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NONLINEAR STABILITY CRITERIA FOR THE HMF MODEL

MOHAMMED LEMOU, ANA MARIA LUZ, AND FLORIAN MÉHATS

Abstract. We study the nonlinear stability of a large class of inhomogeneous
steady state solutions to the Hamiltonian Mean Field (HMF) model. Under a
specific criterion, we prove the nonlinear stability of steady states which are de-
creasing functions of the microscopic energy. To achieve this task, we extend to
this context the strategy based on generalized rearrangement techniques which was
developed recently for the gravitational Vlasov-Poisson equation. Explicit stabil-
ity inequalities are established and our analysis is able to treat non compactly
supported steady states to HMF, which are physically relevant in this context but
induces additional difficulties, compared to the Vlasov-Poisson system.

1. Introduction and main result

1.1. The HMF model. In this paper, we are interested in the nonlinear stability of
a class of inhomogeneous steady state solutions to the Hamiltonian mean-field (HMF)
model [18, 1]. The HMF system is a kinetic model describing particles moving on a
unit circle interacting via an infinite range attractive cosine potential. This model
has been used as a toy-model of the Vlasov-Poisson system in the physical commu-
nity, for the study of non equilibrium phase transitions [11, 22, 2, 20], of travelling
clusters [6, 23] or of relaxation processes [24, 3, 12]. The dynamics of perturbations
of inhomogeneous steady states of the HMF model has been investigated in [4, 5]
and the formal linear stability of steady states has been studied in [10, 19, 7]. In
particular, a simple criterion of linear stability has been derived in [19]. Our aim here
is to prove the nonlinear stability of inhomogeneous steady states under the same
criterion, by adapting the techniques developed in [15, 16] for the 3D Vlasov-Poisson
system. However, we emphasize that the steady state solutions to the Vlasov-Poisson
system studied in [15] are compactly supported. Here this assumption is not needed
and a weaker assumption is made in the case of the HMF model, as we will see later
on. Note finally that the long-time validity of the N-particle approximation for the
HMF model has been investigated in [8, 9] and the Landau-damping phenomenon
near spatially homogeneous state has been studied recently in [13].

In the HMF model, the distribution function of particles fpt, θ, vq solves the initial-
valued problem

Btf ` vBθf ´ BθφfBvf “ 0, pt, θ, vq P R` ˆ Tˆ R, (1.1)
fp0, θ, vq “ finitpθ, vq ě 0,
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where T is the flat torus r0, 2πs and where the self-consistent potential φf associated
to a distribution function f is defined by

φf pθq “ ´

ż 2π

0
ρf pθ

1q cospθ ´ θ1qdθ1, ρf pθq “

ż

R
fpθ, vqdv. (1.2)

The so-called magnetization is the two-dimensional vector defined by

Mf “

ż 2π

0
ρf pθqupθqdθ, with upθq “ pcos θ, sin θqT (1.3)

and we have
φf pθq “ ´Mf ¨ upθq. (1.4)

The Cauchy problem for (1.1) is much simpler than the one for the Vlasov-Poisson
system, since the interaction kernel is smooth, and it can be shown that the HMF
model is well-posed in the natural energy space. The following quantities are invariant
during the evolution:

– the Casimir functions
ĳ

Gpfpθ, vqqdθdv (1.5)

for any function G P C1pR`q such that Gp0q “ 0;
– the nonlinear energy

Hpfq “
1

2

ĳ

v2fpθ, vqdθdv `
1

2

ż

ρf pθqφf pθqdθ

“
1

2

ĳ

v2fpθ, vqdθdv ´
1

2
Mf ¨

ż

ρf pθqupθqdθ

“
1

2

ĳ

v2fpθ, vqdθdv ´
1

2
|Mf |

2; (1.6)

– the total momentum
ĳ

vfpθ, vqdθdv. (1.7)

Moreover, the HMF system enjoys the Galilean invariance, that is, if fpt, θ, vq is a
solution, then so is fpt, θ ` v0t, v ` v0q, for v0 P R.

1.2. Statement of the main result. We consider a stationary state of the form

f0pθ, vq “ F pe0pθ, vqq, with e0pθ, vq “
v2

2
` φ0pθq, (1.8)

and where the potential associated to f0 according to (1.2) takes the form

φ0pθq “ ´m0 cos θ, with m0 ą 0.

Here F is a given function satisfying the following assumption.

Assumption 1.1. The function F is a C0 function on R satisfying the following
properties. It is a C1 function on p´8, e˚q, for some e˚ P RYt`8u, with F 1 ă 0 on
this interval. We also assume that F peq “ 0 for e ě e˚ when e˚ is finite, and that
limeÑ`8 F peq “ 0 if e˚ “ `8. We denote by F´1 its inverse function, which is a
C1 function defined from p0, supF q onto p´8, e˚q. The function f0 given by (1.8)
is supposed to belong to the energy space L1pp1 ` |v|2qdθdvq. Moreover, in the case
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e˚ ă `8 and m0 “ e˚, we assume further that
şm0

´m0
logpm0 ´ eqF

1peqde ă `8.

Examples. All the following typical examples that can be found in the literature
fulfill our Assumption 1.1:

(i) Maxwell-Boltzmann distributions [12], F peq “ A expp´βeq.

(ii) Polytropic distributions with compact support [10], F peq “ Ape˚´eq
1
q´1

` with
q ą 1. We used the usual notation x` “ maxp0, xq.

(iii) Polytropic distributions with non compact support [10], F peq “ Ape0` eq
1
q´1

`

with 1
3 ă q ă 1.

(iv) Lynden-Bell distributions [11], F peq “ A
1`B exppβeq .

Remark 1.2. Note that Assumption 1.1 implies in particular that f0 P L8 since

}f0}L8 ď F p´m0q.

It is also clear that e˚ is finite if and only if f0 is compactly supported. We finally note
that we must have e˚ ą ´m0, otherwise f0 “ 0 and this contradicts the assumption
m0 ą 0.

Our aim is to prove the orbital stability of such steady state under the following
criterion.

Assumption 1.3 (Nonlinear stability criterion). We will assume that f0 satisfies the
following criterion

κ0 ă 1,

with

κ0 “

ż 2π

0

ż `8

´8

ˇ

ˇF 1pe0pθ, vqq
ˇ

ˇ

¨

˚

˚

˝

ż

D
pcos θ ´ cos θ1qpe0pθ, vq ´ φ0pθ

1qq´1{2dθ1

ż

D
pe0pθ, vq ´ φ0pθ

1qq´1{2dθ1

˛

‹

‹

‚

2

dθdv,

(1.9)
where

D “
 

θ1 P T : φ0pθ
1q ă e0pθ, vq

(

.

Remark 1.4. Direct computations show that our criterion κ0 ă 1 is the same as the
one derived in [19], that is

0 ă 1`

ĳ

F 1pe0pθ, vqq cos
2 θdθdv ´

4
?
m0

ż m0

´m0

Kpkpeqq

ˆ

2Epkpeqq

Kpkpeqq
´ 1

˙2

F 1peqde

´
4

?
m0

ż `8

m0

Kp1{kpeqq

kpeq

ˆ

2kpeq2Ep1{kpeqq

Kp1{kpeqq
` 1´ 2kpeq2

˙2

F 1peqde,

with kpeq “
´

e`m0
2m0

¯1{2
and where Kpkq and Epkq are respectively the complete elliptic

integrals of first and second kinds, see e.g. [4].
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Before stating our main result, we first recall the usual notion of rearrangement
which we adapt here to functions defined on the domain TˆR. For any nonnegative
function f P L1pTˆ Rq, we define its distribution function as

µf psq “ ~tpθ, vq P Tˆ R : fpθ, vq ą su~ , for all s ě 0, (1.10)

where |A| denotes the Lebesgue measure of a set A. Note that µf p0q may be infinite,
but µf psq is finite for s ą 0. Let f 7 be the pseudo-inverse of the function µf , defined
by

f 7psq “ inf tt ě 0, µf ptq ď su “ sup tt ě 0, µf ptq ą su , for all s ě 0

with, in particular, f 7p0q “ }f}L8 P R Y t`8u and f 7p`8q “ 0. It is well known
that µf is right-continuous and that for all s ě 0, t ě 0,

f 7psq ą t ðñ µf ptq ą s. (1.11)

Next, we define the rearrangement f˚ of f by

f˚pθ, vq “ f 7
´ffl

ffl

ffl
Bp0,

a

θ2 ` v2q X Tˆ R
ffl

ffl

ffl

¯

,

where Bp0, Rq denotes the open ball in R2 centered at 0 with radius R.
Our main result is the following theorem.

