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NONLINEAR STABILITY CRITERIA FOR THE HMF MODEL

MOHAMMED LEMOU, ANA MARIA LUZ, AND FLORIAN MEHATS

ABsTRACT. We study the nonlinear stability of a large class of inhomogeneous
steady state solutions to the Hamiltonian Mean Field (HMF) model. Under a
specific criterion, we prove the nonlinear stability of steady states which are de-
creasing functions of the microscopic energy. To achieve this task, we extend to
this context the strategy based on generalized rearrangement techniques which was
developed recently for the gravitational Vlasov-Poisson equation. Explicit stabil-
ity inequalities are established and our analysis is able to treat non compactly
supported steady states to HMF, which are physically relevant in this context but
induces additional difficulties, compared to the Vlasov-Poisson system.

1. Introduction and main result

1.1. The HMF model. In this paper, we are interested in the nonlinear stability of
a class of inhomogeneous steady state solutions to the Hamiltonian mean-field (HMF)
model [18, 1]. The HMF system is a kinetic model describing particles moving on a
unit circle interacting via an infinite range attractive cosine potential. This model
has been used as a toy-model of the Vlasov-Poisson system in the physical commu-
nity, for the study of non equilibrium phase transitions [11, 22, 2, 20|, of travelling
clusters [6, 23] or of relaxation processes |24, 3, 12|. The dynamics of perturbations
of inhomogeneous steady states of the HMF model has been investigated in [4, 5]
and the formal linear stability of steady states has been studied in [10, 19, 7|. In
particular, a simple criterion of linear stability has been derived in [19]. Our aim here
is to prove the nonlinear stability of inhomogeneous steady states under the same
criterion, by adapting the techniques developed in [15, 16] for the 3D Vlasov-Poisson
system. However, we emphasize that the steady state solutions to the Vlasov-Poisson
system studied in [15] are compactly supported. Here this assumption is not needed
and a weaker assumption is made in the case of the HMF model, as we will see later
on. Note finally that the long-time validity of the N-particle approximation for the
HMF model has been investigated in [8, 9] and the Landau-damping phenomenon
near spatially homogeneous state has been studied recently in [13].

In the HMF model, the distribution function of particles f(¢, 6, v) solves the initial-
valued problem

Ouf +vd0f — Opdsduf =0,  (£,0,0) Ry x T xR, (1.1)
f(oaeuv) = finit(eav) = 07
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2 M. LEMOU, A. M. LUZ, AND F. MEHATS

where T is the flat torus [0,27] and where the self-consistent potential ¢ associated
to a distribution function f is defined by
2m

670 == | or@)cos6 =000, p0) = | 0,000 (12)
The so-called magnetizzztion is the two-dimensional vector defined by
m—ﬁwwww with  u(6) = (cosf, sin0)” (1.3)
and we have :
¢r(0) = =My - u(6). (1.4)

The Cauchy problem for (1.1) is much simpler than the one for the Vlasov-Poisson
system, since the interaction kernel is smooth, and it can be shown that the HMF
model is well-posed in the natural energy space. The following quantities are invariant
during the evolution:

— the Casimir functions

~[f G(f(6,v))d0dv (1.5)

for any function G € C!(R,) such that G(0) = 0;
— the nonlinear energy

HH = || orevddo s [ o000
_ ‘U evww—MwawW@W
- [[ Hvdwv—fWQP (1.6)

— the total momentum
ff vf(6,v)d0dv. (1.7)

Moreover, the HMF system enjoys the Galilean invariance, that is, if f(¢,6,v) is a
solution, then so is f(¢,0 + vot, v + vg), for vy € R.

1.2. Statement of the main result. We consider a stationary state of the form

2

fo(6,v) = F(eo(0,v)), WM.M&®:%+%@, (1.8)

and where the potential associated to fy according to (1.2) takes the form
¢0(0) = —mg cos ¥, with mg > 0.
Here F' is a given function satisfying the following assumption.

Assumption 1.1. The function F is a C° function on R satisfying the following
properties. It is a C! function on (—c0, ey), for some e, € R U {40}, with F' < 0 on
this interval. We also assume that F(e) = 0 for e = e, when ey is finite, and that
lime 400 F(€) = 0 if e, = +0. We denote by F~' its inverse function, which is a
C! function defined from (0,sup F) onto (—o0,e*). The function fy given by (1.8)
is supposed to belong to the energy space L*((1 + |v|?)d@dv). Moreover, in the case
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ex < +0 and mo = e, we assume further that ST;;LO log(mo — e)F'(e)de < +0.

Examples. All the following typical examples that can be found in the literature
fulfill our Assumption 1.1:
(i) Maxwell-Boltzmann distributions [12], F'(e) = Aexp(—_e).

1

(ii) Polytropic distributions with compact support [10], Fi(e) = A(ex —e)? " with
q > 1. We used the usual notation z, = max(0, ).
e
(iii) Polytropic distributions with non compact support [10], F((e) = A(eg+¢e) 1™
with % <qg<l1.
(iv) Lynden-Bell distributions [11], F(e) = rrpamme-

Remark 1.2. Note that Assumption 1.1 implies in particular that fo € L since

I foll= < F(=myo).

It is also clear that ey is finite if and only if fo is compactly supported. We finally note
that we must have e, > —my, otherwise fo = 0 and this contradicts the assumption
mo > 0.

Our aim is to prove the orbital stability of such steady state under the following
criterion.

Assumption 1.3 (Nonlinear stability criterion). We will assume that fo satisfies the
following criterion

Ko < 1,
with
2
97 ;o0 (cos 0 — cos 0')(eo(0,v) — ¢o(0')~/2de’
Ko =f f ’F/(eo(e,v)ﬂ JD dfdv,
0 J—o f (€0<97U) o ¢0(9/))_1/2d9/
i (1.9)

where

D={0eT: ¢o(0) <eo(t,v)}.

