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Introduction and main result

1.1. The HMF model. In this paper, we are interested in the nonlinear stability of a class of inhomogeneous steady state solutions to the Hamiltonian mean-field (HMF) model [START_REF] Messer | Statistical Mechanics of the Isothermal Lane-Emden Equation[END_REF][START_REF] Antoni | Clustering and relaxation in Hamiltonian long-range dynamics[END_REF]. The HMF system is a kinetic model describing particles moving on a unit circle interacting via an infinite range attractive cosine potential. This model has been used as a toy-model of the Vlasov-Poisson system in the physical community, for the study of non equilibrium phase transitions [START_REF] Chavanis | Lynden-Bell and Tsallis distributions for the HMF model[END_REF][START_REF] Staniscia | Out-of-equilibrium phase transitions in the HMF model : a closer look[END_REF][START_REF] Antoniazzi | Nonequilibrium tricritical point in a system with long-range interactions[END_REF][START_REF] Ogawa | Precise determination of the nonequilibrium tricritical point based on Lynden-Bell theory in the Hamiltonian mean-field model[END_REF], of travelling clusters [START_REF] Barré | Small traveling clusters in attractive and repulsive Hamiltonian mean-field models[END_REF][START_REF] Yamaguchi | Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves[END_REF] or of relaxation processes [START_REF] Yamaguchi | Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model[END_REF][START_REF] Barré | The Vlasov equation and the Hamiltonian mean-field model[END_REF][START_REF] Chavanis | Dynamics and thermodynamics of a simple model similar to self-gravitating systems : the HMF model[END_REF]. The dynamics of perturbations of inhomogeneous steady states of the HMF model has been investigated in [START_REF] Barré | Dynamics of perturbations around inhomogeneous backgrounds in the HMF model[END_REF][START_REF] Barré | Algebraic damping in the one-dimensional Vlasov equation[END_REF] and the formal linear stability of steady states has been studied in [START_REF] Campa | Inhomogeneous Tsallis distributions in the HMF model[END_REF][START_REF] Ogawa | Spectral and formal stability criteria of spatially inhomogeneous solutions to the Vlasov equation for the Hamiltonian mean-field model[END_REF][START_REF] Barré | On the neighborhood of an inhomogeneous stable stationary solution of the Vlasov equation -Case of an attractive cosine potential[END_REF]. In particular, a simple criterion of linear stability has been derived in [START_REF] Ogawa | Spectral and formal stability criteria of spatially inhomogeneous solutions to the Vlasov equation for the Hamiltonian mean-field model[END_REF]. Our aim here is to prove the nonlinear stability of inhomogeneous steady states under the same criterion, by adapting the techniques developed in [START_REF] Lemou | Orbital stability of spherical galactic models[END_REF][START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] for the 3D Vlasov-Poisson system. However, we emphasize that the steady state solutions to the Vlasov-Poisson system studied in [START_REF] Lemou | Orbital stability of spherical galactic models[END_REF] are compactly supported. Here this assumption is not needed and a weaker assumption is made in the case of the HMF model, as we will see later on. Note finally that the long-time validity of the N-particle approximation for the HMF model has been investigated in [START_REF] Caglioti | Long time estimates in the mean field limit[END_REF][START_REF] Caglioti | Quasi-stationary states for particle systems in the mean-field limit[END_REF] and the Landau-damping phenomenon near spatially homogeneous state has been studied recently in [START_REF] Faou | Landau damping in Sobolev spaces for the Vlasov-HMF model[END_REF].

In the HMF model, the distribution function of particles f pt, θ, vq solves the initialvalued problem

B t f `vB θ f ´Bθ φ f B v f " 0, pt, θ, vq P R `ˆT ˆR, (1.1) 
f p0, θ, vq " f init pθ, vq ě 0,
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where T is the flat torus r0, 2πs and where the self-consistent potential φ f associated to a distribution function f is defined by

φ f pθq " ´ż 2π 0 ρ f pθ 1 q cospθ ´θ1 qdθ 1 , ρ f pθq " ż R f pθ, vqdv. (1.
2)

The so-called magnetization is the two-dimensional vector defined by

M f " ż 2π 0 ρ f pθqupθqdθ,
with upθq " pcos θ, sin θq T (1.3) and we have φ f pθq " ´Mf ¨upθq.

(1.4)

The Cauchy problem for (1.1) is much simpler than the one for the Vlasov-Poisson system, since the interaction kernel is smooth, and it can be shown that the HMF model is well-posed in the natural energy space. The following quantities are invariant during the evolution:

-the Casimir functions ij Gpf pθ, vqqdθdv

for any function G P C 1 pR `q such that Gp0q " 0; -the nonlinear energy Hpf q " 1 2

ij v 2 f pθ, vqdθdv `1 2 ż ρ f pθqφ f pθqdθ " 1 2 ij v 2 f pθ, vqdθdv ´1 2 M f ¨ż ρ f pθqupθqdθ " 1 2 ij v 2 f pθ, vqdθdv ´1 2 |M f | 2 ;
(1.6)

-the total momentum ij vf pθ, vqdθdv.

(1.7)

Moreover, the HMF system enjoys the Galilean invariance, that is, if f pt, θ, vq is a solution, then so is f pt, θ `v0 t, v `v0 q, for v 0 P R.

1.2. Statement of the main result. We consider a stationary state of the form f 0 pθ, vq " F pe 0 pθ, vqq, with e 0 pθ, vq " v 2 2 `φ0 pθq, (1.8) and where the potential associated to f 0 according to (1.2) takes the form φ 0 pθq " ´m0 cos θ, with m 0 ą 0.

Here F is a given function satisfying the following assumption.

Assumption 1.1. The function F is a C 0 function on R satisfying the following properties. It is a C 1 function on p´8, e ˚q, for some e ˚P R Y t`8u, with F 1 ă 0 on this interval. We also assume that F peq " 0 for e ě e ˚when e ˚is finite, and that lim eÑ`8 F peq " 0 if e ˚" `8. We denote by F ´1 its inverse function, which is a C 1 function defined from p0, sup F q onto p´8, e ˚q. The function f 0 given by (1.8) is supposed to belong to the energy space L 1 pp1 `|v| 2 qdθdvq. Moreover, in the case e ˚ă `8 and m 0 " e ˚, we assume further that ş m 0 ´m0 logpm 0 ´eqF 1 peqde ă `8.

Examples. All the following typical examples that can be found in the literature fulfill our Assumption 1.1:

(i) Maxwell-Boltzmann distributions [START_REF] Chavanis | Dynamics and thermodynamics of a simple model similar to self-gravitating systems : the HMF model[END_REF], F peq " A expp´βeq.

(ii) Polytropic distributions with compact support [START_REF] Campa | Inhomogeneous Tsallis distributions in the HMF model[END_REF], F peq " Ape ˚´eq 1 q´1

`with q ą 1. We used the usual notation x `" maxp0, xq.