Theorem 1.5. Let f0 be a steady state of the form (1.8) satisfying Assumptions
1.1 and 1.3. There exists δ ą 0 such that, for all f P L1

`

p1` |v|2qdθdv
˘

satisfying
|Mf ´Mf0p¨´θf q| ă δ, we have

}f ´ f0p¨ ´ θf q}
2
L1 ď C

ˆ
ż

Hpfq ´Hpf0q ` Cp1` }f}L1q}f˚ ´ f˚0 }L1

`C

ż `8

0
s2

´

f 70psq ´ f
7psq

¯

`
ds` C

ż `8

0
µf0psq

2βf˚,f˚0 psqds

˙

,

(1.12)

where βf˚,f˚0 psq “ ~tpθ, vq P Tˆ R : f˚pθ, vq ď s ă f˚0 pθ, vqu~ , for all s ě 0, and where
C is a positive constant depending only on f0. The parameter θf is defined by
Mf “ |Mf |pcos θf , sin θf q

T , where Mf is given by (1.3). In particular, if f0 is a
compactly supported steady state, then (1.12) can be replaced by

}f ´ f0p¨ ´ θf q}
2
L1 ď C

ˆ
ż

Hpfq ´Hpf0q ` Cp1` }f}L1q}f˚ ´ f˚0 }L1

˙

. (1.13)

The proof of this theorem is given in Section 5 and uses several steps which are
developed in the following sections. In Section 2, we introduce the generalized rear-
rangements with respect to the microscopic energy, which enable to define a reduced
energy function depending on the magnetization vector only. In Section 3 we show
that, under the stability criterion κ0 ă 1, the magnetization of the steady state is
a strict local minimizer of this reduced energy function and, in Section 4, we use a
result in [14] to establish a functional inequality that enables the control of f ´ f0.
We finally end the proof of Theorem 1.5 in section 5.
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1.3. Proof of the orbital stability of f0. In this subsection, we show how to
derive a stability result for the HMF model directly from our main Theorem 1.5.

Corollary 1.6. Let f0 be a steady state of the form (1.8) satisfying Assumptions
1.1 and 1.3. Then f0 is orbitally stable in the energy space, i.e., for all ε ą 0,
there exists η ą 0 such that the following holds. For all solution fptq to the HMF
model with initial data finit, that preserves the mass and the energy, we have: if
}p1`v2qpfinit´f0q}L1 ď η , then }p1`v2qpfp¨´θf q´f0q}L1 ď ε, where θf is defined
by Mf “ |Mf |pcos θf , sin θf q

T and Mf is given by (1.3).

Proof. We distinguish the two cases: e˚ ă `8 and e˚ “ `8.

Case 1: e˚ ă `8 . In this case f0 is compactly supported and we can apply (1.13),
that is we have

}f ´ f0p¨ ´ θf q}
2
L1 ď C

ˆ
ż

Hpfq ´Hpf0q ` Cp
ż

1` }f}L1q}f˚ ´ f˚0 }

˙

(1.14)

for all f satisfying |Mf ´Mf0p¨´θf q| ă δ. Let finit P L1
`

p1` |v|2qdvdθ
˘

be any initial
data for the HMF equation (1.1) such that

}p1` |v|2qpfinit ´ f0q}L1 ă η,

where 0 ă η ă minp1, δ{2q will be made precise later on. This implies in particular
that

|Mfinit ´Mf0 | ď }finit ´ f0}L1 ă η ă δ{2, (1.15)
and then

|Hpfinitq ´Hpf0q| “
ˇ

ˇ

ˇ

ˇ

ĳ
ˆ

v2

2
` φ0pθq

˙

pfinit ´ f0qdθdv ´
1

2
|Mfinit ´Mf0 |

2

ˇ

ˇ

ˇ

ˇ

ď pm0 ` 1qη.

Now the contractivity property of the rearrangement implies that }f˚init ´ f˚0 }L1 ď

}finit ´ f0}L1 ă η and then

|Hpfinitq ´Hpf0q| ` Cp
ż

1` }finit}L1q}f˚init ´ f
˚
0 }

ď rm0 ` 1` C p2` }f0}L1qs η.

We then choose η such that

η ă min
´

1, δ{2, rm0 ` 1` C p2` }f0}L1qs
´1 δ2{p4Cq

¯

. (1.16)

Let now fptq be a solution to the HMF model with initial data finit. From the
conservation properties of this model, to wit Hpfptqq “ Hpfinitq and fptq˚ “ f˚init,
and from (1.14) we then get

}fptq ´ f0p¨ ´ θfptqq}
2
L1 ď C

ˆ

Hpfptqq ´Hpf0q ` Cp
ż

1` }fptq}L1q}fptq˚ ´ f˚0 }

˙

ă δ2{4,

as long as |Mfptq ´Mf0p¨´θfptqq| ă δ. In fact we shall prove that we have

|Mfptq ´Mf0p¨´θfptqq| ă δ, @t ě 0. (1.17)
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Indeed, at t “ 0 we have |Mfp0q ´Mf0p¨´θfp0qq| ă δ{2 by assumption on finit (see
(1.15)). If at some time t we have |Mfptq ´Mf0p¨´θfptqq| ě δ, then by continuity in
time there is some time t0 such that |Mfpt0q ´Mf0p¨´θfpt0q

q| “ 2δ{3 ă δ. We thus get

}fpt0q ´ f0p¨ ´ θfpt0qq}L1 ă δ{2.

But this implies

2δ{3 “ |Mfpt0q ´Mf0p¨´θfpt0qq
| ď }fpt0q ´ f0p¨ ´ θfpt0qq}L1 ă δ{2,

which is a contradiction, and claim (1.17) is proved. We conclude from Theorem 1.5
that

}fptq ´ f0p¨ ´ θfptqq}
2
L1 ď C

ˆ

|Hpfinitq ´Hpf0q| ` Cp
ż

1` }finit}L1q}f˚init ´ f
˚
0 }L1

˙

,

(1.18)
for all t ě 0. The orbital stability of the solution fptq is then proved in the L1

norm in a quantitative way, since the right-hand side of (1.18) goes to zero as }p1`
v2qpfinit´f0q}L1 goes to zero, as a consequence of the usual contractivity property of
the rearrangement }f˚init´f

˚
0 }L1 ď }finit´f0}L1 . It remains to prove this stability in

the whole energy norm. We argue by contradiction. Assume that there exists ε ą 0
and a sequence fninit such that }p1` v2qpfninit´ f0q}L1 Ñ 0 as nÑ `8 and, for some
tn ą 0, we have

inf
θ̃Pr0,2πs

}v2pgnp¨ ´ θ̃q ´ f0q}L1 ą ε,

where gn “ fnptnq and fn is a solution of the HMF model associated with the
initial data fninit. We have already shown the L1 stability, which means that we have
}gnp¨ ´ θgnq ´ f0}L1 Ñ 0 as n Ñ `8. In particular, up to a subsequence, we have
v2gnp¨´θgnq Ñ v2f0 almost everywhere as nÑ8. Now from the Brézis-Lieb lemma,
we have

}v2gnp¨ ´ θgnq ´ v
2f0}L1 ´ }v2gnp¨ ´ θgnq}L1 ` }v2f0}L1 Ñ 0 (1.19)

as nÑ `8. From the conservation of the energy and the convergence }p1`v2qpfninit´
f0q}L1 Ñ 0, we have

Hpgnp¨ ´ θgnqq “ Hpgnq “ Hpfninitq Ñ Hpf0q. (1.20)

Note that we have used the convergence of the magnetization vector
ˇ

ˇMfninit
´Mf0

ˇ

ˇ ď }fninit ´ f0}L1 Ñ 0.