Remark 1.4. Direct computations show that our criterion kg < 1 is the same as the
one deriwed in [19], that is

0<1+ ”F'(eo(a,v)) cos? 0dfdv — \/% J_mm K (k(e)) <m _ 1>2F’(e)de

4 (TP E(1k(E) <2k<e>2E<1/k<e>>
0 Jy k() K(1/k(e))

1/2
with k(e) = (M) and where K (k) and E(k) are respectively the complete elliptic

2myg

2
+1-— 2k(e)2> F'(e)de,

integrals of first and second kinds, see e.g. [4].
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Before stating our main result, we first recall the usual notion of rearrangement
which we adapt here to functions defined on the domain T x R. For any nonnegative
function f e L'(T x R), we define its distribution function as

pr(s) =1{(0,v) e T xR: f(0,v) > s}|, foralls=>0, (1.10)

where |A| denotes the Lebesgue measure of a set A. Note that 117(0) may be infinite,
but if(s) is finite for s > 0. Let f* be the pseudo-inverse of the function i, defined
by

fis) =inf{t =0, up(t) < s} =sup{t =0, up(t) > s}, forals=0

with, in particular, f#(0) = |f|r> € R U {+o0} and f#(4+00) = 0. Tt is well known
that pf is right-continuous and that for all s > 0, ¢ > 0,

fis) >t =  ps(t) >s. (1.11)

Next, we define the rearrangement f* of f by
15(0,v) = f* (|B(0, 02 +v2) nT x RD ,

where B(0, R) denotes the open ball in R? centered at 0 with radius R.
Our main result is the following theorem.

Theorem 1.5. Let fy be a steady state of the form (1.8) satzsfymg Assumptions
1.1 and 1.3. There exists § > 0 such that, for all f € L' ((1+ |[v[*)dfdv) satisfying
|Myp — Myy.—g,| <6, we have

If = fol- =0l < C (H(f) = H(fo) + CA+ [ flL)lf* = folle

+cf — fi(s ))+ds+CJ+w ufo(s)%f*,fg(s)ds> ,
" (1.12)

where ﬁf*vf(;k( s) =|{(0,v) e T xR: f*(0,v) <s < f§(0,v)}], for all s = 0, and where
C is a positive constant depending only on fo. The parameter 0y is defined by
M; = |My|(cosOy,sin0p)T, where My is given by (1.3). In particular, if fo is a
compactly supported steady state, then (1.12) can be replaced by

If — fol— )2 < C <H(f) CH(fo) + O+ )~ f6“!L1> BNCRE)

The proof of this theorem is given in Section 5 and uses several steps which are
developed in the following sections. In Section 2, we introduce the generalized rear-
rangements with respect to the microscopic energy, which enable to define a reduced
energy function depending on the magnetization vector only. In Section 3 we show
that, under the stability criterion kg < 1, the magnetization of the steady state is
a strict local minimizer of this reduced energy function and, in Section 4, we use a
result in [14] to establish a functional inequality that enables the control of f — fj.
We finally end the proof of Theorem 1.5 in section 5.
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1.3. Proof of the orbital stability of fy. In this subsection, we show how to
derive a stability result for the HMF model directly from our main Theorem 1.5.

Corollary 1.6. Let fy be a steady state of the form (1.8) satisfying Assumptions
1.1 and 1.3. Then fo is orbitally stable in the energy space, i.e., for all € > 0,
there exists n > 0 such that the following holds. For all solution f(t) to the HMF
model with initial data fin:e, that preserves the mass and the energy, we have: if

1+ 02) fimit — fo) | <71, then |(1+02)(F(-—B) — fo)l1 < e, where 0y is defined
by My = |Mg|(cosOp,sin0p)T and M; is given by (1.3).

Proof. We distinguish the two cases: e, < +00 and e, = +00.

Case 1: e, < +0o0 . In this case fy is compactly supported and we can apply (1.13),
that is we have

If = fo(- =0l < C (H(f) —H(fo) + C(L+ [ )l f* - f6“!> (1.14)

for all f satisfying [My— Mg ._g,)| < 3. Let finiu € L' ((1 + |[v|?)dvdf) be any initial
data for the HMF equation (1.1) such that
1L+ [0 (Finie = fo)llr <,

where 0 < 7 < min(1,/2) will be made precise later on. This implies in particular
that

‘Mfinit - Mfo‘ < Hfmzt - fOHL1 <n< 5/2: (1~15)
and then
1
’ (fzmt fO ’ = ‘jj ( + ¢0 ) (fmzt - fo)d@dv - 5 |Mfinit - ]\4f0|2
mg + 1)77

Now the contractivity property of the rearrangement implies that |[fZ., — fill1 <
| finit — folz1 < mn and then

"H(fzmt) (fO)‘ + C( 1+ ”fantHLl)H init f(TH
<[mo+14+C2+|[folr)ln
We then choose n such that
n<min (1,6/2, [mo + 1+ C (2 + | foll )]~ 82/(4C) ) . (1.16)

Let now f(t) be a solution to the HMF model with initial data fi,;. From the
conservation properties of this model, to wit H(f(t)) = H(finit) and f(t)* = fF...
and from (1.14) we then get

1) = fol- = 0572 < C <7'l(f(t)) = H(fo) + C(1+ [fO) )l f)* - f§|>
< 6%/4,
as long as [My@ — Mfo(_gf(t))\ < 4. In fact we shall prove that we have

|Mf( Mf() ef(t))’ < 5 YVt > (117)
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Indeed, at t = 0 we have [Mpg) — My, (-9, )| < 0/2 by assumption on finit (see
(1.15)). If at some time ¢ we have [Myq) — My, (g, )| = ¢, then by continuity in

time there is some time tq such that [My ) — My, . = 20/3 < §. We thus get

—9f<to>)|

If (o) = fo(- — ef(t0)>HLl < 4/2.
But this implies

26/3 = |My(ty) — Mypy(—0,0)| < If(F0) = fol- = Opo)) 1 < /2,

which is a contradiction, and claim (1.17) is proved. We conclude from Theorem 1.5
that