(iii) Polytropic distributions with non compact support [START_REF] Campa | Inhomogeneous Tsallis distributions in the HMF model[END_REF], F peq " Ape 0 `eq

1 q´1 ẁith 1 3 ă q ă 1. (iv) Lynden-Bell distributions [11], F peq " A 1`B exppβeq . Remark 1.2. Note that Assumption 1.1 implies in particular that f 0 P L 8 since }f 0 } L 8 ď F p´m 0 q.
It is also clear that e ˚is finite if and only if f 0 is compactly supported. We finally note that we must have e ˚ą ´m0 , otherwise f 0 " 0 and this contradicts the assumption m 0 ą 0.

Our aim is to prove the orbital stability of such steady state under the following criterion.

Assumption 1.3 (Nonlinear stability criterion). We will assume that f 0 satisfies the following criterion

κ 0 ă 1, with κ 0 " ż 2π 0 ż `8 ´8 ˇˇF 1 pe 0 pθ, vqq ˇˇ¨ż D pcos θ ´cos θ 1 qpe 0 pθ, vq ´φ0 pθ 1 qq ´1{2 dθ 1 ż D pe 0 pθ, vq ´φ0 pθ 1 qq ´1{2 dθ 1 ‹ ‹ ' 2 dθdv,
(1.9) where D " θ 1 P T : φ 0 pθ 1 q ă e 0 pθ, vq ( .

Remark 1.4. Direct computations show that our criterion κ 0 ă 1 is the same as the one derived in [START_REF] Ogawa | Spectral and formal stability criteria of spatially inhomogeneous solutions to the Vlasov equation for the Hamiltonian mean-field model[END_REF], that is

0 ă 1 `ij F 1 pe 0 pθ, vqq cos 2 θdθdv ´4 ? m 0 ż m 0 ´m0 Kpkpeqq ˆ2Epkpeqq Kpkpeqq ´1˙2 F 1 peqde ´4 ? m 0 ż `8 m 0 Kp1{kpeqq kpeq ˆ2kpeq 2 Ep1{kpeqq Kp1{kpeqq `1 ´2kpeq 2 ˙2 F 1 peqde,
with kpeq " ´e`m 0 2m 0

¯1{2

and where Kpkq and Epkq are respectively the complete elliptic integrals of first and second kinds, see e.g. [START_REF] Barré | Dynamics of perturbations around inhomogeneous backgrounds in the HMF model[END_REF].

Before stating our main result, we first recall the usual notion of rearrangement which we adapt here to functions defined on the domain T ˆR. For any nonnegative function f P L 1 pT ˆRq, we define its distribution function as µ f psq " ~tpθ, vq P T ˆR : f pθ, vq ą su~, for all s ě 0, (1.10) where |A| denotes the Lebesgue measure of a set A. Note that µ f p0q may be infinite, but µ f psq is finite for s ą 0. Let f 7 be the pseudo-inverse of the function µ f , defined by f 7 psq " inf tt ě 0, µ f ptq ď su " sup tt ě 0, µ f ptq ą su , for all s ě 0 with, in particular, f 7 p0q " }f } L 8 P R Y t`8u and f 7 p`8q " 0. It is well known that µ f is right-continuous and that for all s ě 0, t ě 0,

f 7 psq ą t ðñ µ f ptq ą s. (1.11)
Next, we define the rearrangement f ˚of f by

f ˚pθ, vq " f 7 ´ffl ffl fflBp0, a θ 2 `v2 q X T ˆRffl ffl ffl ¯,
where Bp0, Rq denotes the open ball in R 2 centered at 0 with radius R.

Our main result is the following theorem.

Theorem 1.5. Let f 0 be a steady state of the form (1.8) satisfying Assumptions 1.1 and 1.3. There exists δ ą 0 such that, for all

f P L 1 `p1 `|v| 2 qdθdv ˘satisfying |M f ´Mf 0 p¨´θ f q | ă δ, we have }f ´f0 p¨´θ f q} 2 L 1 ď C ˆż Hpf q ´Hpf 0 q `Cp1 `}f } L 1 q}f ˚´f 0 } L 1 `C ż `8 0 s 2 ´f 7 0 psq ´f 7 psq ¯`ds `C ż `8 0 µ f 0 psq 2 β f ˚,f 0 psqds ˙, (1.12) 
where β f ˚,f 0 psq " ~tpθ, vq P T ˆR : f ˚pθ, vq ď s ă f 0 pθ, vqu~, for all s ě 0, and where C is a positive constant depending only on f 0 . The parameter θ f is defined by M f " |M f |pcos θ f , sin θ f q T , where M f is given by (1.3). In particular, if f 0 is a compactly supported steady state, then (1.12) can be replaced by

}f ´f0 p¨´θ f q} 2 L 1 ď C ˆż Hpf q ´Hpf 0 q `Cp1 `}f } L 1 q}f ˚´f 0 } L 1 ˙. (1.13)
The proof of this theorem is given in Section 5 and uses several steps which are developed in the following sections. In Section 2, we introduce the generalized rearrangements with respect to the microscopic energy, which enable to define a reduced energy function depending on the magnetization vector only. In Section 3 we show that, under the stability criterion κ 0 ă 1, the magnetization of the steady state is a strict local minimizer of this reduced energy function and, in Section 4, we use a result in [START_REF] Lemou | Extended rearrangement inequalities and applications to some quantitative stability results[END_REF] to establish a functional inequality that enables the control of f ´f0 . We finally end the proof of Theorem 1.5 in section 5.

1.3. Proof of the orbital stability of f 0 . In this subsection, we show how to derive a stability result for the HMF model directly from our main Theorem 1.5.

Corollary 1.6. Let f 0 be a steady state of the form (1.8) satisfying Assumptions 1.1 and 1.3. Then f 0 is orbitally stable in the energy space, i.e., for all ε ą 0, there exists η ą 0 such that the following holds. For all solution f ptq to the HMF model with initial data f init , that preserves the mass and the energy, we have: if }p1 `v2 qpf init ´f0 q} L 1 ď η , then }p1 `v2 qpf p¨´θ f q ´f0 q} L 1 ď ε, where θ f is defined by M f " |M f |pcos θ f , sin θ f q T and M f is given by (1.3).

Proof. We distinguish the two cases: e ˚ă `8 and e ˚" `8.

Case 1: e ˚ă `8 . In this case f 0 is compactly supported and we can apply (1.13), that is we have

}f ´f0 p¨´θ f q} 2 L 1 ď C ˆż Hpf q ´Hpf 0 q `Cp ż 1 `}f } L 1 q}f ˚´f 0 } ˙(1.14)
for all f satisfying |M f ´Mf 0 p¨´θ f q | ă δ. Let f init P L 1 `p1 `|v| 2 qdvdθ ˘be any initial data for the HMF equation (1.1) such that

}p1 `|v| 2 qpf init ´f0 q} L 1 ă η,
where 0 ă η ă minp1, δ{2q will be made precise later on. This implies in particular that

|M f init ´Mf 0 | ď }f init ´f0 } L 1 ă η ă δ{2, (1.15) 
and then

|Hpf init q ´Hpf 0 q| " ˇˇˇij ˆv2 2 `φ0 pθq ˙pf init ´f0 qdθdv ´1 2 |M f init ´Mf 0 | 2 ˇˇď pm 0 `1qη.
Now the contractivity property of the rearrangement implies that }f init ´f 0 } L 1 ď }f init ´f0 } L 1 ă η and then

|Hpf init q ´Hpf 0 q| `Cp ż 1 `}f init } L 1 q}f init ´f 0 } ď rm 0 `1 `C p2 `}f 0 } L 1 qs η.
We then choose η such that

η ă min ´1, δ{2, rm 0 `1 `C p2 `}f 0 } L 1 qs ´1 δ 2 {p4Cq ¯. (1.16)
Let now f ptq be a solution to the HMF model with initial data f init . From the conservation properties of this model, to wit Hpf ptqq " Hpf init q and f ptq ˚" f init , and from (1.14) we then get

}f ptq ´f0 p¨´θ f ptq q} 2 L 1 ď C ˆHpf ptqq ´Hpf 0 q `Cp ż 1 `}f ptq} L 1 q}f ptq ˚´f 0 } ă δ 2 {4,
as long as |M f ptq ´Mf 0 p¨´θ f ptq q | ă δ. In fact we shall prove that we have |M f ptq ´Mf 0 p¨´θ f ptq q | ă δ, @t ě 0.