We apply this inequality to gn
ˇ

ˇ

ˇ
Mgnp¨´θgn q ´Mf0

ˇ

ˇ

ˇ
ď }gnp¨ ´ θgnq ´ f0}L1 Ñ 0,

and obtain from (1.20)

}v2gnp¨ ´ θgnq}L1 ´ }v2f0}L1 Ñ 0.

Using (1.19), this implies that

}v2gnp¨ ´ θgnq ´ v
2f0}L1 Ñ 0,

and yields a contradiction.
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Case 2: e˚ “ `8 . In this case f0 is not compactly supported and we shall use
inequality (1.12) of Theorem 1.5. The quantity µf0psq involved in (1.12) is no longer
bounded and presents a singularity at s “ 0. Therefore we shall need to prove the
following claim: if }fninit ´ f0}L1 Ñ 0 then

ż `8

0
s2

´

f 70psq ´ f
n7
initpsq

¯

`
dsÑ 0 and

ż `8

0
µf0psq

2βfn˚init,f
˚
0
psqdsÑ 0, (1.21)

as n Ñ `8 up to the extraction of a subsequence. Once this claim is proved, the
rest of the stability proof is exactly the same as in the case of a compactly supported
steady state f0. Let us then prove claim (1.21). We start by proving the first limit of
this claim. Assume that }fninit´f0}L1 Ñ 0. Since }fn7init´f

7
0}L1pR`q ď }f

n
init´f0}L1 Ñ

0, we deduce that s2
´

f 70psq ´ f
n7
initpsq

¯

`
Ñ 0 as nÑ `8 for almost every s ě 0, up

to an extraction of a subsequence. But we have

s2
´

f 70psq ´ f
n7
initpsq

¯

`
ď s2f 70psq, and

ż `8

0
s2f 70psq ă `8,

(see (3.4) for the second inequality). Therefore, by dominated convergence we can
pass to the limit inside the integral and get the first convergence in claim (1.21). Now
we prove the second limit of claim (1.21). Assume again that }fninit´f0}L1 Ñ 0, then
ż `8

0
βfn˚init,f

˚
0
psqds “

ĳ

pf˚0 ´ f
n˚
initq`dθdv ď }f

n˚
init ´ f

˚
0 }L1 ď }fninit ´ f0}L1 Ñ 0

as n Ñ `8. This means that βfn˚init,f˚0 psq Ñ 0 for almost every s ě 0, up to an
extraction of a subsquence. We then conclude that the quantity µf0psq2βfn˚init,f˚0 psq
arising in (1.21) converges to 0 for almost every s ě 0 (up to an extraction). There-
fore, to end the proof of the second limit in claim (1.21), it is sufficient to dominate
this quantity by an L1 function in s P p0, }f0}L8q uniformly in n. To this purpose,
we observe that βfn˚init,f˚0 psq ď µf0psq and then

µf0psq
2βfn˚init,f

˚
0
psq ď µf0psq

3, @ s ą 0.

To prove that the rhs of this inequality is integrable on R`, we write
ż `8

0
s2f 70psqds “

ż `8

0
s2

˜

ż f 70psq

0
dt

¸

ds “

ż `8

0

˜

ż

f 70psqąt
s2ds

¸

dt

and using (1.11) we get
ż `8

0
s2f 70psqds “

ż `8

0

˜

ż

0ďsăµf0 ptq
s2ds

¸

dt “
1

3

ż `8

0
µf0ptq

3dt.

Since from (3.4) we have
ş`8

0 s2f 70psqds ă `8, the proof of claim (1.21) is complete.
This proves the orbital L1 stability. To get the stability in the energy space, we
proceed as in the case e˚ ă `8. This ends the proof of the orbital stability in all
cases.

�
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2. The reduced energy functional

The aim of this section is to introduce a reduced energy functional J p|Mf |q

which depends only on the modulus of the magnetization and which is such that
J p|Mf |q ´ J pm0q (recall that Mf0 “ pm0, 0q

T with m0 ě 0) is controlled by the
relative nonlinear energy Hpfq ´Hpf0q, up to conserved quantities.

2.1. Generalized rearrangements with respect to the microscopic energy.
Our purpose now is to define a generalized symmetric nonincreasing rearrangement
with respect to the microscopic energy e “ v2

2 `φpθq, where the potential φ is a given
C8 function on T. We introduce the quantity

aφpeq “

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R :
v2

2
` φpθq ă e

*ffl

ffl

ffl

ffl

, for all e P R. (2.1)

It has the explicit expression

aφpeq “ 2
?
2

ż 2π

0

a

pe´ φpθqq` dθ.

It is readily seen that aφ is continuous on R, vanishes on p´8,minφs and is strictly
increasing from rminφ,`8q to r0,`8q. This enables to define its inverse a´1φ on
r0,`8q. Note that, for all e P R,

4π
?
2pe´maxφq

1{2
` ď aφpeq ď 4π

?
2pe´minφq

1{2
` , (2.2)

which implies, for all s P R`,
s2

32π2
`minφ ď a´1φ psq ď

s2

32π2
`maxφ. (2.3)

We now introduce the generalized rearrangement with respect to the microscopic
energy.

Lemma 2.1. Let φ P C8pTq and let aφ be the function defined by (2.1). Let f P
L1pTˆ Rq, nonnegative. Then the function

f˚φpθ, vq “ f 7
ˆ

aφ

ˆ

v2

2
` φpθq

˙˙

, pθ, vq P Tˆ R

is equimeasurable to f , that is µf˚φ “ µf , where µf is defined by (1.10). In the sequel,
the function f˚φ is called (decreasing) rearrangement with respect to the microscopic
energy v2

2 ` φpθq.

Proof. Recall that from the right continuity of µf , we have (1.11), for all s ě 0, t ě 0.
Therefore, for all t ě 0,

µf˚φptq “

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R : f 7
ˆ

aφ

ˆ

v2

2
` φpθq

˙˙

ą t

*ffl

ffl

ffl

ffl

“

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R : aφ

ˆ

v2

2
` φpθq

˙

ă µf ptq

*ffl

ffl

ffl

ffl

“

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R :
v2

2
` φpθq ă a´1φ pµf ptqq

*
ffl

ffl

ffl

ffl

“ aφ

´

a´1φ pµf ptqq
¯

“ µf ptq.
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�

Finally, we state a technical lemma dealing with the case of potentials which
have the special form of potentials of the HMF model. For e P R, m P R˚` and
φpθq “ ´m cos θ we denote

αmpeq “ aφpeq “ 2
?
2

ż 2π

0

a

pe`m cos θq` dθ “
?
mα1

´ e

m

¯

and introduce the angle

θmpeq “

$

&

%

0, if e ď ´m,
arccos p´e{mq P p0, πq, if ´m ă e ă m,
π, if e ě m.

(2.4)

The function α1peq and its derivative α11peq are represented on Figure 1. The proof
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Figure 1. Function α1 (left) and its derivative α11 (right).

of the following lemma is deffered to the Appendix.