1£(t) = fol- = bs)I72 < C (W(fmn) = H(fo)l + CCL+ [ finitl L) fimie — fS‘IIu) ,

(1.18)

for all t+ = 0. The orbital stability of the solution f(t) is then proved in the L!
norm in a quantitative way, since the right-hand side of (1.18) goes to zero as |(1 +
V) (finit — fo)|| L1 goes to zero, as a consequence of the usual contractivity property of
the rearrangement | f ., — f§ |1 < | finit — fol 1. It remains to prove this stability in
the whole energy norm. We argue by contradiction. Assume that there exists ¢ > 0
and a sequence fI., such that |[(1 +v?)(f:; — fo)| 1 — 0 as n — +o0 and, for some
t" > 0, we have

inf [o*(g"(- = 0) = fo)l1 > e,

0e[0,27]
where ¢" = f"(t") and f" is a solution of the HMF model associated with the
initial data f]}.,. We have already shown the L' stability, which means that we have
lg"(- — b4,) — follpr — 0 as n — +o00. In particular, up to a subsequence, we have
v2g"(-—0,,) — v2fo almost everywhere as n — c0. Now from the Brézis-Lieb lemma,

we have
[v*g™ (- = g,) — v* follLr — [v*g™ (- = Og,) |2 + [V foll 2 — O (1.19)

asn — +00. From the conservation of the energy and the convergence ||(14v2)(
fo)lr — 0, we have

H(g"(- —bgn)) = H(g") = H(finit) = H(fo)- (1.20)
Note that we have used the convergence of the magnetization vector

Mg — Mfo‘ < | finie — folzr — 0.

init

n fR——
it

We apply this inequality to g"

= My| < lg"(- = 0gn) = folLr =0,

g”)

‘Mgn(.fg

and obtain from (1.20)
[0%g" (- = bgn) |1 — [v* fol 1 — 0.
Using (1.19), this implies that
[0%g™ (- = Ogn) — v*fol L1 — 0,

and yields a contradiction.
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Case 2: e, = +00 . In this case fy is not compactly supported and we shall use
inequality (1.12) of Theorem 1.5. The quantity s, (s) involved in (1.12) is no longer
bounded and presents a singularity at s = 0. Therefore we shall need to prove the
following claim: if ||f,, — folzr — O then

f+oos2<fu(s)—f"ﬁ. (5)) ds — 0 and FOOM (5)28pmx px(s)ds — 0, (1.21)
0 0 init n 0 fol$ fant’fO ’ ’

as n — +00 up to the extraction of a subsequence. Once this claim is proved, the
rest of the stability proof is exactly the same as in the case of a compactly supported
steady state fo. Let us then prove claim (1.21). We start by proving the first limit of

this claim. Assume that ||f ., — fo| 1 — 0. Since ||f;ﬁ-t—f§HL1(R+) < || fli—folor —

it

0, we deduce that s (fg(s) — fnﬁ. (s)) — 0 as n — 400 for almost every s = 0, up
+
to an extraction of a subsequence. But we have

+00
5 (fg(s) - {]”{ii-t({s))+ < sQfg(s), and L 82f§(8) < 400,

(see (3.4) for the second inequality). Therefore, by dominated convergence we can

pass to the limit inside the integral and get the first convergence in claim (1.21). Now

we prove the second limit of claim (1.21). Assume again that | f., — fo|;1 — 0, then

+00
JO B znztva ds - J fO - ’L’Vl’Lt +d9d’U H znzt f{)k”Ll < ” ’L’r’:l’bt - fO”Ll - 0

as n — +00. This means that /Bfn*tyfék(s) — 0 for almost every s = 0, up to an
extraction of a subsquence. We then conclude that the quantity Mfo( 5)? Bynse g (s)

ni

arising in (1.21) converges to 0 for almost every s > 0 (up to an extraction). There-
fore, to end the proof of the second limit in claim (1.21), it is sufficient to dominate
this quantity by an L' function in s € (0, | fo||z~) uniformly in n. To this purpose,
we observe that Spn« x(s) < if,(s) and then

B0 (8)2Bpme g (s) < pg(s)®, ¥ s>0.

To prove that the rhs of this inequality is integrable on R, we write

+00 +00 fg(s) +00
J 52f§(s)ds = f s J dt | ds = f f s2ds | dt
0 0 0 0 fo(s)>t

and using (1.11) we get

+00 +00 1 +00
f s2f§(s)d5 = f J s’ds | dt = f fg, (1) dt.
0 0 0<s<pusy (1) 3 Jo

Since from (3.4) we have SSFOO 32f§(s)ds < 400, the proof of claim (1.21) is complete.
This proves the orbital L' stability. To get the stability in the energy space, we
proceed as in the case e, < +00. This ends the proof of the orbital stability in all
cases.

g
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2. The reduced energy functional

The aim of this section is to introduce a reduced energy functional J(|My|)
which depends only on the modulus of the magnetization and which is such that
J(|M¢]) — T (mg) (recall that My, = (mg,0)T with mg > 0) is controlled by the
relative nonlinear energy H(f) — H(fo), up to conserved quantities.

2.1. Generalized rearrangements with respect to the microscopic energy.

Our purpose now is to define a generalized symmetric nonincreasing rearrangement
2

with respect to the microscopic energy e = % + ¢(6), where the potential ¢ is a given

C® function on T. We introduce the quantity

{(H,U)G’JI‘xR: U;+¢(0)<e}

It has the explicit expression

ag(e) —2[ \/e— +db.

It is readily seen that a4 is continuous on R, vanishes on (—co, min ¢| and is strictly

ag(e) = , foralleeRR. (2.1)

increasing from [min ¢, +00) to [0, +00). This enables to define its inverse ad_)l on
[0, +00). Note that, for all e € R,

47v/2(e — max $)? < ag(e) < 4mv2(e — min ¢)Y/?, (2.2)
which implies, for all s € R,
2 . 2
W—i—mmgﬁgaq5 (s)ém?—kmaxd). (2.3)

We now introduce the generalized rearrangement with respect to the microscopic
energy.