(1.17) Indeed, at t " 0 we have |M f p0q ´Mf 0 p¨´θ f p0q q| ă δ{2 by assumption on f init (see (1.15)). If at some time t we have |M f ptq ´Mf 0 p¨´θ f ptq q| ě δ, then by continuity in time there is some time t 0 such that |M f pt 0 q ´Mf 0 p¨´θ f pt 0 q q| " 2δ{3 ă δ. We thus get }f pt 0 q ´f0 p¨´θ f pt 0 q q} L 1 ă δ{2.

But this implies

2δ{3 " |M f pt 0 q ´Mf 0 p¨´θ f pt 0 q q | ď }f pt 0 q ´f0 p¨´θ f pt 0 q q} L 1 ă δ{2, which is a contradiction, and claim (1.17) is proved. We conclude from Theorem 1.5 that

}f ptq ´f0 p¨´θ f ptq q} 2 L 1 ď C ˆ|Hpf init q ´Hpf 0 q| `Cp ż 1 `}f init } L 1 q}f init ´f 0 } L 1 ˙, (1.18 
) for all t ě 0. The orbital stability of the solution f ptq is then proved in the L 1 norm in a quantitative way, since the right-hand side of (1.18) goes to zero as }p1 v2 qpf init ´f0 q} L 1 goes to zero, as a consequence of the usual contractivity property of the rearrangement }f init ´f 0 } L 1 ď }f init ´f0 } L 1 . It remains to prove this stability in the whole energy norm. We argue by contradiction. Assume that there exists ε ą 0 and a sequence f n init such that }p1 `v2 qpf n init ´f0 q} L 1 Ñ 0 as n Ñ `8 and, for some

t n ą 0, we have inf θPr0,2πs }v 2 pg n p¨´θq ´f0 q} L 1 ą ε,
where g n " f n pt n q and f n is a solution of the HMF model associated with the initial data f n init . We have already shown the L 1 stability, which means that we have }g n p¨´θ gn q ´f0 } L 1 Ñ 0 as n Ñ `8. In particular, up to a subsequence, we have v 2 g n p¨´θ gn q Ñ v 2 f 0 almost everywhere as n Ñ 8. Now from the Brézis-Lieb lemma, we have

}v 2 g n p¨´θ gn q ´v2 f 0 } L 1 ´}v 2 g n p¨´θ gn q} L 1 `}v 2 f 0 } L 1 Ñ 0 (1.19)
as n Ñ `8. From the conservation of the energy and the convergence }p1`v 2 qpf n init f0 q} L 1 Ñ 0, we have Hpg n p¨´θ g n qq " Hpg n q " Hpf n init q Ñ Hpf 0 q.

(1.20)

Note that we have used the convergence of the magnetization vector

ˇˇM f n init ´Mf 0 ˇˇď }f n init ´f0 } L 1 Ñ 0.
We apply this inequality to g n ˇˇM g n p¨´θ g n q ´Mf 0 ˇˇď }g n p¨´θ g n q ´f0 } L 1 Ñ 0, and obtain from (1.20)

}v 2 g n p¨´θ g n q} L 1 ´}v 2 f 0 } L 1 Ñ 0.
Using (1.19), this implies that

}v 2 g n p¨´θ g n q ´v2 f 0 } L 1 Ñ 0,
and yields a contradiction.

Case 2: e ˚" `8 . In this case f 0 is not compactly supported and we shall use inequality (1.12) of Theorem 1.5. The quantity µ f 0 psq involved in (1.12) is no longer bounded and presents a singularity at s " 0. Therefore we shall need to prove the following claim: if

}f n init ´f0 } L 1 Ñ 0 then ż `8 0 s 2 ´f 7 0 psq ´f n7 init psq ¯`ds Ñ 0 and ż `8 0 µ f 0 psq 2 β f ni nit ,f 0 psqds Ñ 0, (1.21)
as n Ñ `8 up to the extraction of a subsequence. Once this claim is proved, the rest of the stability proof is exactly the same as in the case of a compactly supported steady state f 0 . Let us then prove claim (1.21). We start by proving the first limit of this claim. Assume that

}f n init ´f0 } L 1 Ñ 0. Since }f n7 init ´f 7 0 } L 1 pR `q ď }f n init ´f0 } L 1 Ñ 0, we deduce that s 2 ´f 7
0 psq ´f n7 init psq ¯`Ñ 0 as n Ñ `8 for almost every s ě 0, up to an extraction of a subsequence. But we have

s 2 ´f 7 0 psq ´f n7 init psq ¯`ď s 2 f 7 0 psq, and 
ż `8 0 s 2 f 7 0 psq ă `8,
(see (3.4) for the second inequality). Therefore, by dominated convergence we can pass to the limit inside the integral and get the first convergence in claim (1.21). Now we prove the second limit of claim (1.21). Assume again that

}f n init ´f0 } L 1 Ñ 0, then ż `8 0 β f ni nit ,f 0 psqds " ij pf 0 ´f ni nit q `dθdv ď }f ni nit ´f 0 } L 1 ď }f n init ´f0 } L 1 Ñ 0 as n Ñ `8.
This means that β f ni nit ,f 0 psq Ñ 0 for almost every s ě 0, up to an extraction of a subsquence. We then conclude that the quantity µ f 0 psq 2 β f ni nit ,f 0 psq arising in (1.21) converges to 0 for almost every s ě 0 (up to an extraction). Therefore, to end the proof of the second limit in claim (1.21), it is sufficient to dominate this quantity by an L 1 function in s P p0, }f 0 } L 8 q uniformly in n. To this purpose, we observe that β f ni nit ,f 0 psq ď µ f 0 psq and then

µ f 0 psq 2 β f ni nit ,f 0 psq ď µ f 0 psq 3 , @ s ą 0.
To prove that the rhs of this inequality is integrable on R `, we write

ż `8 0 s 2 f 7 0 psqds " ż `8 0 s 2 ˜ż f 7 0 psq 0 dt ¸ds " ż `8 0 ˜żf 7 0 psqąt
s 2 ds ¸dt and using (1.11) we get

ż `8 0 s 2 f 7 0 psqds " ż `8 0 ˜ż0ďsăµ f 0 ptq s 2 ds ¸dt " 1 3 ż `8 0 µ f 0 ptq 3 dt.
Since from (3.4) we have ş `8 0 s 2 f 7 0 psqds ă `8, the proof of claim (1.21) is complete. This proves the orbital L 1 stability. To get the stability in the energy space, we proceed as in the case e ˚ă `8. This ends the proof of the orbital stability in all cases.