Lemma 2.2 (Properties of the function α1). Let

α1peq “ 4
?
2

ż θ1peq

0
pe` cos θq1{2 dθ for e P R. (2.5)

This function satisfies the following properties:
(i) α1 is a continuous nondecreasing function from R to R` and α1peq “ 0 for e ď ´1.
(ii) α1 is a strictly increasing and strictly convex C1 function on r´1, 1q. Its derivative
for e P p´1, 1q is given by

α11peq “ 2
?
2

ż θ1peq

0
pe` cos θq´1{2 dθ. (2.6)

and its right-derivative at e “ ´1 is equal to 2π.
(iii) α1 is a strictly increasing and strictly concave C1 function on p1,`8q. Its
derivative for e P p1,8q is still given by (2.6) and we have

α1peq „ 4π
?
2e, α11peq „ 2π

a

2{e as eÑ `8.

(iv) We have α1p1q “ 16 and

α11peq „ ´2 log |e´ 1| as eÑ 1. (2.7)
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(v) The inverse α´11 of the function α1 : r´1,`8q ÞÑ r0,`8q is a strictly increasing
C1 function, defined on r0,`8q, satisfying

pα´11 q
1psq “

1

α11 ˝ α
´1
1 psq

for s P R`zt0, 16u,

with α11 given by (2.6), and

pα´11 q
1p0q “

1

2π
, pα´11 q

1p16q “ 0.

2.2. Reduction to a functional of the magnetization vector. In this subsec-
tion, we prove the following result.

Proposition 2.3. For all f P L1pp1` |v|2qdθdvq, we have

J p|Mf |q ´ J p|Mf0 |q ď Hpfq ´Hpf0q ` 3}f}L1}f˚ ´ f˚0 }L1 (2.8)

`
1

32π2

ż `8

0
s2

´

f 70psq ´ f
7psq

¯

`
ds

where, for all m P R`,

J pmq “ m2

2
`

ż `8

´8

ż 2π

0

ˆ

v2

2
` φ

˙

f˚φ0 dθdv (2.9)

with φpθq “ ´m cos θ.

Proof. Writing the difference Hpfq ´Hpf0q between the nonlinear energies as

Hpfq ´Hpf0q “
ĳ

ˆ

v2

2
` φf

˙

pf ´ f0q dθdv ´
1

2

`

|Mf |
2 ´ |Mf0 |

2
˘

´

ĳ

φf pf ´ f0qdθdv

“

ĳ
ˆ

v2

2
` φf

˙

´

f ´ f˚φf
¯

dθdv `

ĳ
ˆ

v2

2
` φf

˙

´

f˚φf ´ f
˚φf
0

¯

dθdv

`

ĳ
ˆ

v2

2
` φf

˙

´

f
˚φf
0 ´ f0

¯

dθdv `
1

2
|Mf ´Mf0 |

2

“I1 ` I2 ` I3 `
1

2
|Mf ´Mf0 |

2,

we organize the proof in three steps.

Step 1: Identification of J p|Mf |q ´ J p|Mf0 |q.

Let us first prove that

f0 “ f˚φ00 , (2.10)

which amounts to proving that

F peq “ f 70 ˝ aφ0peq, @e ě minφ0. (2.11)

Recall that aφ0 is invertible from rminφ0,`8q to r0,`8q and denote G “ F ˝ a´1φ0
on r0,`8q. Recall also that F is assumed to be continuously decreasing. Hence, so
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is the function G and then it is standard that G7 “ G, see for instance [21]. Now,
for all t ě 0,

µf0ptq “

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R : F

ˆ

v2

2
` φ0pθq

˙

ą t

*ffl

ffl

ffl

ffl

“

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R : G ˝ aφ0

ˆ

v2

2
` φ0pθq

˙

ą t

*
ffl

ffl

ffl

ffl

“

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R : G7 ˝ aφ0

ˆ

v2

2
` φ0pθq

˙

ą t

*
ffl

ffl

ffl

ffl

.

Hence, applying the (1.11) to the function

µGpsq “ |tt ě 0 : Gptq ą su| , for all s ě 0,

and to its pseudo-inverse G7, we get

µf0ptq “

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R : aφ0

ˆ

v2

2
` φ0pθq

˙

ă µGptq

*ffl

ffl

ffl

ffl

“

ffl

ffl

ffl

ffl

"

pθ, vq P Tˆ R :
v2

2
` φ0pθq ă a´1φ0 pµGptqq

*ffl

ffl

ffl

ffl

“ aφ0 ˝ a
´1
φ0
pµGptqq “ µGptq.

From this, we deduce that f 70 “ G7 “ G, which gives (2.11) and ends the proof of
(2.10). Consequently,

I3 `
1

2
|Mf ´Mf0 |

2

“

ĳ
ˆ

v2

2
` φf

˙

´

f
˚φf
0 ´ f0

¯

dθdv `
1

2
|Mf ´Mf0 |

2

“

ĳ
ˆ

v2

2
` φf

˙

´

f
˚φf
0 ´ f˚φ00

¯

dθdv `
1

2
|Mf ´Mf0 |

2

“

ĳ
ˆ

v2

2
` φf

˙

f
˚φf
0 dθdv ´

ĳ
ˆ

v2

2
` φ0

˙

f˚φ00 dθdv

`

ż

pφ0 ´ φf q ρf0 dθ `
1

2
|Mf ´Mf0 |

2

“

ĳ
ˆ

v2

2
` φf

˙

f
˚φf
0 dθdv `

1

2
|Mf |

2 ´

ĳ
ˆ

v2

2
` φ0

˙

f˚φ00 dθdv ´
1

2
|Mf0 |

2.

We observe now that φf can be written as φf pθq “ ´|Mf | cospθ ´ θM q for some
θM P T. Hence, by periodicity, we have

ĳ
ˆ

v2

2
` φf

˙

f
˚φf
0 dθdv `

1

2
|Mf |

2 “ J p|Mf |q,

where J is defined by (2.9), and the same holds for φ0. We thus have

I3 `
1

2
|Mf ´Mf0 |

2 “ J p|Mf |q ´ J p|Mf0 |q.
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Step 2: Positivity of I1.

We have, using Fubini,

I1 “

ĳ
ˆ

v2

2
` φf

˙

´

f ´ f˚φf
¯

dθdv

“

ĳ
ˆ

v2

2
` φf

˙

˜

ż f

0
dt´

ż f
˚φf

0
dt

¸

dθdv

“

ż `8

0

¨

˚

˝

ĳ

fąt

ˆ

v2

2
` φf

˙

dθdv ´

ĳ

f
˚φfąt

ˆ

v2

2
` φf

˙

dθdv

˛

‹

‚

dt

“

ż `8

0

¨

˚

˝

ĳ

Aptq

ˆ

v2

2
` φf

˙

dθdv ´

ĳ

Bptq

ˆ

v2

2
` φf

˙

dθdv

˛

‹

‚

dt

where, for all t ě 0, we have denoted

Aptq “
!

pθ, vq P Tˆ R : f˚φf pθ, vq ď t ă fpθ, vq
)

,

Bptq “
!

pθ, vq P Tˆ R : fpθ, vq ď t ă f˚φf pθ, vq
)

.

Since f˚φf is a decreasing function of v
2

2 ` φf , we clearly have

@pθ, vq P Aptq, @pθ1, v1q P Bptq,
v2

2
` φf pθq ą

v12

2
` φf pθ

1q.

Moreover, from the equimeasurability of f and f˚φf , we have |Aptq| “ |Bptq|. Con-
sequently, we obtain I1 ě 0.

Step 3: Control of |I2| by }f˚ ´ f˚0 }L1 .

Let us first state an elementary result.