Lemma 2.1. Let ¢ € C*(T) and let ay be the function defined by (2.1). Let f €
LY(T x R), nonnegative. Then the function

5(0,v) = f* (% (”22 + (;s(e))) , (0,0v) e T xR

is equimeasurable to f, that is ppxs = pg, where py is defined by (1.10). In the sequel,
the function [ is called (decreasing) rearrangement with respect to the microscopic

energy 5 + ().

Proof. Recall that from the right continuity of yr, we have (1.11), for all s > 0, ¢ > 0.
Therefore, for all ¢ > 0,

fipso () = {(H,U)G’H‘XR: It <a¢, (”2+¢(9)>> >t}‘
_ {w,v)eqm; ( )w@}‘
+

= {(e,v)eTxR: % () < agy (Mf())}‘
= ay (a; (s (1)) = s ().
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g

Finally, we state a technical lemma dealing with the case of potentials which
have the special form of potentials of the HMF model. For e € R, m € R} and
#(0) = —m cos 6 we denote

am(e) = ag(e) _2\f Wde_ (%)

and introduce the angle

0, if e < —m,
Om(e) = X arccos (—e/m) € (0, ), if —m<e<m, (2.4)
, ife=m.

The function a;(e) and its derivative o/ (e) are represented on Figure 1. The proof

FIGURE 1. Function o (left) and its derivative o (right).

of the following lemma is deffered to the Appendix.

Lemma 2.2 (Properties of the function ay). Let

01(e)
ay(e) = 4\/§J (e + cos )2 dg for e e R. (2.5)
0
This function satisfies the following properties:
(1) a1 is a continuous nondecreasing function from R to Ry and ay(e) = 0 fore < —1.

(i1) o is a strictly increasing and strictly convex C* function on [—1,1). Its derivative
foree (—1,1) is given by

01(e)
I(e) = 2\f2f (e + cos0)~V/2 de. (2.6)
0

and its right-derivative at e = —1 is equal to 2.
(iii) «y is a strictly increasing and strictly concave C' function on (1,400). Its
deriative for e € (1,00) is still given by (2.6) and we have

a1 (e) ~ 4/ 2e, al(e) ~2my/2/e as e— +oo.
(iv) We have ay(1) = 16 and
oj(e) ~ —2logle —1| as e— 1. (2.7)
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(v) The inverse a;* of the function ay : [—1,4+00) = [0, +0) is a strictly increasing
CY function, defined on [0, +0), satisfying
1
(07" (s) = ———~ for seR:\{0,16},
ajoay (s
with o given by (2.6), and

(a7 1) (0) = % (a7 1)(16) = 0.

2.2. Reduction to a functional of the magnetization vector. In this subsec-
tion, we prove the following result.

Proposition 2.3. For all f € L*((1 + |v|?)dfdv), we have

T (M) = T\ My, |) < H(f) = H(fo) + 3 fllpa | f* = [l (2.8)
+ L JJFOO 52 (fﬁ(s) — fﬁ(s)> ds
3272 ), 0 +

where, for all me Ry,

2 0 2T 2
J(m) = ’% + FOO f <“2 + ¢> £ dodu (2.9)

0

with ¢(0) = —mcos 0.

Proof. Writing the difference H(f) — H(fo) between the nonlinear energies as

Hr - - || (+¢f><f fo) dodo — 5 (1M = 103, ) = [[ 65(f = oo

H <+¢f> f— f*¢f dedu+ﬂ< +<z>f> *‘f’f—fg‘d’f) dodv
H (22 > (£ = fo) dodv + 5 |J\4f—Mfo|2

=h+ I+ I3+ §|Mf - Mfo|2a

we organize the proof in three steps.

Step 1: Identification of J(|My|) — T (|Mg,]).
Let us first prove that
fo= £, (2.10)
which amounts to proving that
F(e) = fg o ag,(€), Ve = min ¢p. (2.11)
-1

Recall that ag, is invertible from [min ¢o, +0) to [0, +00) and denote G = F o ay
n [0,+0). Recall also that F' is assumed to be continuously decreasing. Hence, so
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is the function G' and then it is standard that G¥ = G, see for instance [21]. Now,
for all t = 0,

oy (t) = {(G,U)GTXR : F(U22+¢0(9)> >tH
= {(e,v)eqer: G o ag, (”22+¢0(9)> >tH

2
= {(0,’[1) eT xR : Gﬁ 0 Qg <U2 + qbo(e)) > t}‘ .
Hence, applying the (1.11) to the function
pa(s) ={t=0: G(t) > s}|, forall s=0,

and to its pseudo-inverse G¥, we get
02
L, (t) = H(@,v) eT xR : ag, (2 + ¢0(9)> < ,ug(t)}‘

2

- {(07v)eTxR: 7)2+¢o(9)<a;01(ua(t))}‘

= ag, o ay) (na(t)) = pa(t).

From this, we deduce that fg = G* = @G, which gives (2.11) and ends the proof of
(2.10). Consequently,

1
Iy + 5| My — My |*

H( +¢f> *¢f fo)dedv+%|Mf—Mfo|2

H( +¢f> *¢f f*¢°>d9dv+1|Mf—Mf0\2

H( +d’f> o dodo ~ ”( +¢>o> fi#edbdo

+f(d>o — &) py, do + *\Mf — My, |

Jf( +¢f> *¢fd9dv+ |J\4f|2 ff( +¢0>f§¢0d9dv—|Mf0|2

We observe now that ¢; can be written as ¢7(0) = —|My|cos(f — 6pr) for some
0yr € T. Hence, by periodicity, we have

[ (5 +er) 5377 doas + g2 = sy,
where J is defined by (2.9), and the same holds for ¢y. We thus have

1
I3 + §\Mf — My, > = T(1My]) — T (|My,]).
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Step 2: Positivity of 1.
We have, using Fubini,

I = ”( +¢f> f— f*¢f didv
( +¢f> (f dt—f fdt)d&dv

_Lm ﬂ( +¢f>d9dv— H <+¢f>d9dv dt

f*¢f >t

:f:oo U< +¢f)d9dv—”(+¢f>d9dv dt

where, for all ¢t = 0, we have denoted

A(t) = {(0,1}) ET xR : f*1(8,0) <t < f(e,u)},

B(t) = {(0,1})6’]1‘ xR : f(0,0) <t< f*¢f(9,v)}.