The reduced energy functional

The aim of this section is to introduce a reduced energy functional J p|M f |q which depends only on the modulus of the magnetization and which is such that J p|M f |q ´J pm 0 q (recall that M f 0 " pm 0 , 0q T with m 0 ě 0) is controlled by the relative nonlinear energy Hpf q ´Hpf 0 q, up to conserved quantities.

2.1. Generalized rearrangements with respect to the microscopic energy. Our purpose now is to define a generalized symmetric nonincreasing rearrangement with respect to the microscopic energy e " v 2 2 `φpθq, where the potential φ is a given C 8 function on T. We introduce the quantity a φ peq " It is readily seen that a φ is continuous on R, vanishes on p´8, min φs and is strictly increasing from rmin φ, `8q to r0, `8q. This enables to define its inverse a ´1 φ on r0, `8q. Note that, for all e P R,

ffl
4π ? 2pe ´max φq 1{2 `ď a φ peq ď 4π ? 2pe ´min φq 1{2 `, (2.2) 
which implies, for all s P R `,

s 2 32π 2 `min φ ď a ´1 φ psq ď s 2 32π 2 `max φ. (2.3) 
We now introduce the generalized rearrangement with respect to the microscopic energy.

Lemma (2.4)

The function α 1 peq and its derivative α 1 1 peq are represented on Figure 1. The proof of the following lemma is deffered to the Appendix. This function satisfies the following properties: (i) α 1 is a continuous nondecreasing function from R to R `and α 1 peq " 0 for e ď ´1.

(ii) α 1 is a strictly increasing and strictly convex C 1 function on r´1, 1q. Its derivative for e P p´1, 1q is given by

α 1 1 peq " 2 ? 2 ż θ 1 peq 0 pe `cos θq ´1{2 dθ. (2.6)
and its right-derivative at e " ´1 is equal to 2π.

(iii) α 1 is a strictly increasing and strictly concave C 1 function on p1, `8q. Its derivative for e P p1, 8q is still given by (2.6) and we have

α 1 peq " 4π ? 2e, α 1 
1 peq " 2π a 2{e as e Ñ `8.

(iv) We have α 1 p1q " 16 and

α 1 1 peq " ´2 log |e ´1| as e Ñ 1. (2.7) 
(v) The inverse α ´1 1 of the function α 1 : r´1, `8q Þ Ñ r0, `8q is a strictly increasing C 1 function, defined on r0, `8q, satisfying pα ´1 1 q 1 psq "

1 α 1 1 ˝α´1 1 psq
for s P R `zt0, 16u, with α 1 1 given by (2.6), and

pα ´1 1 q 1 p0q " 1 2π , pα ´1 
1 q 1 p16q " 0.

2.2.

Reduction to a functional of the magnetization vector. In this subsection, we prove the following result.

Proposition 2.3. For all f P L 1 pp1 `|v| 2 qdθdvq, we have

J p|M f |q ´J p|M f 0 |q ď Hpf q ´Hpf 0 q `3}f } L 1 }f ˚´f 0 } L 1 (2.8) `1 32π 2 ż `8 0 s 2 ´f 7 0 psq ´f 7 psq ¯`ds
where, for all m P R `, J pmq "

m 2 2 `ż `8 ´8 ż 2π 0 ˆv2 2 `φ˙f ˚φ 0 dθdv (2.9) 
with φpθq " ´m cos θ.

Proof. Writing the difference Hpf q ´Hpf 0 q between the nonlinear energies as

Hpf q ´Hpf 0 q " ij ˆv2 2 `φf ˙pf ´f0 q dθdv ´1 2 `|M f | 2 ´|M f 0 | 2 ˘´ij φ f pf ´f0 qdθdv " ij ˆv2 2 `φf ˙´f ´f ˚φf ¯dθdv `ij ˆv2 2 `φf ˙´f ˚φf ´f ˚φf 0 ¯dθdv `ij ˆv2 2 `φf ˙´f ˚φf 0 ´f0 ¯dθdv `1 2 |M f ´Mf 0 | 2 "I 1 `I2 `I3 `1 2 |M f ´Mf 0 | 2 ,
we organize the proof in three steps.

Step 1: Identification of J p|M f |q ´J p|M f 0 |q.

Let us first prove that

f 0 " f ˚φ0 0 , (2.10) 
which amounts to proving that F peq " f 7 0 ˝aφ 0 peq, @e ě min φ 0 .

(2.11)

Recall that a φ 0 is invertible from rmin φ 0 , `8q to r0, `8q and denote G " F ˝a´1 φ 0 on r0, `8q. Recall also that F is assumed to be continuously decreasing. Hence, so is the function G and then it is standard that G 7 " G, see for instance [START_REF] Rakotoson | Réarrangement relatif, Un instrument d'estimations dans les problèmes aux limites[END_REF]. Now, for all t ě 0, 

µ
v 2 2 `φ0 pθq ă a ´1 φ 0 pµ G ptqq *ffl ffl ffl ffl " a φ 0 ˝a´1 φ 0 pµ G ptqq " µ G ptq.
From this, we deduce that f 7 0 " G 7 " G, which gives (2.11) and ends the proof of (2.10). Consequently,

I 3 `1 2 |M f ´Mf 0 | 2 " ij ˆv2 2 `φf ˙´f ˚φf 0 ´f0 ¯dθdv `1 2 |M f ´Mf 0 | 2 " ij ˆv2 2 `φf ˙´f ˚φf 0 ´f ˚φ0 0 ¯dθdv `1 2 |M f ´Mf 0 | 2 " ij ˆv2 2 `φf ˙f ˚φf 0 dθdv ´ij ˆv2 2 `φ0 ˙f ˚φ0 0 dθdv `ż pφ 0 ´φf q ρ f 0 dθ `1 2 |M f ´Mf 0 | 2 " ij ˆv2 2 `φf ˙f ˚φf 0 dθdv `1 2 |M f | 2 ´ij ˆv2 2 `φ0 ˙f ˚φ0 0 dθdv ´1 2 |M f 0 | 2 .
We observe now that φ f can be written as φ f pθq " ´|M f | cospθ ´θM q for some θ M P T. Hence, by periodicity, we have

ij ˆv2 2 `φf ˙f ˚φf 0 dθdv `1 2 |M f | 2 " J p|M f |q,
where J is defined by (2.9), and the same holds for φ 0 . We thus have

I 3 `1 2 |M f ´Mf 0 | 2 " J p|M f |q ´J p|M f 0 |q.
Step 2: Positivity of I 1 .