Lemma 2.4. Let φpθq “ ´m cospθ ´ θ0q for pm, θ0q P R` ˆ T. Then, for all f P
L1
`pTˆ Rq, we have

ĳ
ˆ

v2

2
` φpθq

˙

f˚φpθ, vqdθdv “

ż `8

0
f 7psqa´1φ psqds. (2.12)

Proof of Lemma 2.4. By a first change of variable with respect to v: e “ v2

2 ` φpθq,
we get

ĳ
ˆ

v2

2
` φ

˙

f˚φdθdv “
?
2

ż 2π

0

ż `8

φpθq
f 7 ˝ aφpeqepe´ φpθqq

´1{2dedθ

“
?
2

ż `8

´m

ż

φpθqăe
f 7 ˝ aφpeqepe´ φpθqq

´1{2dθde.

Now, ifm ą 0, we deduce from Lemma 2.2 that e ÞÑ aφpeq “
?
mα1pe{mq is a strictly

increasing C1 diffeomorphims from Em “ p´m,mq Y pm,`8q onto R˚`. Moreover,
from (2.6), we get

a1φpeq “
?
2

ż

φpθqăe
pe´ φpθqq´1{2dθ,
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and
ĳ

ˆ

v2

2
` φ

˙

f˚φdθdv “

ż

ePEm

f 7 ˝ aφpeqea
1
φpeqde,

so, performing the change of variable s “ aφpeq on Em, we obtain (2.12). If m “ 0,
we observe that aφpeq “ 4π

?
2e, a´1φ psq “

s2

32π2 and
ĳ

ˆ

v2

2
` φ

˙

f˚φdθdv “ 2π
?
2

ż `8

0
f 7

´

4π
?
2e
¯?

ede “

ż `8

0
f 7psq

s2

32π2
ds.

The proof of the lemma is complete. �

From (2.12), we deduce

I2 “

ĳ
ˆ

v2

2
` φf

˙

´

f˚φf ´ f
˚φf
0

¯

dθdv

“

ż `8

0

´

f 7psq ´ f 70psq
¯

a´1φf psqds

“

ż `8

0

´

f 7psq ´ f 70psq
¯´

a´1φf psq ´minφf

¯

ds`minφf

ż `8

0

´

f 7psq ´ f 70psq
¯

ds

ě

ż

f 7psqăf 70psq

´

a´1φf psq ´minφf

¯´

f 7psq ´ f 70psq
¯

ds´ }φf }L8}f
7 ´ f 70}L1

ě ´

ż `8

0
a´1φf psq

´

f 70psq ´ f
7psq

¯

`
ds´ 2}φf }L8}f

7 ´ f 70}L1 .

Using (2.3), we deduce that

I2 ě ´
1

32π2

ż `8

0
s2

´

f 70psq ´ f
7psq

¯

`
ds´ 3}φf }L8}f

7 ´ f 70}L1 .

We now conclude by observing that, for all θ P T, we have

|φf pθq| ď |Mf | |upθq| “ |Mf | ď }f}L1 . (2.13)

�

3. Study of the functional J .

In this section, we study the function J pmq defined for m P R` by (2.9), with
φpθq “ ´m cos θ. For e P R and m P R˚`, we recall that

aφpeq “ αmpeq “
?
mα1

´ e

m

¯

,

where α1 was defined by (2.5). Clearly, (2.9) and (2.12) yield, for m ą 0,

J pmq “ m2

2
`

ż `8

´8

ż 2π

0

ˆ

v2

2
´m cos θ

˙

f 70 ˝ αm

ˆ

v2

2
´m cos θ

˙

dθdv

“
m2

2
`m

ż `8

0
f 70psqα

´1
1

ˆ

s
?
m

˙

ds.
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Proposition 3.1. The function J defined by (2.9) is a C2 function on R`. Denoting
φpθq “ ´m cos θ, we have

J 1pmq “ m´

ĳ

f˚φ0 pθ, vq cos θ dθdv (3.1)

and

J 2pmq “ 1`

ĳ

pf 70˝aφq
1pepθ, vqq

¨

˚

˚

˚

˝

cos θ ´

ż θmpepθ,vqq

0
cos θ1pepθ, vq `m cos θ1q´1{2 dθ1

ż θmpepθ,vqq

0
pepθ, vq `m cos θ1q´1{2 dθ1

˛

‹

‹

‹

‚

2

dθdv,

(3.2)
where epθ, vq “ v2

2 ` φpθq and θm is defined by (2.4).

From this Proposition and from (2.10), it is immediate to deduce the

Corollary 3.2. Under Assumption 1.3, the magnetization m0 of the stationary state
f0 is a strict local minimizer of J : one has

J 1pm0q “ 0 and J 2pm0q “ 1´ κ0 ą 0.

Proof of Proposition 3.1. To differentiate the function J pmq, we denote

gpm, sq “ f 70psqα
´1
1

ˆ

s
?
m

˙

.

From Lemma 2.2, g is continuously differentiable with respect to m P R˚`, with

Bg

Bm
pm, sq “ ´

sf 70psq

2m3{2 α11 ˝ α
´1
1 p

s?
m
q
.

Moreover, we can also easily deduce from Lemma 2.2 that there exists a constant
C ą 0 such that

?
2` e α11peq ě C, @e ě ´1. (3.3)

Let us fix 0 ă m1 ă m2. We deduce from (3.3) that, for all pm, sq P rm1,m2s ˆ R`,
ˇ

ˇ

ˇ

ˇ

Bg

Bm
pm, sq

ˇ

ˇ

ˇ

ˇ

À sf 70psq

ˆ

2` α´11

ˆ

s
?
m

˙˙1{2

,

where f À g means f ď Cg for some constant C. Next, using (2.3), we obtain
ˇ

ˇ

ˇ

ˇ

Bg

Bm
pm, sq

ˇ

ˇ

ˇ

ˇ

À p1` s2qf 70psq.

Now, we claim that
ż `8

0
p1` s2qf 70psqds ă `8. (3.4)
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Indeed, we already know that
ş

f 70psqds “ }f0}L1 ă `8 and, by (2.3) and (2.12),
ż `8

0
s2f 70psqds À

ż `8

0

´

1` a´1φ0 psq
¯

f 70psqds

“

ĳ
ˆ

1`
v2

2
` φ0pθq

˙

f˚φ00 pθ, vqdθdv

À

ĳ

`

1` v2 ` }f0}L1

˘

f0pθ, vqdθdv ă `8,

where we used (2.10), (2.13) and Assumption 1.1. This proves (3.4) and, by domi-
nated convergence, one can continuously differentiate J pmq “ m2

2 `m
ş`8

0 gpm, sqds
for all m ą 0:

J 1pmq “ m`

ż `8

0
gpm, sqds`m

ż `8

0

Bg

Bm
pm, sqds

“ m`

ż `8

0
f 70psq

˜

α´11

ˆ

s
?
m

˙

´
s

2
?
mα11 ˝ α

´1
1 p

s?
m
q

¸

ds

“ m`
1

m

ż `8

0
f 70psq

˜

a´1φ psq ´
s

2a1φ ˝ a
´1
φ psq

¸

ds

“ m`
1

m

ż `8

´m
f 70 ˝ aφpeq

ˆ

ea1φpeq ´
1

2
aφpeq

˙

de.

We now introduce the function

β1peq “ 2
?
2

ż 2π

0
cos θ

a

pe` cos θq` dθ for e P R

and denote

bφpeq “ 2
?
2

ż 2π

0
cos θ

a

pe`m cos θq` dθ “
?
mβ1

´ e

m

¯

. (3.5)

Let us list a few properties of this function bφ. By adapting the proof of Lemma 2.2
developed in the Appendix, it is readily seen that bφ is a continuous function on R,
vanishing for e ď ´m, continuously differentiable on r´m,mq Y pm,`8q with

b1φpeq “ 2
?
2

ż θmpeq

0
cos θpe`m cos θq´1{2 dθ.

