific object mapper li-
braries and their capabilities, and then point out common
schema evolution pitfalls.

A. Lazy Schema Evolution with NoSQL Object Mappers

In building applications against relational data stores,
object-relational mappers have become state-of-the-art for
accessing persisted data. Let us return to our example of an
online role playing game. Figure 2(a) shows the Java class
Player with typical object mapper annotations. The annotation
@Entity denotes that instances of this class can be persisted.
The annotation @Id marks the unique identifier. Based on
these annotations, the object mapper takes care of marshalling
between objects in the application space and tuples in a
relational database. Object mappers allow developers to build
more robust and portable applications, since they introduce a
desirable level of abstraction.

The growing popularity of NoSQL data stores has triggered
a new generation of object mappers [18]. Interestingly, some
of these mappers address the schema evolution problem for



Fig. 3: Lazily migrating legacy entities: A developer has renamed
attribute level to rank. Annotation @AlsoLoad ensures that a legacy
attribute level can still be loaded and will be renamed to rank.

NoSQL data stores by providing so-called life-cycle annota-
tions, e.g., Objectify [12] (for Google Cloud Datastore) and
Morphia [13] (for MongoDB).

Life-cycle annotations lazily migrate legacy entities when
they are loaded. Figure 3 shows an Objectify class declaration
with annotation @AlsoLoad. This mapper will successfully
load player entities with an attribute rank, as well as legacy
players with an attribute level. In the latter case, the level
attribute will be renamed to rank when loading a persisted
entity as a Java object. The change is manifested the next
time that the object is persisted.

For illustration of the life-cycle capabilities, we briefly list
the Objectify life-cycle annotations to class member attributes.
• @AlsoLoad renames an attribute lazily at loading time.
• Annotation @Ignore denotes that an attribute will neither

be loaded nor saved. This is typically used for class
member attributes with derived values. Then the attribute
exists in the Java object, but not in the persisted entity.

• @IgnoreSave denotes that an attribute will be loaded
from the data store, but not saved. This allows developers
to load legacy attributes, usually as input to more complex
migration code, and to remove them from the persisted
entity the next time that the object is persisted.

• @IgnoreLoad denotes that an attribute will not be loaded
from the data store, but it will be saved to the datastore.
This allows developers to overwrite an existing attribute
in a persisted entity.

Developers may further annotate class methods, in particular,
• @OnLoad calls a method immediately after all attributes

have been loaded, and
• @OnSave calls a method just before persisting an object.

In both cases, the methods execute migration code when they
are invoked, usually performing more complex migrations.

Life-cycle-annotations are a powerful means to manage
changes to the schema. Since they are executed on production
data, they require great care: As we discuss in the following,
some errors may be subtle and hard to detect by testing alone.

B. Schema Evolution Pitfalls with Life-Cycle Annotations

We now discuss common pitfalls in evolving the software
without regard to the entities already persisted in production.

1) Retyping Attributes: Changing the type of a class mem-
ber attribute can be problematic when legacy entities are
loaded. When types are incompatible, runtime exceptions will
be raised. Such errors can be difficult to trace and to debug,
since they occur only when certain legacy entities are loaded.

For instance, let us assume that the NoSQL data store
contains the following legacy player entity, where the level
is a String value.

{ "kind": "Player",
"login": "ringbearer",
"name": "Frodo Baggins",
"level": "beginner" }

Loading this entity according to the object mapper class
declaration from Figure 2(a) triggers a runtime exception,
since the String value cannot be converted into an Integer.

However, there are also cases where object mapper libraries
can successfully convert types at runtime, e.g., a legacy value
of type Boolean to a String. Yet even if the type conversion
occurs without immediate runtime errors, the resulting string
value can still cause problems if the application code does not
expect the values “true” or “false”.

2) Renaming Attributes: Naively renaming class mem-
ber attributes (without adding the appropriate life-cycle-
annotations) can cause data loss, as already described in the
scenario from the introduction: IDEs such as Eclipse provide
convenient refactoring support, and consistently change all
references to this attribute in the code. Yet when the new
application loads a persisted legacy player with the new class
declaration, its level data will not be loaded, since there is no
matching Java class member. Instead, the rank attribute will
be initialized to null, which may cause runtime errors if the
remaining code relies on all attributes being initialized with
meaningful values. Moreover, once the object is persisted in
its new form, the value of level is irretrievably lost.