We have, using Fubini,

I 1 " ij ˆv2 2 `φf ˙´f ´f ˚φf ¯dθdv " ij ˆv2 2 `φf ˙˜ż f 0 dt ´ż f ˚φf 0 dt ¸dθdv " ż `8 0 ¨ij f ąt ˆv2 2 `φf ˙dθdv ´ij f ˚φf ąt ˆv2 2 `φf ˙dθdv ‹ 'dt " ż `8 0 ¨ij Aptq ˆv2 2 `φf ˙dθdv ´ij Bptq ˆv2 2 `φf ˙dθdv ‹ 'dt
where, for all t ě 0, we have denoted

Aptq " ! pθ, vq P T ˆR : f ˚φf pθ, vq ď t ă f pθ, vq ) , Bptq " ! pθ, vq P T ˆR : f pθ, vq ď t ă f ˚φf pθ, vq
) .

Since f ˚φf is a decreasing function of v 2 2 `φf , we clearly have @pθ, vq P Aptq, @pθ 1 , v

1 q P Bptq, v 2 2 `φf pθq ą v 12 2 `φf pθ 1 q.
Moreover, from the equimeasurability of f and f ˚φf , we have |Aptq| " |Bptq|. Consequently, we obtain I 1 ě 0.

Step 3: Control of |I 2 | by }f ˚´f 0 } L 1 .

Let us first state an elementary result.

Lemma 2.4. Let φpθq " ´m cospθ ´θ0 q for pm, θ 0 q P R `ˆT. 

´a´1 φ f psq ´min φ f ¯´f 7 psq ´f 7 0 psq ¯ds ´}φ f } L 8 }f 7 ´f 7 0 } L 1 ě ´ż `8 0 a ´1 φ f psq ´f 7 0 psq ´f 7 psq ¯`ds ´2}φ f } L 8 }f 7 ´f 7 0 } L 1 .
Using (2.3), we deduce that

I 2 ě ´1 32π 2 ż `8 0 s 2 ´f 7 0 psq ´f 7 psq ¯`ds ´3}φ f } L 8 }f 7 ´f 7 0 } L 1 .
We now conclude by observing that, for all θ P T, we have

|φ f pθq| ď |M f | |upθq| " |M f | ď }f } L 1 .
(2.13)

3. Study of the functional J .

In this section, we study the function J pmq defined for m P R `by (2.9), with φpθq " ´m cos θ. For e P R and m P R ˚, we recall that

a φ peq " α m peq " ? m α 1 ´e m ¯,
where α 1 was defined by (2.5). Clearly, (2.9) and (2.12) yield, for m ą 0,

J pmq " m 2 2 `ż `8 ´8 ż 2π 0 ˆv2 2 ´m cos θ ˙f 7 0 ˝αm ˆv2 2 ´m cos θ ˙dθdv " m 2 2 `m ż `8 0 f 7 0 psq α ´1 1 ˆs ? m ˙ds.
Proposition 3.1. The function J defined by (2.9) is a C 2 function on R `. Denoting φpθq " ´m cos θ, we have

J 1 pmq " m ´ij f ˚φ 0 pθ, vq cos θ dθdv (3.1)
and J 2 pmq " 1`ij pf 7 0 ˝aφ q 1 pepθ, vqq ¨cos θ ´ż θmpepθ,vqq

0 cos θ 1 pepθ, vq `m cos θ 1 q ´1{2 dθ 1 ż θmpepθ,vqq 0 pepθ, vq `m cos θ 1 q ´1{2 dθ 1 ‹ ‹ ‹ ' 2 dθdv, (3.2 
) where epθ, vq " v 2 2 `φpθq and θ m is defined by (2.4).

From this Proposition and from (2.10), it is immediate to deduce the Corollary 3.2. Under Assumption 1.3, the magnetization m 0 of the stationary state f 0 is a strict local minimizer of J : one has J 1 pm 0 q " 0 and J 2 pm 0 q " 1 ´κ0 ą 0.

Proof of Proposition 3.1. e `m cos θ dθde.

By passing to the limit in this formula, we also get that J is differentiable at m " 0, with J 1 p0q " 0. Finally, coming back to the variables pθ, vq, we obtain (3.1).

In order to compute the second derivative of J , let us transform this expression into a more suitable one, using an integration by parts in e. We denote r e ˚" a ´1 φ ˝aφ 0 pe ˚q, where e ˚is defined in Assumption 1.1. By (2.10), we have f 7 0 ˝aφ " F ˝a´1 φ 0 aφ , this function being continuous on r´m, `8q, of class C 1 on r´m, `8qztm, r e ˚u, nonincreasing, and vanishes on rr e ˚, `8q. Therefore, in the case e ˚ă `8, one can directly integrate by parts to obtain ż `8 ´m f 7 0 ˝aφ peqb 1 φ peq de " ´ż `8 ´m pf 7 0 q 1 ˝aφ peqa 1 φ peqb φ peq de.

Now we deal with the case r e ˚" e ˚" `8. Since f 7 is a nonincreasing function on R `and belongs to L 1 pR `q, we deduce that f 7 psq Ñ 0 when e Ñ `8. Therefore, according to (3.7), we have f 7 0 ˝aφ peqb φ peq Ñ 0 when e Ñ `8, and the integration by parts giving (3.11) is also valid in the case e ˚" `8.

Consequently, we have

J 1 pmq " m `ż `8 ´m pf 7 0 q 1 ˝aφ peqa 1 φ peqb φ peqde " m `ż `8 0 pf 7 0 q 1 psqb φ ˝a´1 φ psqds " m `?m ż `8 0 pf 7 0 q 1 psq β 1 ˝α´1 1 ˆs ? m ˙ds.
Consider the function hpm, sq " pf 7 0 q 1 psq β 1 ˝α´1 1 ˆs ? m ˙.

Using again Lemma 2.2, we get that h is continuously differentiable with respect to m P R ˚for all m P R ˚zts 2 {32u, with

Bh Bm pm, sq " ´spf 7 0 q 1 psq 2m 3{2 α 1 1 ˝α´1 1 p s ? m q β 1 1 ˝α´1 1 ˆs ? m ˙.
Since |b 1 φ peq| ď a 1 φ peq, we deduce that

ˇˇˇB h

Bm pm, sq ˇˇˇÀ ´spf 7 0 q 1 psq, for all m P rm 1 , m 2 s, 0 ă m 1 ă m 2 .

We now claim that the fonction s Þ Ñ spf 7 0 q 1 psq belongs to L 1 pR `q.

(3.12) Indeed, since f 7 0 is decreasing, we have

ż r 0 s 2 f 7 0 psqds ě f 7 0 prq ż r 0 s 2 ds " r 3 3 f 7 0 prq.
Hence, using (3.4), we get

f 7 0 psq À 1 s 3 , @s ą 0.
In particular sf 7 0 psq Ñ 0 when s Ñ `8. On the other hand, the function f 7 0 " F ˝a´1 φ 0 is continuous on R `, of class C 1 and decreasing on r0, a φ 0 pe ˚qq, vanishing on ra φ 0 pe ˚q, `8q (with possibly a φ 0 pe ˚q " `8). Therefore we can perform the following integration by parts ´ż `8 0 spf 7 0 q 1 psqds "

ż `8 0 f 7 0 psqds ă `8.
This ends the proof of claim (3.12) and enables to conclude by dominated convergence that J 1 is continuously differentiable on R `and that