Moreover, we have

bφpeq “ 4
?
2

ż π{2

0
cos θ

´

a

pe`m cos θq` ´
a

pe´m cos θq`

¯

dθ

which implies that bφpeq is always positive for e ą ´m, m ą 0. For e ą m we then
have

bφpeq “ 8m
?
2

ż π{2

0

pcos θq2
?
e`m cos θ `

a

pe´m cos θq`
dθ, (3.6)

bφpeq „
πm
?
2

?
e

as eÑ `8. (3.7)



16 M. LEMOU, A. M. LUZ, AND F. MÉHATS

Similarly, for e ą m we have

b1φpeq “ ´4m
?
2

ż π{2

0

pcos θq2
?
e`m cos θ

?
e´m cos θp

?
e`m cos θ `

?
e´m cos θ

dθ,

thus
b1φpeq „ ´

πm

e
?
2e

as eÑ `8. (3.8)

Now we observe that

ea1φpeq `mb
1
φpeq “

1

2
aφpeq. (3.9)

Hence, for m ą 0, we have

J 1pmq “ m´

ż `8

´m
f 70 ˝ aφpeqb

1
φpeq de (3.10)

“ m´ 2
?
2

ż `8

´m

ż θmpeq

0
f 70 ˝ aφpeq

cos θ
?
e`m cos θ

dθde.

By passing to the limit in this formula, we also get that J is differentiable at m “ 0,
with J 1p0q “ 0. Finally, coming back to the variables pθ, vq, we obtain (3.1).

In order to compute the second derivative of J , let us transform this expression into
a more suitable one, using an integration by parts in e. We denote re˚ “ a´1φ ˝aφ0pe˚q,
where e˚ is defined in Assumption 1.1. By (2.10), we have f 70 ˝ aφ “ F ˝ a´1φ0 ˝

aφ, this function being continuous on r´m,`8q, of class C1 on r´m,`8qztm, re˚u,
nonincreasing, and vanishes on rre˚,`8q. Therefore, in the case e˚ ă `8, one can
directly integrate by parts to obtain

ż `8

´m
f 70 ˝ aφpeqb

1
φpeq de “ ´

ż `8

´m
pf 70q

1 ˝ aφpeqa
1
φpeqbφpeq de. (3.11)

Now we deal with the case re˚ “ e˚ “ `8. Since f 7 is a nonincreasing function
on R` and belongs to L1pR`q, we deduce that f 7psq Ñ 0 when eÑ `8. Therefore,
according to (3.7), we have f 70 ˝ aφpeqbφpeq Ñ 0 when e Ñ `8, and the integration
by parts giving (3.11) is also valid in the case e˚ “ `8.

Consequently, we have

J 1pmq “ m`

ż `8

´m
pf 70q

1 ˝ aφpeqa
1
φpeqbφpeqde

“ m`

ż `8

0
pf 70q

1psqbφ ˝ a
´1
φ psqds

“ m`
?
m

ż `8

0
pf 70q

1psqβ1 ˝ α
´1
1

ˆ

s
?
m

˙

ds.

Consider the function

hpm, sq “ pf 70q
1psqβ1 ˝ α

´1
1

ˆ

s
?
m

˙

.
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Using again Lemma 2.2, we get that h is continuously differentiable with respect to
m P R˚` for all m P R˚`zts2{32u, with

Bh

Bm
pm, sq “ ´

spf 70q
1psq

2m3{2 α11 ˝ α
´1
1 p

s?
m
q
β11 ˝ α

´1
1

ˆ

s
?
m

˙

.

Since |b1φpeq| ď a1φpeq, we deduce that
ˇ

ˇ

ˇ

ˇ

Bh

Bm
pm, sq

ˇ

ˇ

ˇ

ˇ

À ´spf 70q
1psq, for all m P rm1,m2s, 0 ă m1 ă m2.

We now claim that

the fonction s ÞÑ spf 70q
1psq belongs to L1pR`q. (3.12)

Indeed, since f 70 is decreasing, we have
ż r

0
s2f 70psqds ě f 70prq

ż r

0
s2ds “

r3

3
f 70prq.

Hence, using (3.4), we get

f 70psq À
1

s3
, @s ą 0.

In particular sf 70psq Ñ 0 when s Ñ `8. On the other hand, the function f 70 “

F ˝ a´1φ0 is continuous on R`, of class C1 and decreasing on r0, aφ0pe˚qq, vanishing on
raφ0pe˚q,`8q (with possibly aφ0pe˚q “ `8). Therefore we can perform the following
integration by parts

´

ż `8

0
spf 70q

1psqds “

ż `8

0
f 70psqds ă `8.

This ends the proof of claim (3.12) and enables to conclude by dominated convergence
that J 1 is continuously differentiable on R` and that

J 2pmq “ 1`
1

2
?
m

ż `8

0
hpm, sqds`

?
m

ż `8

0

Bh

Bm
pm, sqds

“ 1`

ż `8

0
pf 70q

1psq

¨

˝

1

2
?
m
β1 ˝ α

´1
1

ˆ

s
?
m

˙

´

sβ11 ˝ α
´1
1

´

s?
m

¯

2mα11 ˝ α
´1
1 p

s?
m
q

˛

‚ds

“ 1`
1

2m

ż `8

´m

pf 70 ˝ aφq
1peq

a1φpeq

`

a1φpeqbφpeq ´ aφpeqb
1
φpeq

˘

de.

Finally, observing from (3.9) and from

eb1φpeq ` 2m
?
2

ż θmpeq

0
pcos θq2pe`m cos θq´1{2 dθ “

1

2
bφpeq
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that
1

2ma1φpeq

`

a1φpeqbφpeq ´ aφpeqb
1
φpeq

˘

“ ´
pb1φpeqq

2

a1φpeq
` 2
?
2

ż θmpeq

0
pcos θq2pe`m cos θq´1{2 dθ

“ 2
?
2

ż θmpeq

0

¨

˚

˚

˚

˝

cos θ ´

ż θmpeq

0
cos θ1pe`m cos θ1q´1{2 dθ1

ż θmpeq

0
pe`m cos θ1q´1{2 dθ1

˛

‹

‹

‹

‚

2

pe`m cos θq´1{2 dθ,

we obtain (3.2) by coming back to the pθ, vq variables. �

4. Control of f

Our previous analysis has allowed the control of the magnetization vector by the
relative Hamiltonian and the relative rearrangements. It remains to control the whole
distribution function f . To this aim we now write the relative energy in the following
form:

Hpfq ´Hpf0q “
ĳ

ˆ

v2

2
` φf0

˙

pf ´ f0q dθdv ´
1

2
|Mf ´Mf0 |

2. (4.1)

In particular, this means that the following quantity
ĳ

ˆ

v2

2
` φf0

˙

pf ´ f0q dθdv

is controlled and the problem is to show how this quantity controls f ´ f0. This task
was achieved in the context of the gravitational Vlasov-Poisson system [15] using
compactness arguments. Here we will rather use a functional inequality established
in [14] to get a quantitative control of }f´f0}L1 by this quantity, up to rearrangement
terms depending only on f˚ and f˚0 which are preserved by the flow. We emphasize
that the steady states to Vlasov-Poisson system studied in [15] are compactly sup-
ported and this property was essential to successfully drive the stability analysis in
this context. Here this assumption is not needed and a much weaker assumption is
made in the case of the HMF model. More precisely, we have the following inequality:

Proposition 4.1. Let f0 be given by (1.8) where F satisfies Assumption 1.1. Then,
there exist a constant K0 depending only on f0 such that, for all f P L1pp1`|v|2qdvdθq
we have

p}f ´ f0}L1 ` }f0}L1 ´ }f}L1q
2
ďK0

ĳ
ˆ

v2

2
` φf0

˙

pf ´ f0q dθdv

`m0}f
˚ ´ f˚0 }L1 `

1

8π2

ż `8

0
µ0psq

2βf˚,f˚0 psqds, (4.2)

where βf˚,f˚0 psq “ ~tpθ, vq P Tˆ R : f˚pθ, vq ď s ă f˚0 pθ, vqu~ , for all s ě 0.
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Proof. We shall apply Theorem 1 in [14]. We use the rearrangement with respect
to e0pθ, vq “ v2

2 ` φf0 and recall that the function aφ0 is strictly increasing and a
one-to-one function from rminφ0,`8q to r0,`8q. Following [14], we introduce the
functions

B0pµq “

ż µ

0
a´1φ0 psqds, @µ ě 0, (4.3)

and

H0pµq “ inf
0ăsďµ

B0pµ` sq `B0pµ´ sq ´ 2B0pµq

s2
.