The safer way to rename an attribute is shown in Figure 3.
The attribute is renamed lazily using the @AlsoLoad annota-
tion. Yet as a developer, it is easy to loose track of the code
history, and to simply forget to add the life-cycle annotation.

3) Ambiguous Mappings: With the class declaration from
Figure 3, the object mapper Objectify raises a runtime excep-
tion when loading the legacy entity shown below, since the
migration specification is ambiguous.

{ "kind": "Player",
"login": "ringbearer",
"name": "Frodo Baggins",
"level": 1
"rank": 6 }

Again, it is easy to overlook that the data store may contain
legacy players that have both a level and a rank attribute.

4) Reintroducing Attributes: Reintroducing attributes that
are still present in some legacy entities may yield unexpected
values when loading these entities, since the legacy value may
have been written with different semantics. For instance, let
us assume the following legacy entity in the data store:

{ "kind": "Player",
"login": "sammy",
"name": "Sam Gamgee",
"rank": 3 }



Here, the attribute rank denotes the ranking in the overall
game, i.e., Sam is the third-best player. A developer is un-
aware of the existence of this entity. Starting from the class
declaration in Figure 2(a), the developer renames level to rank,
as shown in Figure 3. In the latest class declaration, the rank
corresponds to the level the player has reached so far.

Now when our legacy entity is loaded with the new class
declaration, the rank attribute can indeed be matched. How-
ever, the loaded value has different semantics.

With frequent releases, it becomes easy to lose track of the
schema evolution history. Relying on the developers’ disci-
pline alone is risky. Thus, a framework that can automatically
detect these pitfalls is of great value.

III. STATIC TYPE CHECKING

In checking an object mapper class declaration against the
code history, we ask: Can all legacy entities be successfully
loaded by the latest class declaration? We consider loading
successful if it proceeds (1) without risking data loss due to
unmapped attributes and (2) without runtime exceptions.

Our approach will flag some cases as problematic that might
actually be fine. We therefore discuss pragmatic relaxations in
the next chapter.

A. Basic Notation

We introduce judgments as expressions of the form

C ` @annot type att;

where C is an object mapper class declaration annotated by
@Entity. The judgment says that C declares attribute att with
type type and annotation @annot.

Example 1. The following judgments are derived from Fig-
ure 2. We denote the class declarations from subfigures (a)
and (b) by Playera and Playerb respectively:

Playera ` @Id String login;

Playerb ` @Id String login; �

In type checking, we compare pairs of object mapper class
declarations CW and CR. We assume that both are different
versions of a class C, and that CW writes the entities that
are then read (or loaded) by CR. We therefore also consider
judgments of the form

CR ◦ CW ` @annot type att; ok

which say that the class declaration CR declaring class mem-
ber attribute att of type type with annotation @annot is able
to successfully read attribute att from the entity that was
written according to the declaration CW . (We use the function
composition operator to express that the entity is first written
according to CW , and then read according to CR.)

Example 2. The class declaration Playerb can successfully
read the login attribute from an entity written according to
the declaration of Playera:

Playerb ◦ Playera ` @Id String login; ok �

Judgments are then used in typing rules of the form
CW ` @annot1 type1 att1;

CR ◦ CW ` @annot2 type2 att2; ok
(cond)

This rule concerns the declaration of a class member at-
tribute att1 with type type1 and annotation @annot1 in the
earlier class declaration CW , and further the declaration of
att2 with type type2 and annotation @annot2 in the later
declaration CR. The rule states that when an entity is persisted
according to CW , attribute att2 can be read successfully
according to the declaration in CR.

A rule can further carry a condition cond, which must be
satisfied in order for the rule to apply.