J 2 pmq " 1 `1 2 ? m ż `8 0 hpm, sqds `?m ż `8 0 Bh Bm pm, sqds " 1 `ż `8 0 pf 7 0 q 1 psq ¨1 2 ? m β 1 ˝α´1 1 ˆs ? m ˙´sβ 1 1 ˝α´1 1 ´s ? m 2m α 1 1 ˝α´1 1 p s ? m q 'ds " 1 `1 2m ż `8 ´m pf 7 0 ˝aφ q 1 peq a 1 φ peq `a1 φ peqb φ peq ´aφ peqb 1 φ peq ˘de.
Finally, observing from (3.9) and from

eb 1 φ peq `2m ? 2 ż θmpeq 0 pcos θq 2 pe `m cos θq ´1{2 dθ " 1 2 b φ peq that 1 2ma 1 φ peq `a1 φ peqb φ peq ´aφ peqb 1 φ peq " ´pb 1 φ peqq 2 a 1 φ peq `2? 2 ż θmpeq 0 pcos θq 2 pe `m cos θq ´1{2 dθ " 2 ? 2 ż θmpeq 0 ¨cos θ ´ż θmpeq 0 cos θ 1 pe `m cos θ 1 q ´1{2 dθ 1 ż θmpeq 0 pe `m cos θ 1 q ´1{2 dθ 1 ‹ ‹ ‹ ' 2 pe `m cos θq ´1{2 dθ,
we obtain (3.2) by coming back to the pθ, vq variables.

Control of f

Our previous analysis has allowed the control of the magnetization vector by the relative Hamiltonian and the relative rearrangements. It remains to control the whole distribution function f . To this aim we now write the relative energy in the following form:

Hpf q ´Hpf 0 q " ij ˆv2 2 `φf 0 ˙pf ´f0 q dθdv ´1 2 |M f ´Mf 0 | 2 . (4.1) 
In particular, this means that the following quantity ij ˆv2 2 `φf 0 ˙pf ´f0 q dθdv is controlled and the problem is to show how this quantity controls f ´f0 . This task was achieved in the context of the gravitational Vlasov-Poisson system [START_REF] Lemou | Orbital stability of spherical galactic models[END_REF] using compactness arguments. Here we will rather use a functional inequality established in [START_REF] Lemou | Extended rearrangement inequalities and applications to some quantitative stability results[END_REF] to get a quantitative control of }f ´f0 } L 1 by this quantity, up to rearrangement terms depending only on f ˚and f 0 which are preserved by the flow. We emphasize that the steady states to Vlasov-Poisson system studied in [START_REF] Lemou | Orbital stability of spherical galactic models[END_REF] are compactly supported and this property was essential to successfully drive the stability analysis in this context. Here this assumption is not needed and a much weaker assumption is made in the case of the HMF model. More precisely, we have the following inequality:

Proposition 4.1. Let f 0 be given by (1.8) where F satisfies Assumption 1.1. Then, there exist a constant K 0 depending only on f 0 such that, for all f P L 1 pp1`|v| 2 qdvdθq we have

p}f ´f0 } L 1 `}f 0 } L 1 ´}f } L 1 q 2 ďK 0 ij ˆv2 2 `φf 0 ˙pf ´f0 q dθdv `m0 }f ˚´f 0 } L 1 `1 8π 2 ż `8 0 µ 0 psq 2 β f ˚,f 0 psqds, (4.2)
where β f ˚,f 0 psq " ~tpθ, vq P T ˆR : f ˚pθ, vq ď s ă f 0 pθ, vqu~, for all s ě 0.

Proof. We shall apply Theorem 1 in [START_REF] Lemou | Extended rearrangement inequalities and applications to some quantitative stability results[END_REF]. We use the rearrangement with respect to e 0 pθ, vq " v 2 2 `φf 0 and recall that the function a φ 0 is strictly increasing and a one-to-one function from rmin φ 0 , `8q to r0, `8q. Following [START_REF] Lemou | Extended rearrangement inequalities and applications to some quantitative stability results[END_REF], we introduce the functions

B 0 pµq " ż µ 0 a ´1 φ 0 psqds, @µ ě 0, (4.3) 
and H 0 pµq " inf 0ăsďµ B 0 pµ `sq `B0 pµ ´sq ´2B 0 pµq s 2 .

Then from Theorem 1 in [START_REF] Lemou | Extended rearrangement inequalities and applications to some quantitative stability results[END_REF], we have

p}f ´f0 } L 1 `}f 0 } L 1 ´}f } L 1 q 2 ďKpf 0 q ij ˆv2 2 `φf 0 ˙pf ´f0 q dθdv `ż `8 0 a ´1 φ 0 p2µ f 0 psqqβ f ˚,f 0 psqds ´ż `8 0 a ´1 φ 0 pµ f 0 psqqβ f 0 ,f ˚psqds (4.4) 
where

Kpf 0 q " 4 ż }f 0 } L 8 0 ds H 0 pµ f 0 psqq
, and (4.5) β f,g psq " meastpθ, vq P T ˆR; f pθ, vq ď s ă gpθ, vqu, @s ě 0. (4.6) Using the estimates (2.3) we then get from (4.4)

p}f ´f0 } L 1 `}f 0 } L 1 ´}f } L 1 q 2 ďKpf 0 q ij ˆv2 2 `φf 0 ˙pf ´f0 q dθdv `1 8π 2 ż `8 0 µ 0 psq 2 β f ˚,f 0 psqds `m0 ż `8 0 ´βf 0 ,f ˚psq `βf ˚,f 0 psq ¯ds (4.7)
Observing that ż `8 0 β f,g psqds " ij pg ´f q `dθdv, we get ż `8 0 ´βf 0 ,f ˚psq `βf ˚,f 0 psq ¯ds " }f ˚´f 0 } L 1 , and therefore

p}f ´f0 } L 1 `}f 0 } L 1 ´}f } L 1 q 2 ďKpf 0 q ij ˆv2 2 `φf 0 ˙pf ´f0 q dθdv `1 8π 2 ż `8 0 µ 0 psq 2 β f ˚,f 0 psqds `m0 }f ˚´f 0 } L 1 . (4.8)
To end the proof of inequality (4.2), it only remains to show that the quantity Kpf 0 q is finite. First we rewrite H 0 pµq as

H 0 pµq " inf 0ăsďµ B 0 pµ `sq `B0 pµ ´sq ´2B 0 pµq s 2 " inf 0ăsďµ ż 1 0
p1 ´λqppa ´1 φ 0 q 1 pµ `λsq `pa ´1 φ 0 q 1 pµ ´λsqqdλ.

