Number of cycles in the graph of $312$-avoiding permutations
Résumé
The graph of overlapping permutations is defined in a way analogous to the De Bruijn graph on strings of symbols. However, instead of requiring the tail of one permutation to equal the head of another for them to be connected by an edge, we require that the head and tail in question have their letters appear in the same order of size. We give a formula for the number of cycles of length $d$ in the subgraph of overlapping $312$-avoiding permutations. Using this we also give a refinement of the enumeration of $312$-avoiding affine permutations.
Le graphique de permutations qui se chevauchent est définie d’une manière analogue à celle du graphe de De Bruijn sur des chaînes de symboles. Cependant, au lieu d’exiger la queue d’une permutation d’égaler la tête d’un autre pour qu’ils soient reliés par un bord, nous avons besoin que la tête et la queue en question ont leurs lettres apparaissent dans le même ordre de grandeur. Nous donnons une formule pour le nombre de cycles de longueur
$d$ dans le sous- graphe de chevauchement $312$-évitant permutations. L’utilisation de ce nous donnent également un raffinement de l’énumération de
$312$-évitant permutations affines.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...