Example 3. By rule (1) in Figure 4, if an entity is written
according to Playera, then the declaration in Playerb can
successfully read attribute login:

Playera ` @Id String login;

Playerb ◦ Playera ` @Id String login; ok

�

Let CW , CR be two versions of an object mapper class
declaration where CW was released before CR. We assume
that entities written according to CW are to be read according
to CR. We say CR type checks as valid w.r.t. CW if the
following conditions hold:
• For each class member attribute declared in CW , we can

apply a type checking rule with the declaration from CW

in the premise (the judgement above the line), and
• for each class member attribute declared in CR, we can

apply a type checking rule with the declaration from CR

in the conclusion (the judgement below the line).
We say a new software release type checks if each object
mapper class declaration type checks as valid w.r.t. each of its
previously released versions.

B. Type Checking Object Mapper Class Declarations
We next present a core set of typing rules. We do not

provide an exhaustive enumeration, but merely illustrate the
most prominent cases since the remaining rules are similar.

1) Keeping, adding, and removing attributes: Figure 4
shows rules for basic changes to class member attributes.

Example 4. Let us consider the class declarations in Figure 2.
We assume that an entity is written according to Playera and
then read according to Playerb. Example 3 has already shown
that class member attribute login can be loaded successfully.
By rule (2), name can be loaded successfully as well:

Playera ` String name;

Playerb ◦ Playera ` String name; ok

Rule (3) allows new class member attributes to be intro-
duced. Applying this rule yields

Playerb ◦ Playera ` String rank; ok

(
rank not declared

in Playera

)
As there is no rule that matches the implicit removal of level,
Playerb does not type check as valid w.r.t. Playera. �



CW ` @Id type att;
CR ◦ CW ` @Id type att; ok

(1)

CW ` type att;
CR ◦ CW ` type att; ok

(2)

CR ◦ CW ` type att; ok

(
att not declared

in CW

)
(3)

CW ` @Ignore type1 att;
CR ◦ CW ` type2 att; ok

(4)

CW ` type att;
CR ◦ CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR ◦ CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR ◦ CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y ◦X ` @Ignore String level; ok

Y ` @Ignore String level;

Z ◦ Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. �

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. �

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt′ to
express that type t is compatible with t′. This means that any
instance of t must be “loadable” as an instance of t′ without
data loss. The trivial case is that t = t′, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR ◦ CW ` type′ att; ok

(typeB type′) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t′ if the memory
allocated to store objects of type t′ is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t′, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.



CW ` type att1;
CR ◦ CW ` @AlsoLoad("att2") type att1; ok

(att2 not declared in CW ) (8)

CW ` type att2;
CR ◦ CW ` @AlsoLoad("att2") type att1; ok

(att1 not declared in CW ) (9)

CW ` @annot type att1 CW ` type att2;
CR ◦ CW ` @AlsoLoad("att2") type att1; ok

(@annot is @Ignore or @IgnoreSave) (10)

CW ` type att1 CW ` @annot type att2;
CR ◦ CW ` @AlsoLoad("att2") type att1; ok

(@annot is @Ignore or @IgnoreSave) (11)

CR ◦ CW ` @AlsoLoad("att2") type att1; ok
(att1 and att2 not declared in CW ) (12)

CW ` @annot1 type att1;
CR ◦ CW ` @annot2 type att1; ok

(
@annot1 and @annot2 are any of

@Ignore,@IgnoreSave,@IgnoreLoad

)
(13)

Fig. 5: Selected rules for the @AlsoLoad annotation (8 - 12) and for ignoring attributes (13).

c) Conversion Returning a Corrupted Value: Surpris-
ingly, there are cases where Objectify allows a conversion,
even when types cannot be casted in Java. For instance, the
conversion of a positive Integer to a Short may return a
negative number. This situation is particularly dangerous from
a development and testing point-of-view as, since it does not
raise an exception, developers might not expect to be able to
convert an Integer to a Short. So when a corrupted value is
retrieved, they might not suspect a conversion problem, and
the problem does not appear systematically (it only appears
for certain values), which complicates testing.

B. Checking Chains of Class Declarations

We consider the unintentional reintroduction of attributes
a schema evolution pitfall (c.f. Section II-B4). These cases
are difficult to anticipate for developers, as the attribute that
existed in previous versions may have been removed from
the source code several releases back. Yet as discussed in
Section III-C, we may not always capture this problem by
type checking pairs of class declaration versions.