Then, from the properties of a φ stated in Lemma 2.2, we claim that pa ´1 φ 0 q 1 pµ `λsq `pa ´1 φ 0 q 1 pµ ´λsq ě pa ´1 φ 0 q 1 pµq, for all 0 ď λ ď 1, 0 ă s ď µ. Indeed, if µ ď 16 ? m 0 then µ ´λs ď 16 ? m 0 , and since the function a ´1 φ 0 is a concave function on r0, 16 ? m 0 s, we have pa ´1 φ 0 q 1 pµ λsq ě pa ´1 φ 0 q 1 pµq. Therefore we have the desired claim in this case. Similarly, if µ ě 16 ? m 0 then µ `λs ě 16 ? m 0 , and since the function a ´1 φ 0 is a convex function on r16 ? m 0 , `8s, we have pa ´1 φ 0 q 1 pµ `λsq ě pa ´1 φ 0 q 1 pµq. Therefore the above claim holds in both cases. Using this claim, we then get 

H 0 pµq ě 1 2a
Kpf 0 q ď 8 ż }f 0 } L 8 0 a 1 φ 0 `F ´1ptq ˘dt.
We then perform the change of variable e " F ´1ptq to get

Kpf 0 q ď 8 ż em 0 a 1 φ 0 peq|F 1 peq|de. (4.9) 
Now we claim that the rhs integral in this inequality is finite. Indeed, assume first that e ˚ă `8. The only possible singularities in this integral are at e " m 0 and e " e ˚, since the function e Þ Ñ a 1 φ 0 peq|F 1 peq| is continuous on r´m 0 , `8qztm 0 , e ˚u. If we suppose that e ˚‰ m 0 , then we have a 1 φ 0 peq|F 1 peq| " a 1 φ 0 pe ˚q|F 1 peq| when e Ñ e ˚and, from Lemma 2.2 we have (for m 0 ă e ˚otherwise F vanishes in the neighborhood of m 0 ) a 1 φ 0 peq|F 1 peq| " C log |e´m 0 | when e Ñ m 0 . These two possible singularities are thus integrable (the first is integrable by assumption on F ).

If e ˚" m 0 then our Assumption 1.1 (i) ensures that ş em 0 a 1 φ 0 peq|F 1 peq|de is finite, since a 1 φ 0 peq " C log |e ´m0 | as e Ñ m 0 . Assume now that e ˚" `8. Using assertion (iii) of Lemma 2.2, we have a 1 φ 0 peq|F 1 peq| " C|F 1 peq|{ ? e as e Ñ `8, where C is a constant. But, as for (2.12), we have

ż ż F ˆv2 2 `φ0 pθq ˙dθdv " ż ż ¨ż F ´v2 2 `φ0 pθq 0 dt 'dθdv " ż `8 0 meas " F ˆv2 2 `φ0 pθq ˙ą t * dt " ż `8 0 a φ 0 pF ´1ptqqdt " ż `8 ´m0 a φ 0 peq|F 1 peq|de.
This implies that the integral ş `8 ´m0 a φ 0 peq|F 1 peq|de is convergent. From assertion (iii), we know that a 1 φ 0 peq|F 1 peq| " C 1 |F 1 peq|{ ? e ď C 1 |F 1 peq| ? e " C 2 a φ 0 peq|F 1 peq| for e large enough, where C 1 and C 2 are some positive constants. This proves the fact that the rhs integral of (4.9) is finite, and ends the proof of Proposition 4.1.

Proof of Theorem 1.5

We first insert identity (4.1) into inequality (4.2) and get

p}f ´f0 } L 1 `}f 0 } L 1 ´}f } L 1 q 2 ďK 0 " Hpf q ´Hpf 0 q `1 2 |M f ´Mf 0 | 2  `m0 }f ˚´f 0 } L 1 `1 8π 2 ż `8 0 µ 0 psq 2 β f ˚,f 0 psqds. (5.1)
We write M f " |M f |upθ f q where upθq " pcos θ, sin θq T , and denote by f 0 p¨´θ f q the fonction f 0 p¨´θ f qpθ, vq " f 0 pθ ´θf , vq. We then apply this inequality (5.1) to f 0 p¨´θ f q and get

p}f ´f0 p¨´θ f q} L 1 `}f 0 } L 1 ´}f } L 1 q 2 ď K 0 " Hpf q ´Hpf 0 q `1 2 |M f ´Mf 0 p¨´θ f q | 2  `m0 }f ˚´f 0 } L 1 `1 8π 2 ż `8 0 µ 0 psq 2 β f ˚,f 0 psqds.

Now we observe that

M f 0 p¨´θ f q " ż 2π 0 ρ f 0 pθ ´θf qupθqdθ " ż 2π 0 ρ f 0 pθqupθ `θf qdθ " pm 0 cospθ f q, m 0 sinpθ f qq T " m 0 upθ f q. Therefore p}f ´f0 p¨´θ f q} L 1 `}f 0 } L 1 ´}f } L 1 q 2 ď K 0 " Hpf q ´Hpf 0 q `1 2 p|M f | ´m0 q 2  `m0 }f ˚´f 0 } L 1 `1 8π 2 ż `8 0 µ 0 psq 2 β f ˚,f 0 psqds. (5.2) 
Now we use Corollary 3.2 together with the fact that J is a C 2 function to conclude that there exist δ ą 0 and C ą 0 such that J pmq ´J pm 0 q ě Cpm ´m0 q 2 for all m P pm 0 ´δ, m 0 `δq.

Reporting this into estimate (5.2) yields

p}f ´f0 p¨´θ f q} L 1 `}f 0 } L 1 ´}f } L 1 q 2 ď K 0 " Hpf q ´Hpf 0 q `1 2C pJ p|M f |q ´J pm 0 qq  `m0 }f ˚´f 0 } L 1 `1 8π 2 ż `8 0 µ 0 psq 2 β f ˚,f 0 psqds.
for all f such that |M f | P pm 0 ´δ, m 0 `δq. Now using inequality (2.8), we get

p}f ´f0 p¨´θ f q} L 1 `}f 0 } L 1 ´}f } L 1 q 2 ď C " Hpf q ´Hpf 0 q `Cp1 `}f } L 1 q}f ˚´f 0 } L 1 ż `C ż `8 0 s 2 pf 7 0 psq ´f 7 psqq `ds `C ż `8 0 µ 0 psq 2 β f ˚,f 0 psqds  . (5.3) 
for some positive constant C only depending on f 0 . To end the proof of Theorem 1.5, we observe that, from the inequality pa `bq 2 ě 1 2 a 2 ´b2 ,

p}f ´f0 p¨´θ f q} L 1 `}f 0 } L 1 ´}f } L 1 q 2 ě 1 2 }f ´f0 p¨´θ f q} 2 L 1 ´p}f 0 } L 1 ´}f } L 1 q 2 ě 1 2 }f ´f0 p¨´θ f q} 2 L 1 ´}f 0 ´f ˚}2 L 1 ě 1 2 }f ´f0 p¨´θ f q} 2 L 1 ´p}f 0 } L 1 `}f } L 1 q }f 0 ´f ˚}L 1 ě 1 2 }f ´f0 p¨´θ f q} 2 L 1 ´C p1 `}f } L 1 q }f 0 ´f ˚}L 1 with C " maxp1, }f 0 } L 1 q.
We then report this into (5.3) and get inequality (1.12) for all f such that |M f | P pm 0 ´δ, m 0 `δq.

Let us deduce (1.13) in the case where if f 0 is a compactly supported steady state. In this case, the support of f This enables to deduce (1.13) from (1.12) and this ends the proof of Theorem 1.5.

Appendix

Proof of Lemma 2.2. The proof of Item (i) is straightforward. Let us prove Item (ii).