Since f*%f is a decreasing function of % + ¢, we clearly have

02 2

V(0,0) e AW, VO ) e BO), T+ 6(0) > % +op(0).

Moreover, from the equimeasurability of f and f*?7, we have |A(t)| = |B(t)|. Con-
sequently, we obtain I; > 0.

Step 3: Control of |Ia| by || f* — fg”Ll-

Let us first state an elementary result.

Lemma 2.4. Let ¢(0) = —mcos(0 — 0y) for (m,0y) € Ry x T. Then, for all f €
LY (T x R), we have

+00

H( )fw(e vydfdv = | fH(s)a," (s)ds. (2.12)

0

Proof of Lemma 2.4. By a first change of variable with respect to v: e = % + ¢(6),
we get

U (”22 + ¢> f*dodv = \@fﬂ ¢+(: o ag(e)ele — 3(60))Y2dedd
=2 foo J . fFoag(e)e(e — o)) dbde.

Now, if m > 0, we deduce from Lemma 2.2 that e — ag(e) = v/ma(e/m) is a strictly
increasing C! diffeomorphims from E,, = (—m,m) u (m, +) onto R*. Moreover,
from (2.6), we get

) =V2[ (e olo) Vo,
P(0)<e
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and

fj ( + ¢>> *dfdy = LEE fio ag(€)eal(e)de,

so, performing the change of variable s = a4(e) on E,,, we obtain (2.12). If m =0,
we observe that ay(e) = 47/ 2e, a;l(s) = 35% and

U( +¢) *¢d9dv_2wff fti 4mf fde—f f4(s)

The proof of the lemma is complete. OJ

From (2.12), we deduce
2
:f <1}2 +¢f> f*(z)f —f§¢f) dfdv
[ (76 - ) a0
= J+OO fﬁ (s)) (aqjj}(s) — min gbf) ds + min ¢y foﬂo (fﬁ(s) — f§(3)> ds
> [ (5510 miner) (756) = £ ds = Lol 2 =
> [T (fo(S) — £1(5)) , ds = 20l - filor

Using (2.3), we deduce that
1 +00

3272

I > —

& () = F() , ds = 3ol =] £ = £l
We now conclude by observing that, for all 8 € T, we have

05 (0)] < [M| [u(0)] = [My] < [[f]Lr- (2.13)

3. Study of the functional 7.

In this section, we study the function J(m) defined for m € Ry by (2.9), with
¢(0) = —mcosB. For e € R and m € R%, we recall that

e
as(€) = an(e) = ymar ()
where a; was defined by (2.5). Clearly, (2.9) and (2.12) yield, for m > 0,

2 +00 27 2 2
J(m)=m+J J <U—mcost9> fhoam (U—mcos9> dfdv
> ) ) \2 2
m2 +o0

e [ e () as
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Proposition 3.1. The function J defined by (2.9) is a C? function on R, . Denoting
¢(0) = —mcos 8, we have

J'(m) =m — Jf fg‘b(G, v) cos 6 dfdv (3.1)

and

Om (e(0,v)) 2
J cos 0 (e(0,v) +mcos 0 )2 do’
0 dfdv,

Om (e(6,v))
f (e(0,v) + mcos0') /2 do’
0
(3.2)

7"(m) = 1+ [ (Fheae) (e(6,0)) | cos -

where e(0,v) = % + ¢(0) and 0,y is defined by (2.4).
From this Proposition and from (2.10), it is immediate to deduce the

Corollary 3.2. Under Assumption 1.3, the magnetization mqg of the stationary state
fo is a strict local minimizer of J: one has

J'(mg) =0 and J"(mo) =1 — kg > 0.

Proof of Proposition 3.1. To differentiate the function J(m), we denote

otim,s) = gie) ot ().

From Lemma 2.2, ¢ is continuously differentiable with respect to m € R%, with

sfh(s)

2m32 o o oy ()

%(W% 3) ==

Moreover, we can also easily deduce from Lemma 2.2 that there exists a constant
C > 0 such that

V2 +eai(e) = C, Ve > —1. (3.3)

Let us fix 0 < m; < mgy. We deduce from (3.3) that, for all (m, s) € [m1, ma] x Ry,

< sf8(s) (2 +ajy! (\/Sm»m,

where f < g means f < Cg for some constant C'. Next, using (2.3), we obtain

g
‘M(m’ S)

99 (1n, 5)

pas < (145 f5(s).

Now, we claim that

f+00(1 + sQ)fg(s)ds < +00. (3.4)
0
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Indeed, we already know that Sfo )ds = | follz1 < +00 and, by (2.3) and (2.12),

JJF S2f£(8)d5 < J+OO (1 ( )) fo( s)ds

R TIPS P

S ff (1 + v+ foll) fo(8,v)dodv < +o0,

where we used (2.10), (2.13) and Assumption 1.1. This proves (3.4) and, by domi-

nated convergence, one can continuously differentiate J(m) = mTQ +m SJ * g(m, s)ds
for all m > 0:

T'(m) =m + f

0

—m+ :oofo()( 1(%) Q\Falosal (\ﬁ)>ds

=m 1 +00ﬁ5 a_ls—L ds
—|—m 0()<¢() / d_)l(s))

0 2a¢oa

+00

+oo
g(m, s)ds + mf (m s)ds

+00

—m+ % £ o ag(e) <ea;,(e) _ ;a¢(e)> de.