In order to reliably detect these problems at development
time, we check the whole sequence of class declarations
released into production to detect when attributes by the same
name have been removed and are now being reintroduced. The
necessary information is usually accessible from within the
IDE, since the source code repository is commonly integrated
with the IDE.

V. THE CONTROVOL FRAMEWORK

As a proof-of-concept, we have implemented our type
checking rules as the ControVol Eclipse plugin. We briefly
highlight the core features of ControVol, and refer to [16]
and [17] for details on the workflow as experienced by
developers. Our ControVol prototype currently supports Java
development against Google Cloud Datastore [1], using the
Objectify object mapper library. It is straightforward to extend

Fig. 6: ControVol suggests quick fixes to resolve warnings.

ControVol to other IDEs, NoSQL data stores, and object
mapper libraries.

ControVol captures changes to object mapper class dec-
larations during the IDE-integrated build process. ControVol
then compares object mapper class declarations to the release
history, as managed by the code repository. The plugin is
able to detect common schema evolution pitfalls involving
adding, renaming, and removing attributes. ControVol then
issues warnings accordingly.

ControVol can even suggest IDE-supported quick fixes
to help resolve problems. For instance, in the case of the
renaming problem triggered by the refactoring in Figure 2,
the ControVol dialog in Figure 6 proposes several fixes:
• Adding the Objectify annotation @AlsoLoad lazily re-

names level to rank. This ensures that no values are lost.
• Adding annotation @Ignore makes clear that attribute

level is intentionally discarded.
• Restoring attribute level prevents that its value is lost. In

this case, attributes level and rank co-exist.
ControVol currently type checks Java class declarations

w.r.t. all Objectify life-cycle annotations for class member
attributes, as listed in Section II. In the future, we plan
to also type check life-cycle annotations for methods. Yet
since the methods may contain arbitrary Java code, these are



undecidable problems when addressed in full generality. Thus,
we will need to focus on a pragmatic subset of transformations.

VI. RELATED WORK

Managing schema evolution has a long history in database
research (c.f. [3]), although it has not yet been thoroughly
addressed in the domain of NoSQL data stores.

Among the related and contemporary systems known to us
is Kiji [14], a NoSQL-backed middleware for data analytics.
Schema evolution is a major concern in data analytics, due
to continuously changing requirements in organizations. In
Kiji, the schema evolution is recorded in data dictionaries
and a registration process validates whether the new upcoming
schema is ready for production. The validation process com-
pares the old and new schema versions. Changes that can lead
to data loss flag the new version as incompatible, and it is not
deployed to production. Type demotions that lead to loss of
precision are therefore not allowed. Contrasting Kiji with our
work, both projects share the basic notion of distinguishing
read and write schemas. However, while we interpret class
declarations as schema specifications, Kiji maintains its own
data dictionary. Also, ControVol not only detects schema
incompatibility, but also proposes fixes.

In much earlier work [19], we have found a version control
mechanism for schemas in object-oriented databases. The goal
is to associate objects with the schema versions to which
they belong. When an object belongs to a set of versions, the
mechanism creates an “object life-cycle” divided into several
periods. For each period, an object has its own context in
terms of data and integrity rules. One downside in adapting
this earlier work to the context of NoSQL data stores is that
this mechanism requires access to data dictionaries, which is
not necessarily a given with NoSQL data stores.

PRISM [6], [20] has been designed for relational data
stores and also relies on data dictionaries. It allows tracking
any schema modification, in contrast to [19]. For this, it
relies on a custom language to support DBAs carrying out
safe schema evolution. With F1 [7], Google has designed
a highly scalable data store with a relational schema where
daily schema changes are rolled out safely and asynchronously
across a cluster of nodes.

There are several other research contributions to support
schema evolution [8]–[10], but they cannot be directly applied
to our context. They were not designed with NoSQL data
stores in mind, but for relational databases, or they do not
target the widely adapted web programming languages. Our
contribution differs from them in the sense that we provide
direct feedback to developers (not yet aware of the evolution
pitfalls) instead of DBAs, and we infer the schema evolution
from the code source itself instead of data dictionaries.

Our static type checking scheme was originally inspired by
the earlier work on the Machiavelly type system [21] for typing
heterogeneous objects in object-oriented data stores.