It is already clear from (2.5) that α 1 is strictly increasing. In order to prove that α 1 1 peq is given by (2.6) for all e P p´1, 1q, we perform the change of variable u " cos θ in (2.5): and, for all e P p´1, 1q, ż 1

α 1 peq " ż 1 ´1 gpe,
´1 q e puq du "

2 ? 2 ? 1 ´e π.
Hence, by Brézis-Lieb's Lemma [START_REF] Lieb | Loss. Analysis[END_REF], we have q e Ñ q e 0 in L 1 p´1, 1q, for all e 0 P p´1, 1q, and using a generalized dominated convergence theorem as stated in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] (Appendix A), we deduce that α 1 is C 1 on p´1, 1q, with (5.4)

Performing again the change of variable u " cos θ in (5.4) yields (2.6). Now, we perform the change of variable t " u`e 1´u in (5.4) and get, for e P p´1, 1q, From this expression, we clearly see that α 1 1 is strictly increasing, which yields the convexity of α 1 on p´1, 1q. We also deduce that the right-derivative of α 1 at e " ´1 is finite and its value is given by 2 ż `8 0 dt p1 `tq ? t " 2π.

Item (iii) is an easy consequence of the following expression, valid for e ą 1:

α 1 peq " 2 ? 2 ż 2π 0 ?
e `cos θ dθ.

Let us now prove Item (iv). The value α 1 p1q " 16 is obtained by a direct calculation.

In order to prove the equivalent (2.7), we first consider the case e Ñ 1, e ă 1. The change of variable s " 1{t in (5.5) yields α 2 `?1 `eq 2 " ´2 logpe ´1q as e Ñ 1, e ą 1, we infer that α 1 1 peq " ´2 logpe ´1q as e Ñ 1, e ą 1, which end the proof of (iv). Finally, Item (v) is a straightforward consequence of Items (i), (ii), (iii), (iv), and the proof of Lemma 2.2 is complete.
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 78228780282 is r0, |Suppf 0 |s, so ż `´f 7 0 psq ´f 7 psq ¯`ds ď |Suppf 0 | psq ´f 7 psq ¯`ds ď |Suppf 0 | 2 }f ˚´f 0 } L 1 .Furthermore, for all s ě 0, we haveµ f 0 psq ď |Suppf 0 |, hence ż `psq 2 β f ˚,f 0 psqds ď |Suppf 0 | β f ˚,f 0 psqds " |Suppf 0 | pf 0 ´f ˚q`d θdv ď |Suppf 0 | 2 }f ˚´f 0 } L 1

  Proof. Recall that from the right continuity of µ f , we have(1.11), for all s ě 0, t ě 0.Finally, we state a technical lemma dealing with the case of potentials which have the special form of potentials of the HMF model. For e P R, m P R ˚and φpθq " ´m cos θ we denote

	α m peq " a φ peq " 2 ?	2	ż 2π 0	a pe `m cos θq `dθ "	?	m α 1	´e m	ānd
	introduce the angle						
	$ &	0,						if e ď ´m,
	θ m peq "	arccos p´e{mq P p0, πq,	if ´m ă e ă m,
	%	π,						if e ě m.
	Therefore, for all t ě 0,						
	µ f ˚φ ptq "	ffl ffl ffl ffl " pθ, vq P T ˆR : f 7	ˆaφ	ˆv2 2	*ffl ffl ffl `φpθq ˙˙ą t ffl
	"	ffl ffl ffl ffl " pθ, vq P T ˆR : a φ	ˆv2 2	*ffl ffl ffl `φpθq ˙ă µ f ptq ffl
	"	ffl ffl ffl ffl " pθ, vq P T ˆR :	v 2 2	`φpθq ă a ´1 φ pµ f ptqq	*ffl ffl ffl ffl
		´a´1						
	" a φ						

2.1. Let φ P C 8 pTq and let a φ be the function defined by (2.1). Let f P L 1 pT ˆRq, nonnegative. Then the function

f ˚φpθ, vq " f 7 ˆaφ ˆv2 2 `φpθq ˙˙, pθ, vq P T ˆR is equimeasurable to f , that is µ f ˚φ " µ f

, where µ f is defined by (1.10). In the sequel, the function f ˚φ is called (decreasing) rearrangement with respect to the microscopic energy v 2 2 `φpθq. φ pµ f ptqq ¯" µ f ptq.

  f 0 ptq "

		ffl ffl ffl ffl " pθ, vq P T ˆR : F	ˆv2 2	*ffl ffl ffl `φ0 pθq ˙ą t ffl
	"	ffl ffl ffl ffl " pθ, vq P T ˆR : G ˝aφ 0	ˆv2 2	*ffl ffl ffl `φ0 pθq ˙ą t ffl
	"	ffl ffl ffl ffl " pθ, vq P T ˆR : G 7 ˝aφ 0	ˆv2 2	*ffl `φ0 pθq ˙ą t ffl ffl ffl .
	Hence, applying the (1.11) to the function		
	µ G psq " |tt ě 0 : Gptq ą su| , for all s ě 0,
	and to its pseudo-inverse G 7 , we get		
	µ f 0 ptq "	ffl ffl ffl ffl	" pθ, vq P T ˆR : a φ 0	ˆv2 2	*ffl ffl ffl `φ0 pθq ˙ă µ G ptq ffl
		ffl			
		ffl			
	"	ffl			
		ffl			

"

pθ, vq P T ˆR :

  uq du, where gpe, uq " 4

						? 2	a	pe `uq ?1 .
								´u2
	For u P p´1, 1q, we have				
	0 ď	Bg Be	ď q e puq "	2 ? 1 ? 2 ´e	a	1 pe `uqp1 ´uq	1 ´eďuď1

  `eq 2 " ´2 logp1 ´eq as e Ñ 1, e ă 1, thus α 1 1 peq " ´2 logp1 ´eq as e Ñ 1, e ă 1. To deal with the case e Ñ 1, e ą 1, we perform for e ą 1 the change of variable t " 1´cos θ 1`cos θ in (2.6):

	Using again (5.6), we get				
		ˇˇα 1 1 peq ´I2 peq ˇˇď 2 ?	2	ż `8 0	p1 `tq 3{2	a	dt tptpe ´1q `e `1q	ď C 0
	where we used that tpe ´1q `e `1 ě 2 and where we set
						I 2 peq " 2 ?	2	ż `8 0	p1 `tq	dt tpe ´1q `e `1q a	.
	Since	I 2 " ´2 log	p ?	e	´1
								1 1 peq " 2	? 2	ż `8 0	ds sp1 `sqp2 `p1 ´eqsq a	.
	Let								I 1 peq " 2 ?	2	ż `8 0	p1 `sq	ds 2 `p1 ´eqs a	.
	From	0 ď	1 ? s	´1 ? 1 `s "	a	sp1 `sqp	1 ?	s `?1 `sq	ď	1 p1 `sq ?	s	,	(5.6)
	we deduce that										
	ˇˇα 1 1 peq ´I1 peq ˇˇď 2	?	2	ż `8 0	p1 `sq 3{2	ds sp2 `p1 ´eqsq a	ď 2	ż `8 0	ds p1 `sq 3{2 ?	s	" C 0 .
	A direct computation yields			
		I 1 peq "	´2? ? 1 `e log 2 2 `?1 α 1 1 ´e p ? 1 peq " 2 ? 2 ż `8 0	dt tp1 `tqptpe ´1q `e `1q a	.