Then from Theorem 1 in [14], we have

p}f ´ f0}L1 ` }f0}L1 ´ }f}L1q
2
ďKpf0q

ĳ
ˆ

v2

2
` φf0

˙

pf ´ f0q dθdv

`

ż `8

0
a´1φ0 p2µf0psqqβf˚,f˚0 psqds´

ż `8

0
a´1φ0 pµf0psqqβf˚0 ,f˚psqds

(4.4)

where

Kpf0q “ 4

ż }f0}L8

0

ds

H0pµf0psqq
, and (4.5)

βf,gpsq “ meastpθ, vq P Tˆ R; fpθ, vq ď s ă gpθ, vqu, @s ě 0. (4.6)
Using the estimates (2.3) we then get from (4.4)

p}f ´ f0}L1 ` }f0}L1 ´ }f}L1q
2
ďKpf0q

ĳ
ˆ

v2

2
` φf0

˙

pf ´ f0q dθdv

`
1

8π2

ż `8

0
µ0psq

2βf˚,f˚0 psqds`m0

ż `8

0

´

βf˚0 ,f˚psq ` βf˚,f
˚
0
psq

¯

ds (4.7)

Observing that
ż `8

0
βf,gpsqds “

ĳ

pg ´ fq`dθdv,

we get
ż `8

0

´

βf˚0 ,f˚psq ` βf˚,f
˚
0
psq

¯

ds “ }f˚ ´ f˚0 }L1 ,

and therefore

p}f ´ f0}L1 ` }f0}L1 ´ }f}L1q
2
ďKpf0q

ĳ
ˆ

v2

2
` φf0

˙

pf ´ f0q dθdv

`
1

8π2

ż `8

0
µ0psq

2βf˚,f˚0 psqds`m0}f
˚ ´ f˚0 }L1 . (4.8)

To end the proof of inequality (4.2), it only remains to show that the quantity Kpf0q
is finite. First we rewrite H0pµq as

H0pµq “ inf
0ăsďµ

B0pµ` sq `B0pµ´ sq ´ 2B0pµq

s2

“ inf
0ăsďµ

ż 1

0
p1´ λqppa´1φ0 q

1pµ` λsq ` pa´1φ0 q
1pµ´ λsqqdλ.
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Then, from the properties of aφ stated in Lemma 2.2, we claim that

pa´1φ0 q
1pµ` λsq ` pa´1φ0 q

1pµ´ λsq ě pa´1φ0 q
1pµq,

for all 0 ď λ ď 1, 0 ă s ď µ. Indeed, if µ ď 16
?
m0 then µ ´ λs ď 16

?
m0,

and since the function a´1φ0 is a concave function on r0, 16
?
m0s, we have pa´1φ0 q

1pµ´

λsq ě pa´1φ0 q
1pµq. Therefore we have the desired claim in this case. Similarly, if

µ ě 16
?
m0 then µ ` λs ě 16

?
m0, and since the function a´1φ0 is a convex function

on r16
?
m0,`8s, we have pa´1φ0 q

1pµ ` λsq ě pa´1φ0 q
1pµq. Therefore the above claim

holds in both cases. Using this claim, we then get

H0pµq ě
1

2a1φ0 ˝ a
´1
φ0
pµq

,

and thus

Kpf0q ď 8

ż }f0}L8

0
a1φ0 ˝ a

´1
φ0
pµf0ptqqdt.

Now we observe that for all t ě 0

µf0ptq “

ffl

ffl

ffl

ffl

"

F

ˆ

v2

2
` φ0pxq

˙

ą t

*
ffl

ffl

ffl

ffl

“ aφ0
`

F´1ptq
˘

,

and therefore

Kpf0q ď 8

ż }f0}L8

0
a1φ0

`

F´1ptq
˘

dt.

We then perform the change of variable e “ F´1ptq to get

Kpf0q ď 8

ż e˚

´m0

a1φ0peq|F
1peq|de. (4.9)

Now we claim that the rhs integral in this inequality is finite. Indeed, assume first
that e˚ ă `8. The only possible singularities in this integral are at e “ m0 and
e “ e˚, since the function e ÞÑ a1φ0peq|F

1peq| is continuous on r´m0,`8qztm0, e˚u.
If we suppose that e˚ ‰ m0, then we have a1φ0peq|F

1peq| „ a1φ0pe˚q|F
1peq| when

e Ñ e˚ and, from Lemma 2.2 we have (for m0 ă e˚ otherwise F vanishes in the
neighborhood ofm0) a1φ0peq|F

1peq| „ C log |e´m0| when eÑ m0. These two possible
singularities are thus integrable (the first is integrable by assumption on F ).

If e˚ “ m0 then our Assumption 1.1 (i) ensures that
şe˚
´m0

a1φ0peq|F
1peq|de is finite,

since a1φ0peq „ C log |e´m0| as eÑ m0.
Assume now that e˚ “ `8. Using assertion (iii) of Lemma 2.2, we have a1φ0peq|F

1peq| „

C|F 1peq|{
?
e as eÑ `8, where C is a constant. But, as for (2.12), we have

ż ż

F

ˆ

v2

2
` φ0pθq

˙

dθdv “

ż ż

¨

˝

ż F
´

v2

2
`φ0pθq

¯

0
dt

˛

‚dθdv

“

ż `8

0
meas

"

F

ˆ

v2

2
` φ0pθq

˙

ą t

*

dt

“

ż `8

0
aφ0pF

´1ptqqdt “

ż `8

´m0

aφ0peq|F
1peq|de.
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This implies that the integral
ş`8

´m0
aφ0peq|F

1peq|de is convergent. From assertion (iii),
we know that a1φ0peq|F

1peq| „ C1|F
1peq|{

?
e ď C1|F

1peq|
?
e „ C2aφ0peq|F

1peq| for e
large enough, where C1 and C2 are some positive constants. This proves the fact
that the rhs integral of (4.9) is finite, and ends the proof of Proposition 4.1.

�

5. Proof of Theorem 1.5

We first insert identity (4.1) into inequality (4.2) and get

p}f ´ f0}L1 ` }f0}L1 ´ }f}L1q
2
ďK0

„

Hpfq ´Hpf0q `
1

2
|Mf ´Mf0 |

2



`m0}f
˚ ´ f˚0 }L1 `

1

8π2

ż `8

0
µ0psq

2βf˚,f˚0 psqds. (5.1)

We write Mf “ |Mf |upθf q where upθq “ pcos θ, sin θqT , and denote by f0p¨ ´ θf q
the fonction f0p¨ ´ θf qpθ, vq “ f0pθ ´ θf , vq. We then apply this inequality (5.1) to
f0p¨ ´ θf q and get

p}f ´ f0p¨ ´ θf q}L1 ` }f0}L1 ´ }f}L1q
2
ď K0

„

Hpfq ´Hpf0q `
1

2
|Mf ´Mf0p¨´θf q|

2



`m0}f
˚ ´ f˚0 }L1 `

1

8π2

ż `8

0
µ0psq

2βf˚,f˚0 psqds.