—m

We now introduce the function

2m
e) =2\/§f cos 04/ (e + cos @), db foree R
0
and denote
21 e
e) = Zﬁf cos B/ (e + mcos) df = /m By <—> . (3.5)
0 m
Let us list a few properties of this function bg. By adapting the proof of Lemma 2.2
developed in the Appendix, it is readily seen that by is a continuous function on R,

vanishing for e < —m, continuously differentiable on [—m,m) U (m, +0) with

by (e —2\ff cos (e +mcos0) "2 do.

Moreover, we have

e) = 4\@J07f/2 cos 6 (\/(e +mcosf); —+/(e— m0059)+) de

which implies that by (e) is always positive for e > —m, m > 0. For e > m we then
have

B 4 (cos 6)?
bole) —8m\/§f0 Ve +mcosf + /(e —mcosf) 4, (3.6)
by(e) ~ mny2 as e —> 4. (3.7)

Je
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Similarly, for e > m we have

/2 (cos 0)?
V.(e) = —4mn/2 J de,
¢(e) " 0 \/e—i—mcosH\/e—mcosﬁ(\/e—i-mcosH+\/e—m0050
thus
; ™m
~—— — 400. 3.8
¢(€) ov/2e as e (3.8)
Now we observe that
1
eay(e) +mbj(e) = §a¢(e). (3.9)
Hence, for m > 0, we have
+0
J'(m) =m — fhoag(e)bly(e) de (3.10)

—m

ova [ g e g
- J_m Jo fooa¢(e)\/e+m0089 c

By passing to the limit in this formula, we also get that 7 is differentiable at m = 0,
with J/(0) = 0. Finally, coming back to the variables (6,v), we obtain (3.1).

In order to compute the second derivative of 7, let us transform this expression into
a more suitable one, using an integration by parts in e. We denote €, = a;l oag,(ex),
where e, is defined in Assumption 1.1. By (2.10), we have fg ocag = Fo a(z_)ol o
ag, this function being continuous on [—m, +0), of class C! on [—m, +00)\{m, &},
nonincreasing, and vanishes on [€,,+00). Therefore, in the case e, < +00, one can
directly integrate by parts to obtain

+00 +00
fg o ag(e)bly(e) de = —f (fg)’ o ag(e)agy(e)bg(e) de. (3.11)

—m —m

Now we deal with the case &, = e, = +00. Since f* is a nonincreasing function
on R* and belongs to L' (R*), we deduce that f#(s) — 0 when e — 400. Therefore,
according to (3.7), we have fg o agy(e)bg(e) — 0 when e — +00, and the integration
by parts giving (3.11) is also valid in the case e, = +o0.

Consequently, we have

+00

J'(m) =m + J (fg)/ o a¢(e)ag,(e)b¢(e)de

—m

+o0
=m+ fo (fg)'(s)lw, o a;l(s)ds
+0 o (s
=m+ \/%L (f3)'(s)Broag (W) ds.
Consider the function
s

bones) = () oot (=)
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Using again Lemma 2.2, we get that h is continuously differentiable with respect to
m e R% for all m e R¥\{s?/32}, with

oh _ s(f5)(s)

—(m,s) = 4 By o ozfl <s> .
om 2m3/2 afoaj (ﬁ) \m

Since b, (e)| < ay(e), we deduce that

oh

—(m,s)| < —s(fg)'(s), for all m € [m1,ma], 0 < my < ma.

We now claim that
the fonction s — s(fg)’(s) belongs to L'(R,). (3.12)

Indeed, since fg is decreasing, we have

T T 7,3
J szfg(s)ds > fg(r)f s%ds = —fg(r).
0 0 3

Hence, using (3.4), we get

In particular sfg(s) — 0 when s — 400. On the other hand, the function fg =
Fo a_ol is continuous on Ry, of class C! and decreasing on [0, ag, (ex)), vanishing on
[ag, (€x), +00) (with possibly ag,(ex) = +o0). Therefore we can perform the following
integration by parts

+o0 +0
—f s(f) (s)ds = | fi(s)ds < +o0.

0 0

This ends the proof of claim (3.12) and enables to conclude by dominated convergence
that J’ is continuously differentiable on R, and that

J”(m)zl—l—L +wh(msds+\rf+w oh (m, s)ds
2v/m Jo

+oo 1 5B, oar? —=
v [ (ummoa (G5 ) - o )

— ds
2m oo ()
2O - el A (a%(e)%(e) —ag(e) ;5(6)) de.

V)

m

Finally, observing from (3.9) and from

m(e

1
eby(e) + 2m\ff (cos0)2(e +mcos )2 do = §b¢(e)
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that
1
S () (a5 (e)bg(e) — a¢>(6)b/¢(e))
e »
= + Q\f (cos0) (e + mcos ) do
a’
¢
Om (e) 2
O (€) J cos @' (e + m cos 9’)—1/2 4o’
:2\/§J cosfh — 20 e (e+mcosc9)71/2d0,
’ J (e —i—mcos@’)*l/2 de’
0
we obtain (3.2) by coming back to the (0, v) variables. 0

4. Control of f

Our previous analysis has allowed the control of the magnetization vector by the
relative Hamiltonian and the relative rearrangements. It remains to control the whole
distribution function f. To this aim we now write the relative energy in the following
form:

() =t = [[ (5 +60) = oo - S0, =g ()

In particular, this means that the following quantity

JJ ( + ¢f0> (f — fo) dfdv

is controlled and the problem is to show how this quantity controls f — fo. This task
was achieved in the context of the gravitational Vlasov-Poisson system [15] using
compactness arguments. Here we will rather use a functional inequality established
in [14] to get a quantitative control of | f— fo|/z1 by this quantity, up to rearrangement
terms depending only on f* and f; which are preserved by the flow. We emphasize
that the steady states to Vlasov-Poisson system studied in [15] are compactly sup-
ported and this property was essential to successfully drive the stability analysis in
this context. Here this assumption is not needed and a much weaker assumption is
made in the case of the HMF model. More precisely, we have the following inequality:

Proposition 4.1. Let fy be given by (1.8) where F' satisfies Assumption 1.1. Then,
there exist a constant Ko depending only on fo such that, for all f € L*((1+]|v|?)dvdd)
we have

(17 = folis + Lol = 17120)? <o [ ( +¢f0><f—fo>dedv

1 +00 5
wmolf” = Flo + g | (P e gy (s (32)

where Bpx px(s) = [{(0,v) € T x R: f*(0,v) < s < f5(0,v)}], for all s =0
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Proof. We shall apply Theorem 1 in [14]. We use the rearrangement with respect
to eg(f,v) = % + ¢y, and recall that the function ag, is strictly increasing and a
one-to-one function from [min ¢g, +0) to [0,400). Following [14], we introduce the
functions

m
Bo(u) = | agl(s)ds. 0. (43)
0
and B B 2B
Ho(u) = inf olu+s) + 0(5 — ) —2Bo(p)
O<s<p S

Then from Theorem 1 in [14], we have

(1F = Fol + Ufolus — 1Flua)? <K ﬁ3U< +w)f—ﬁmwv

+00 1 +00 1
| a9 gy (s | s () e (5)ds
(4.4)
where [l foll oo
K(fo) = 4f0 Iﬂ)(/ii;(w , and (4.5)
Bj4(s) = meas{(8,v) € T x R; f(6,v) < s < g(6,v)}, Vs> 0. (4.6)

Using the estimates (2.3) we then get from (4.4)

(UF = Folls + ol = If10:)? < ﬁj]( +w)f—ﬁmwv

1 +00
+ WL NO(S) ﬁf*Ja“( )dS + mOJO <,3f0 * gk (8) + 6f*7f6k (S)) ds (4.7)

Observing that

m Brg(s)ds = H(g — f)+dbdv,

we get

f+oo (/Bf(;“,f*(s) + ,Bf*,f[;k(S)> ds = | f* — f(;kHLla

0
and therefore

(F = follor + Lol = [ F1e)? < hj]( +m)f—mmwv

1 +00

T8 ), p0(8)* By px (s)ds + mol f* = i 1. (4.8)

To end the proof of inequality (4.2), it only remains to show that the quantity K (fp)
is finite. First we rewrite Ho(u) as

Bo(u + s) + Bo(pe — ) — 2Bo ()

HO(/’L) = inf 2

O<s<p S

1
- oi?iufo (1= M) ((ag,) (1 + As) + (ag) ) (1 = As))dA.
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Then, from the properties of a4 stated in Lemma 2.2, we claim that

(agy ) (1 4 Xs) + (ag,) (= As) = (ag)) (1),

foral 0 < A < 1,0 < 5 < p. Indeed, if p < 164/mg then p — As < 164/mg,

and since the function a¢ is a concave function on [0, 16«/ 0], we have (a¢ ) (p—
)\s) > (a ;01)’ (). Therefore we have the desired claim in this case. Similarly, if

> 164/mg then p + As = 16,/myg, and since the function a¢1 is a convex function
on [16,/m. ,~|—oo], we have (ad)o) (1 + As) = (ad)o) (u). Therefore the above claim

holds in both cases. Using this claim, we then get
1

Ho(p) 2 —————~
2a}, oad)l(,u)

and thus

and therefore
[ foll oo . .
K(fo) < Sio ag, (F71(t)) dt.

We then perform the change of variable e = F~1(t) to get

K(fo) <8 J T (0)F(©)|de. (4.9)

—mo
Now we claim that the rhs integral in this inequality is finite. Indeed, assume first
that e, < +00. The only possible singularities in this integral are at e = mg and
e = ex, since the function e — aj, (e)|F"(e)| is continuous on [—mg, +90)\{mo, ex}.

If we suppose that e* # mg, then we have a;, (e)[F'(e)| ~ ag (ex)[F'(e)| when
e — ey and, from Lemma 2.2 we have (for my < e, otherwise F' vanishes in the
neighborhood of my) ay (e)|F'(e)| ~ C'log|e—my| when e — mg. These two possible
singularities are thus integrable (the first is integrable by assumption on F).

If e* = mg then our Assumption 1.1 (i) ensures that {** o Qo (€)1 (€)|de is finite,

since ajy (e) ~ C'log|e —mo| as e — my.
Assume now that e, = +00. Using assertion (iii) of Lemma 2.2, we have ajy_(e)[F”(e)| ~
C|F'(e)|/+/e as e —> 400, where C' is a constant. But, as for (2.12), we have

[[7 (%o >d9dv_m ) o\ doue
:fo meaS{F (”22 +¢o(9)> >t} dt

+a0 +a0
[ et = [ aselr e

0 —myg
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This implies that the integral Sf:ﬁo ag, (€)|F'(e)|de is convergent. From assertion (%ii),
we know that ajy (e)|F'(e)| ~ C1[F'(e)|/v/e < Ci|F'(e)[v/e ~ Caag,(e)|F'(e)| for e
large enough, where C and Cy are some positive constants. This proves the fact
that the rhs integral of (4.9) is finite, and ends the proof of Proposition 4.1.

U
5. Proof of Theorem 1.5
We first insert identity (4.1) into inequality (4.2) and get
1
(1F = folus + Lolls = 1F1)® <Ko | M) = H(ho) + 51015 — My
1 +00 9
ol £ = il g [ (2B (o). 5)

We write My = |M|u(ff) where u(f) = (cos,sin6)?, and denote by fo(- — 0f)
the fonction fo(- — 0¢)(0,v) = fo(0 — 6f,v). We then apply this inequality (5.1) to
fo(- —0¢) and get

1
(1F = ol =) lun + Volls = 11 < Ko [ M) = H(fo) + 1007 = Mo |

1 +00
el £ = F o+ gz | 0By g5 (5)ds.