VII. CONCLUSION

Schema evolution has been intensively studied for relational,
object-oriented, and XML databases. The problem presents it-

self with new acuteness in building Big Data software systems
on top of schemaless NoSQL data stores. When developers
use object mapper libraries capable of lazy schema migration,
there is a need to ensure that migrations are robust and safe.

In this paper, we present a static type checking scheme that
detects serious schema migration pitfalls already during the
development process. When object mapper class declarations
do not type-check against their earlier versions recorded in the
software repository, our ControVol plugin can warn developers
already from within IDE. Moreover, in many cases we can also
offer useful quick fixes, so that developers may automatically
resolve the problems detected.

ACKNOWLEDGMENT

This project was partially funded by Serpro Brazil and
CNPq grant 441944/2014-0.

REFERENCES

[1] Google Developers, “Google Cloud Datastore,” 2015, https://developers.
google.com/datastore/.

[2] “MongoDB,” 2015, http://www.mongodb.org/.
[3] M. Hartung, J. F. Terwilliger, and E. Rahm, “Recent Advances in

Schema and Ontology Evolution,” in Schema Matching and Mapping,
2011, pp. 149–190.

[4] S. Scherzinger, M. Klettke, and U. Störl, “Managing Schema Evolution
in NoSQL Data Stores,” in Proc. DBPL, 2013.

[5] S. Ambler, Agile Database Techniques: Effective Strategies for the Agile
Software Developer. New York, NY, USA: John Wiley & Sons, Inc.,
2003.

[6] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the
Database Schema Evolution Process,” The VLDB Journal, vol. 22, no. 1,
pp. 73–98, 2013.

[7] I. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vingralek, “Online,
Asynchronous Schema Change in F1.” PVLDB, vol. 6, no. 11, pp. 1045–
1056, 2013.

[8] M. Piccioni, M. Oriol, and B. Meyer, “Class Schema Evolution for
Persistent Object-Oriented Software: Model, Empirical Study, and Au-
tomated Support,” IEEE Transactions on Software Engineering, vol. 39,
no. 2, pp. 184–196, 2013.

[9] B. S. Lerner, “A model for compound type changes encountered in
schema evolution,” ACM Trans. Database Syst., vol. 25, no. 1, pp. 83–
127, 2000.

[10] T. Milo and S. Zohar, “Using schema matching to simplify heteroge-
neous data translation,” in Proc. VLDB’89, 1998, pp. 122–133.

[11] S. Lightstone, Making it Big in Software. Prentice Hall, 2010.
[12] “Objectify,” 2015, https://code.google.com/p/objectify-appengine/.
[13] “Morphia. A type-safe Java library for MongoDB,” 2015, https://github.

com/mongodb/morphia/.
[14] “Kiji Project,” 2015, http://www.kiji.org/.
[15] M. P. Atkinson and O. P. Buneman, “Types and Persistence in Database

Programming Languages,” ACM Computing Surveys, vol. 19, no. 2, pp.
105–170, 1987.

[16] S. Scherzinger, E. C. de Almeida, and T. Cerqueus, “ControVol: A
Framework for Controlled Schema Evolution in NoSQL Application
Development,” in Proc. ICDE’15, demo paper, 2015.

[17] T. Cerqueus, E. C. de Almeida, and S. Scherzinger, “ControVol: Let
yesterday’s data catch up with today’s application code,” in Proc.
WWW’15, poster, 2015.

[18] U. Störl, T. Hauf, M. Klettke, and S. Scherzinger, “Schemaless NoSQL
Data Stores – Object-NoSQL Mappers to the Rescue?” in Proc. BTW’15,
2015.

[19] J. Andany, M. Léonard, and C. Palisser, “Management of schema
evolution in databases,” in Proc. VLDB’91, 1991, pp. 161–170.

[20] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo, “Schema Evolution in
Wikipedia - Toward a Web Information System Benchmark,” in Proc.
ICEIS (1), 2008, pp. 323–332.

[21] P. Buneman and A. Ohori, “Polymorphism and Type Inference in
Database Programming,” ACM Transactions on Database Systems,
vol. 21, no. 1, pp. 30–76, 1996.