Now we observe that

Mf0p¨´θf q “

ż 2π

0
ρf0pθ ´ θf qupθqdθ “

ż 2π

0
ρf0pθqupθ ` θf qdθ

“ pm0 cospθf q,m0 sinpθf qq
T “ m0upθf q.

Therefore

p}f ´ f0p¨ ´ θf q}L1 ` }f0}L1 ´ }f}L1q
2
ď K0

„

Hpfq ´Hpf0q `
1

2
p|Mf | ´m0q

2



`m0}f
˚ ´ f˚0 }L1 `

1

8π2

ż `8

0
µ0psq

2βf˚,f˚0 psqds.

(5.2)

Now we use Corollary 3.2 together with the fact that J is a C2 function to conclude
that there exist δ ą 0 and C ą 0 such that

J pmq ´ J pm0q ě Cpm´m0q
2 for all m P pm0 ´ δ,m0 ` δq.

Reporting this into estimate (5.2) yields

p}f ´ f0p¨ ´ θf q}L1 ` }f0}L1 ´ }f}L1q
2
ď K0

„

Hpfq ´Hpf0q `
1

2C
pJ p|Mf |q ´ J pm0qq



`m0}f
˚ ´ f˚0 }L1 `

1

8π2

ż `8

0
µ0psq

2βf˚,f˚0 psqds.
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for all f such that |Mf | P pm0 ´ δ,m0 ` δq. Now using inequality (2.8), we get

p}f ´ f0p¨ ´ θf q}L1 ` }f0}L1 ´ }f}L1q
2
ď C

„

Hpfq ´Hpf0q ` Cp1` }f}L1q}f˚ ´ f˚0 }L1

ż

`C

ż `8

0
s2pf 70psq ´ f

7psqq`ds` C

ż `8

0
µ0psq

2βf˚,f˚0 psqds



.

(5.3)

for some positive constant C only depending on f0. To end the proof of Theorem
1.5, we observe that, from the inequality pa` bq2 ě 1

2a
2 ´ b2,

p}f ´ f0p¨ ´ θf q}L1 ` }f0}L1 ´ }f}L1q
2
ě

1

2
}f ´ f0p¨ ´ θf q}

2
L1 ´ p}f0}L1 ´ }f}L1q

2

ě
1

2
}f ´ f0p¨ ´ θf q}

2
L1 ´ }f

˚
0 ´ f

˚}2L1

ě
1

2
}f ´ f0p¨ ´ θf q}

2
L1 ´ p}f0}L1 ` }f}L1q }f˚0 ´ f

˚}L1

ě
1

2
}f ´ f0p¨ ´ θf q}

2
L1 ´ C̃ p1` }f}L1q }f˚0 ´ f

˚}L1

with C̃ “ maxp1, }f0}L1q. We then report this into (5.3) and get inequality (1.12) for
all f such that |Mf | P pm0 ´ δ,m0 ` δq.

Let us deduce (1.13) in the case where if f0 is a compactly supported steady state.
In this case, the support of f 70 is r0, |Suppf0|s, so
ż `8

0
s2

´

f 70psq ´ f
7psq

¯

`
ds ď |Suppf0|2

ż `8

0

´

f 70psq ´ f
7psq

¯

`
ds ď |Suppf0|2 }f˚´f˚0 }L1 .

Furthermore, for all s ě 0, we have µf0psq ď |Suppf0|, hence
ż `8

0
µf0psq

2βf˚,f˚0 psqds ď |Suppf0|
2
ż `8

0
βf˚,f˚0 psqds “ |Suppf0|

2
ĳ

pf˚0 ´ f
˚q`dθdv

ď |Suppf0|2 }f˚ ´ f˚0 }L1

This enables to deduce (1.13) from (1.12) and this ends the proof of Theorem 1.5. �

Appendix

Proof of Lemma 2.2. The proof of Item (i) is straightforward. Let us prove Item (ii).
It is already clear from (2.5) that α1 is strictly increasing. In order to prove that
α11peq is given by (2.6) for all e P p´1, 1q, we perform the change of variable u “ cos θ
in (2.5):

α1peq “

ż 1

´1
gpe, uq du, where gpe, uq “ 4

?
2

a

pe` uq`
?
1´ u2

.

For u P p´1, 1q, we have

0 ď
Bg

Be
ď qepuq “

2
?
2

?
1´ e

1
a

pe` uqp1´ uq
1´eďuď1

and, for all e P p´1, 1q,
ż 1

´1
qepuq du “

2
?
2

?
1´ e

π.
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Hence, by Brézis-Lieb’s Lemma [17], we have qe Ñ qe0 in L1p´1, 1q, for all e0 P
p´1, 1q, and using a generalized dominated convergence theorem as stated in [16]
(Appendix A), we deduce that α1 is C1 on p´1, 1q, with

α11peq “ 2
?
2

ż 1

´e

du
a

pe` uqp1´ u2q
. (5.4)

Performing again the change of variable u “ cos θ in (5.4) yields (2.6). Now, we
perform the change of variable t “ u`e

1´u in (5.4) and get, for e P p´1, 1q,

α11peq “ 2
?
2

ż `8

0

dt
a

tp1` tqp2t` 1´ eq
. (5.5)

From this expression, we clearly see that α11 is strictly increasing, which yields the
convexity of α1 on p´1, 1q. We also deduce that the right-derivative of α1 at e “ ´1
is finite and its value is given by

2

ż `8

0

dt

p1` tq
?
t
“ 2π.

Item (iii) is an easy consequence of the following expression, valid for e ą 1:

α1peq “ 2
?
2

ż 2π

0

?
e` cos θ dθ.

Let us now prove Item (iv). The value α1p1q “ 16 is obtained by a direct calculation.
In order to prove the equivalent (2.7), we first consider the case e Ñ 1, e ă 1. The
change of variable s “ 1{t in (5.5) yields

α11peq “ 2
?
2

ż `8

0

ds
a

sp1` sqp2` p1´ eqsq
.

Let

I1peq “ 2
?
2

ż `8

0

ds

p1` sq
a

2` p1´ eqs
.

From
0 ď

1
?
s
´

1
?
1` s

“
1

a

sp1` sqp
?
s`

?
1` sq

ď
1

p1` sq
?
s
, (5.6)

we deduce that
ˇ

ˇα11peq ´ I1peq
ˇ

ˇ ď 2
?
2

ż `8

0

ds

p1` sq3{2
a

sp2` p1´ eqsq
ď 2

ż `8

0

ds

p1` sq3{2
?
s
“ C0.

A direct computation yields

I1peq “ ´
2
?
2

?
1` e

log
1´ e

p
?
2`

?
1` eq2

„ ´2 logp1´ eq as eÑ 1, e ă 1,

thus
α11peq „ ´2 logp1´ eq as eÑ 1, e ă 1.

To deal with the case e Ñ 1, e ą 1, we perform for e ą 1 the change of variable
t “ 1´cos θ

1`cos θ in (2.6):

α11peq “ 2
?
2

ż `8

0

dt
a

tp1` tqptpe´ 1q ` e` 1q
.
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Using again (5.6), we get
ˇ

ˇα11peq ´ I2peq
ˇ

ˇ ď 2
?
2

ż `8

0

dt

p1` tq3{2
a

tptpe´ 1q ` e` 1q
ď C0

where we used that tpe´ 1q ` e` 1 ě 2 and where we set

I2peq “ 2
?
2

ż `8

0

dt

p1` tq
a

tpe´ 1q ` e` 1q
.

Since
I2 “ ´2 log

e´ 1

p
?
2`

?
1` eq2

„ ´2 logpe´ 1q as eÑ 1, e ą 1,

we infer that
α11peq „ ´2 logpe´ 1q as eÑ 1, e ą 1,

which end the proof of (iv). Finally, Item (v) is a straightforward consequence of
Items (i), (ii), (iii), (iv), and the proof of Lemma 2.2 is complete. �
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