Partial categorification of Hopf algebras and representation theory of towers of \mathcalJ-trivial monoids - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2014

Partial categorification of Hopf algebras and representation theory of towers of \mathcalJ-trivial monoids

Aladin Virmaux
  • Fonction : Auteur
  • PersonId : 964967

Résumé

This paper considers the representation theory of towers of algebras of $\mathcal{J} -trivial$ monoids. Using a very general lemma on induction, we derive a combinatorial description of the algebra and coalgebra structure on the Grothendieck rings $G_0$ and $K_0$. We then apply our theory to some examples. We first retrieve the classical Krob-Thibon's categorification of the pair of Hopf algebras QSym$/NCSF$ as representation theory of the tower of 0-Hecke algebras. Considering the towers of semilattices given by the permutohedron, associahedron, and Boolean lattices, we categorify the algebra and the coalgebra structure of the Hopf algebras $FQSym , PBT$ , and $NCSF$ respectively. Lastly we completely describe the representation theory of the tower of the monoids of Non Decreasing Parking Functions.
Fichier principal
Vignette du fichier
dmAT0164.pdf (572.23 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01207568 , version 1 (01-10-2015)

Identifiants

Citer

Aladin Virmaux. Partial categorification of Hopf algebras and representation theory of towers of \mathcalJ-trivial monoids. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. pp.741-752, ⟨10.46298/dmtcs.2438⟩. ⟨hal-01207568⟩
194 Consultations
903 Téléchargements

Altmetric

Partager

More