Now we observe that

2 2
Mfo(~—9f) = J;) Pfo (0 — Gf)u(e)dﬁ = JO Pfo (O)u(f + 9f)d9

= (m() COS(@f), my Sin(ef))T = mou(ﬁf).

Therefore

(1F = ol = 65)lua + Lolls = 110 < o [H(H) = H(o) + 5 (] = ma?|

1 +0o0
Fmolf* = il + 5 jo 10(5)2B e g2 (5)ds.
(5.2)

Now we use Corollary 3.2 together with the fact that 7 is a C? function to conclude
that there exist 6 > 0 and C > 0 such that

T (m) — T (mg) = C(m —mg)? for all m e (mg — &, mg + 9).

Reporting this into estimate (5.2) yields

(1F = ol = O5)ls + Vols = 1100 < Ko [H(H) = H(o) + 55 (T (M5 = Toma)|

1 +00
el £ = o+ gz | ol Bye g (5)ds.
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for all f such that |My| e (mo —J,mo + 0). Now using inequality (2.8), we get

(ILf = foC- = 8n)lpe + | foll o = If22)* < © {”H(f) — H(fo) + CA+ [ fl)lf* = folle

Jr(lrOO — f¥(5))+ds +CJ $) B,z (s)ds ]
(5.3)

for some positive constant C' only depending on fy. To end the proof of Theorem
1.5, we observe that, from the inequality (a + b)? > %aQ -2,

1
(If = fol- = 0p) e + Ifollr = 1£121)* = SIf = fol = 0171 = (I follr = 1£11)
1
= SlIf = fol = 070 — 175 — £
1
= Slf = fol = 07 = (Lfollpe + 1F 1) 15 = £l

> *Hf fol- =070 = C U+ [ Fle) 15— F* )
with C' = max(1, | fol|z1). We then report this into (5.3) and get inequality (1.12) for
all f such that |My|e (mo — 9, mg + 0).
Let us deduce (1.13) in the case where if fj is a compactly supported steady state.
In this case, the support of fg is [0, [Suppfol], so

+00 ) +00 )
| (= F) as < Buwnn [ (5= £1) s < Suphol* |1~

Furthermore, for all s > 0, we have pf,(s) < |Suppfo|, hence
+o0

+o0
| (s 8pm gy (5)ds < Suwpfol* [ By g s)ds = [Suppsal® [[ (45 — 7)o
0 0

< [Suppfol® | /* = f5 It
This enables to deduce (1.13) from (1.12) and this ends the proof of Theorem 1.5. O

Appendix

Proof of Lemma 2.2. The proof of Item (i) is straightforward. Let us prove Item (4i).
It is already clear from (2.5) that «g is strictly increasing. In order to prove that
o (e) is given by (2.6) for all e € (—1,1), we perform the change of variable u = cos 6

n (2.5):
L v (e+u
aj(e) = f_lg(e,u) du, where g(e,u)=4v?2 \/;112 .

For u € (—1,1), we have

0 24/2 1
0< ¥ < Ge(u) = vz T _e<ust

de ¢ Vi—e/(e+u)(l—u)

and, for all e e (—1,1),
1 2[
e(u) du = .
f_lq (u) du = ViR
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Hence, by Brézis-Lieb’s Lemma [17], we have go — ge, in L*(—1,1), for all eg €
(—1,1), and using a generalized dominated convergence theorem as stated in [16]
(Appendix A), we deduce that aj is C! on (—1,1), with

1
d
e) = 2\/§J Y .
—e /(e +u)(1 —u?)
Performing again the change of variable u = cos# in (5.4) yields (2.6). Now, we
perform the change of variable t = ¥£¢ in (5.4) and get, for e € (—1,1),

oo dt
e = Qﬁfo VIA+ )2t +1—e) (5:5)

From this expression, we clearly see that o} is strictly increasing, which yields the

convexity of a; on (—1,1). We also deduce that the right-derivative of a; at e = —1
is finite and its value is given by

(5.4)

+0o0
Qf @,
o (L+t)vt

Item (%iz) is an easy consequence of the following expression, valid for e > 1:

2m
e) = 2\f2J Ve + cosfdb.
0

Let us now prove Item (7v). The value a(1) = 16 is obtained by a direct calculation.
In order to prove the equivalent (2.7), we first consider the case e — 1, e < 1. The
change of variable s = 1/t in (5.5) yields

oo +0 ds
¢ = Qﬁfo Vst 92+ (1—e)s)

Let
_2\Ff ds .
(I+s)v/2+(1—e¢)s
From

1 1 1 1
0< —— = < ,
Vs Vit+s  \Js(l+s)(Vs+vVI+s) (1+8)/s
we deduce that

|0/(e) 2{J ds <2J+oodszc
! (14 8)32s2+ (1—e)s) Jo (1+8)32/s o

(5.6)

A direct computation yields

24/2 | 1—e
Vite P (V2+ite)?

Li(e) = — ~ —2log(l—e) as e—1,e<]1,

thus
aj(e) ~ —2log(l—e) as e—1, e<l.
To deal with the case e — 1, e > 1, we perform for e > 1 the change of variable

t = }Jrf:g:g in (2.6):

’e)—2\/§J .
0 At +t)(tle—1)+e+1)
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Using again (5.6), we get

+o0 dt

0o (1432 /t{tle—1) +e+1)
where we used that t(e — 1) + e + 1 > 2 and where we set

+00 dt
hale) = Qﬁfo I+t /tle—1) tet1)

|0 (e) — Ix(e)] < 2v2 < Co

Since
e—1

IQ = —210g (\/§+\/m)

5 ~ —2log(e—1) as e—1, e>1,

we infer that

oj(e) ~ —2logle—1) as e—1, e>1,
which end the proof of (). Finally, Item (v) is a straightforward consequence of
Items (i), (it), (¥ii), (iv), and the proof of Lemma 2.2 is complete. O
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